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Abstract

Objective: Little information is available on the steroid sulfates profile in obese children. 

Therefore, we examined whether sulfated steroids are linked with weight status and 

associated comorbidities in obese children.

Methods: We analyzed 66 obese children (mean age 10.5 ± 2.5 years, 57.6% female, 

53.9% prepubertal, mean BMI 27.0 ± 4.6 kg/m2, 50% with BMI-SDS reduction >0.5, 50% 

without BMI-SDS reduction) who participated in an outpatient 1-year intervention 

program based on exercise, behavior and nutrition therapy. We measured intact sulfated 

steroids (cholesterol sulfate (CS), pregnenolone sulfate (PregS), 17αOH pregnenolone 

sulfate (17OH-PregS), 16αOH dehydroepiandrosterone sulfate (16OH-DHEAS), DHEAS, 

androstenediol-3-sulfate, androsterone sulfate and epiandrosterone sulfate) by LC–MS/MS, 

and insulin resistance index HOMA, lipids, blood pressure at baseline and 1 year later.

Results: All sulfated steroids except 17OH-PregS, 16OH-DHEAS, androsterone sulfate and 

epiandrosterone sulfate were higher in boys compared to girls. Concentrations of CS 

before intervention were higher in children who lost weight. After 1 year of treatment, 

both groups showed increased levels of DHEAS, 16OH-DHEAS and androstenediol-

3-sulfate, but PregS was only increased in children with weight loss. None of the 

steroid sulfates was significantly related to cardiovascular risk factors or HOMA except 

17OH-PregS, which was associated with systolic blood pressure both in cross-sectional 

(β-coefficient: 0.09 ± 0.07, P = 0.020) and longitudinal analyses (β-coefficient: 0.06 ± 0.04, 

P = 0.013) in multiple linear regression analyses.

Conclusions: Since higher steroid sulfation capacity was associated with successful 

weight intervention in children disruption of sulfation may be associated with 

difficulties to lose weight. Future studies are necessary to prove this hypothesis.

Introduction

Obesity is a complex condition associated with changes 
in many steroid hormones also including androgens: 
concentrations of testosterone and DHEAS and their 
precursors are increased in children (1, 2) and obese 
women (3), while obese men demonstrated decreased 
testosterone levels (4). Interestingly, obese women with 

increased androgens and obese men with low testosterone 
concentrations are more prone to metabolic disturbances 
such as insulin resistance, type 2 diabetes mellitus, lipid 
abnormalities and hypertension and may therefore be at 
particular risk of developing atherosclerotic complications 
(2, 5, 6, 7, 8, 9). Furthermore, increased androgens are 
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related to polycystic ovarian syndrome (PCOS) in females 
(7, 10). In children, a high androgenic activity is discussed 
to be associated with precocious puberty, premature 
adrenarche and accelerated bone age with relatively tall 
stature (11, 12).

Of importance, the great majorities of studies 
analyzed unconjugated steroids, but recent research 
suggests that also sulfated steroids may be involved 
in these processes linking steroids to comorbidities 
of obesity. For example, a relationship between the 
concentration of sulfated steroids and glucose tolerance 
has been reported in mice (13). Sulfated steroids are the 
most abundant fraction of steroids in human blood. 
Sulfated steroids are originally synthesized from the 
unconjugated steroid by sulfation. This reaction, which 
belongs to phase II metabolism, requires the action 
of steroid sulfotransferases (SULTs) (14). Disruption 
of sulfation due to inactivating mutations in the 
human gene encoding PAPSS2, a crucial cofactor of 
sulfotransferases, has been shown to result in increased 
androgen activation and PCOS phenotype in both 
homozygous and heterozygous individuals (15, 16).

Sulfated steroids cannot interact directly with steroid 
receptors (17). However, there is growing evidence 
suggesting that sulfated steroids can access different tissues 
of the human body by circulation and transport into 
cells, where they can be activated by the action of steroid 
sulfatase (STS) (18). In absolute STS deficiency (STSD), 
most sulfated steroids in serum are elevated compared 
to healthy controls (19). STS is not the only enzyme that 
exhibits sulfatase activity for sulfated steroids, at least 
in vitro. Recently, we reported that 3β-hydroxysteroid 
dehydrogenase type 2 (3βHSD2) can cleave the sulfate group 
of some sulfated steroids to produce unconjugated steroids, 
i.e. PregS produced progesterone and androstenedione was 
synthesized from DHEAS (19).

As only sparse data exist on the sulfates of androgens 
and their precursors in children, we analyzed intact sulfated 
steroids using state-of-the-art liquid chromatography–
tandem mass spectrometry (LC–MS/MS) (20). This 
method can quantify 11 sulfated steroids simultaneously, 
providing a powerful tool to understand the sulfated 
steroidome in human blood (21). We hypothesized 
that sulfated steroids concentrations are linked with 
weight status in obese children since substantial weight 
loss in obese children is associated with variations of 
unconjugated steroids like androgens and corticoids (1, 2, 
6). In addition, we analyzed whether cardiovascular risk 
factors linked to obesity, including insulin resistance, are 
associated with steroid sulfates.

Subjects and methods

Subjects

Written informed consent was obtained from all children 
and their parents. The study was approved by the Local 
Ethics Committee of the University of Witten/Herdecke 
in Germany.

We examined 66 obese Caucasian children (mean 
age 10.5 ± 2.5  years, 57.6% female, 53.9% prepubertal, 
mean BMI 27.0 ± 4.6 kg/m2). We choose 33 children 
with substantial BMI-SDS reduction of >0.5 and 33 age-, 
gender- and pubertal stage-matched children without 
BMI-SDS reduction. This classification was used because 
a reduction of >0.5 SDS-BMI leads to an improvement of 
insulin resistance as well as cardiovascular risk factors and 
normalized hormones like leptin, cortisol or adiponectin 
(6, 22, 23, 24).

All children participated in the lifestyle intervention 
‘Obeldicks’, which has been described in detail 
elsewhere (25). Briefly, this outpatient intervention 
program for obese children is based on physical exercise, 
nutrition education and behavior therapy including 
the individual psychological care of the child and his 
or her family. The nutritional course is based on a fat 
and sugar-reduced diet as compared to the every-day 
nutrition of German children.

Exclusion criteria

None of the children in the current study suffered from 
endocrine disorders, premature adrenarche or syndromal 
obesity. None of the obese children entered into puberty 
during the study period.

Measurements

We analyzed BMI, blood pressure (BP), lipids, the insulin 
resistance index HOMA and sulfated steroids in children 
(cholesterol sulfate (CS), pregnenolone sulfate (PregS), 
17OH-PregS, DHEAS, 16OH-DHEAS, androstenediol-
3-sulfate (A-3-S), androsterone sulfate (AS) and 
epiandrosterone sulfate (ES)) at baseline and at the end of 
the 1-year lifestyle intervention ‘Obeldicks’.

Height was measured to the nearest centimeter using 
a rigid stadiometer. Weight was measured unclothed to 
the nearest 0.1 kg using a calibrated balance scale. BMI 
was calculated as weight in kilograms (kg) divided by the 
square of height in meters (m2). The degree of overweight 
was quantified using Cole’s least mean square method, 
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which normalized the BMI skewed distribution and 
expressed BMI as a standard deviation score (BMI-SDS) 
(26). Reference data for German children were used (27). 
All children in the study were obese according to the 
definition of the International Obesity Task Force (28).

Pubertal stage was determined by well-trained 
physicians according to Marshall and Tanner. Pubertal 
developmental stage was categorized into two groups 
based on breast and genital stages (prepubertal: boys with 
genital stage I, girls with breast stage I, pubertal: boys with 
genital stage ≥II; girls with breast stage ≥II).

BP was measured using a validated protocol (29). 
Systolic and diastolic BP were measured at the right arm 
twice after a 10-min rest in the supine position by using 
a calibrated sphygmomanometer and averaged. The cuff 
size was based on the length and circumference of the 
upper arm and was as large as possible without having the 
elbow skin crease obstructing the stethoscope (29). The 
intra- and inter-operator variability was <5% for systolic 
and diastolic BP.

Blood sampling was performed in the fasting state 
at 08:00 h After clotting, blood samples were centrifuged 
for 10 min at 5150 g. Serum was stored at −81°C for later 
determination of steroid hormones sulfates and insulin. 
All samples were thawed only once. Serum triglyceride, 
high-density lipoprotein (HDL) cholesterol, low-density 
lipoprotein (LDL) cholesterol and total cholesterol 
concentrations were measured using commercially 
available test kits (LDL-C- and HDL-C-Plus, Roche 
Diagnostics; Vitros analyzer, Ortho Clinical Diagnostics, 
Neckargemuend, Germany; MEIA, Abbott). Intra- and 
inter-assay variations for the concentrations (CV) of these 
variables were less than 5%. Insulin concentrations were 
measured by microparticle enhanced immunometric 
assay (MEIA, Abbott). Glucose levels were determined by 
colorimetric test using a Vitros analyzer (Ortho Clinical 
Diagnostics). Homeostasis model assessment (HOMA) was 
used to detect the degree of insulin resistance using the 
formula: resistance (HOMA) = (insulin (mU/L) × glucose 
(mmol/L))/22.5 (30).

Measurement of steroid sulfates by mass 
spectrometry was performed as previously described in 
detail (21). Briefly, 300 µL of each serum sample were 
incubated during 15 min with a mix of internal standards 
(50 µL). All internal standards had a concentration of 
1 µg/mL, with the exception of CS, which was 6 µg/mL.  
Next, 1 mL of acetonitrile-ZnSO4 (89 g/L, 4:1 (v/v)) 
was added to precipitate the proteins and the mixture 
was incubated again for 15 min. After incubation,  
the samples were centrifuged for 10 min at 14,500 g.  

The supernatant was collected in a glass tube and 3 mL of 
water were added. Solid phase extraction of the samples 
was performed with SepPak C18 cartridges, which were 
conditioned with 2 mL of methanol followed by 2 mL 
of water. Each sample was loaded onto the cartridge 
and washed with different solvents: first 3 mL of 
water, followed by 3 mL of hexane, 4 mL of chloroform 
and 4 mL of methanol. Sulfated steroids were eluted 
with the methanolic fraction. This final fraction was 
evaporated with nitrogen at 40°C and reconstituted 
with 250 µL of a solution of 79.75% water, 10% MeOH, 
10% acetonitrile and 0.25% ammonium hydroxide. 
Finally, each reconstitution solution was centrifuged 
and 10 µL were injected in the LC–MS/MS system. 
Liquid chromatography was performed with a Accucore 
Phenyl-X column (100 × 2.1 mm, 2.6 µm) from Thermo 
Fisher Scientific, connected to a HPLC system (Agilent 
1200SL). MS/MS quantification was performed with a 
triple quadrupole mass spectrometer (TSQ, Quantum 
Ultra; Thermo Fisher Scientific).

Statistics

Statistical analyses were performed using the Winstat 
software package (R. Fitch Software, Bad Krozingen, 
Germany). Normal distribution was tested by the 
Kolmogorov–Smirnov test. Changes of steroid hormone 
sulfates in the 1-year follow-up were correlated to changes 
of insulin, HOMA, lipids and changes of BP by Spearman 
correlation. To compare variables at baseline or in the 
course of 1 year, Fisher exact test and Student’s t-test for 
paired and unpaired observations, Wilcoxon and Mann–
Whitney U test were used as appropriate. In all significant 
associations in univariate correlation analyses, backward 
multiple linear regression analyses were performed 
adjusted for age, gender, pubertal stage and degree of 
overweight at baseline as well as changes of BMI-SDS and 
pubertal stage in longitudinal analyses.

A P-value <0.05 was considered as significant. Data were 
presented as mean and standard deviation for normally 
distributed variables and median and interquartile range 
(IQR) for not normally distributed variables.

Results

All sulfated steroids except CS were significantly associated 
to age (Table  1). Furthermore, we found significant 
correlations between the concentrations of some sulfated 
steroids (Table 2).
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Comparing boys and girls who did not differ 
significantly in their pubertal stage, we demonstrated that 
CS, DHEAS and A-3-S concentrations were significantly 
higher in boys, while 17OH-PregS, 16OH-DHEAS, AS and 
ES did not present significant differences (Table 3).

DHEAS, 16OH-DHEAS, A-3-S and ES were 
significantly higher in pubertal children, while CS, PregS 
and 17OH-PregS had no significant differences between 
prepubertal and pubertal children (Table 4).

All steroid sulfates increased significantly in the 
observation period with independence of change of 
weight status, with the exception of CS and 17OH-PregS. 
CS levels before intervention were higher in children with 
substantial weight loss (Table 5). After 1-year intervention, 
PregS concentrations increased only in children with 
substantial decrease of BMI-SDS (Table 5). In addition, the 
increase of DHEAS was higher in children with substantial 
weight loss compared to the children without substantial 
decrease of BMI-SDS (Table 5).

Analysis of only prepubertal children, who 
remained prepubertal in the 1-year intervention period, 
demonstrated the same findings with one exception 

(Table  6): 17OH-PregS decreased in the children with 
substantial weight loss and increased in the children 
without substantial weight loss.

CS was significantly and positively associated with 
cholesterol and triglycerides both at baseline as well as 
to changes of overweight in the 1-year follow-up period 
(Tables  1 and 7). A-3-S was significantly positively 
associated with baseline BMI and HOMA both cross-
sectionally and longitudinally. 17OH-PregS were 
significantly positively associated with systolic BP both at 
baseline as well as to its changes in the 1-year follow-up 
period. There were no further significant correlations 
between steroid hormone sulfates and anthropometrics, 
lipids or BP that were present in both cross-sectional and 
longitudinal analyses.

In multiple linear regression analyses adjusted to 
age, gender and pubertal stage, baseline 17OH-PregS 
significantly associated with baseline systolic BP  
(β-coefficient 0.09 ± 0.07; P = 0.020), and baseline 16αOH 
DHEAS was significantly associated with baseline HOMA 
(β-coefficient 6.1 ± 6.0; P = 0.049), while no further 
significant associations could be observed.

Table 1 Associations between steroid sulfates and anthropometrics and cardiovascular risk factors at baseline (Spearman 

correlation).

CS PregS 17αOH PregS 16αOH DHEAS DHEAS A-3-S AS ES

Age 0.07 0.22* 0.24* 0.43*** 0.63*** 0.55*** 0.46*** 0.54***
BMI 0.05 0.19 0.16 0.31** 0.51*** 0.49*** 0.38*** 0.44***
Systolic blood pressure 0.19 0.19 0.27* 0.15 0.16 0.23* 0.15 0.22*
Diastolic blood pressure 0.05 0.07 0.08 0.19 0.23* 0.16 0.29** 0.32**
Fasting glucose −0.02 0.21 0.16 0.26* 0.25* 0.26* 0.10 0.18
HOMA −0.09 0.28* 0.29** 0.42*** 0.30** 0.28** 0.21* 0.29**
Cholesterol 0.52*** 0.03 0.06 −0.24* −0.13 −0.07 −0.25* −0.22*
HDL-cholesterol 0.10 0.05 −0.02 −0.06 0.02 0.02 −0.03 −0.06
LDL-cholesterol 0.45*** 0.13 0.15 −0.17 −0.04 0.01 −0.19 −0.17
Triglycerides 0.25* −0.18 −0.11 −0.24* −0.28* −0.26* −0.10 −0.11

*P < 0.05; **P < 0.01; ***P < 0.001.
A-3-S, androstenediol-3-sulfate; AS, androsterone sulfate; CS, cholesterol sulfate; DHEAS, dehydroepiandrosterone sulfate; ES, epiandrosterone sulfate; 
HDL, high-density lipoprotein; LDL, low density lipoprotein; PregS, pregnenolone sulfate.

Table 2 Associations between steroid sulfates at baseline (Spearman correlation).

CS PregS 17αOH PregS 16αOH DHEAS DHEAS A-3-S AS ES

CS – −0.04 0.11 −0.13 0.01 0.02 −0.10 −0.09
PregS −0.04 – 0.84*** 0.37** 0.53*** 0.52*** 0.08 0.18
17αOH PregS 0.11 0.84*** – 0.42*** 0.55*** 0.50*** 0.16 0.25*
16αOH DHEAS −0.13 0.37** 0.42*** – 0.70*** 0.61*** 0.54*** 0.58***
DHEAS 0.01 0.53*** 0.55*** 0.70*** – 0.91*** 0.54*** 0.91***
A-3-S 0.02 0.52*** 0.50*** 0.61*** 0.91*** – 0.41*** 0.46***
AS −0.10 0.08 0.16 0.54*** 0.54*** 0.41*** – 0.90***
ES −0.09 0.18 0.25* 0.58*** 0.91*** 0.46*** 0.90*** –

*P < 0.05; **P < 0.01; ***P < 0.001.
A-3-S, androstenediol-3-sulfate; AS, androsterone sulfate; CS, cholesterol sulfate; DHEAS, dehydroepiandrosterone sulfate; ES, epiandrosterone sulfate; 
PregS, pregnenolone sulfate.
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Changes of 17OH-PregS were significantly positively 
associated with changes of systolic BP (β-coefficient 
0.059 ± 0.04; P = 0.013) and changes of DHEAS were 
significantly negatively associated with changes of BMI-
SDS (β-coefficient −150 ± 109; P = 0.008), while no further 
significant associations could be observed in multiple 
linear regression analyses adjusted to age, gender, 
pubertal stage and changes of HOMA and changes of 
pubertal stage.

The children with and without substantial BMI-
SDS reduction did not differ significantly according to 
age, gender, pubertal stage, cardiovascular risk factors 
or steroid sulfates at baseline except CS, which, as 
previously mentioned, was higher in children with  
BMI-SDS reduction.

Weight loss in 33 obese children (mean BMI-SDS 
−0.75 ± 0.25) was associated with significant decreases 
of HOMA, lipids and BP. In the obese 33 children with 
weight gain (mean change of BMI-SDS +0.25 ± 0.17), 
triglycerides and systolic BP increased significantly, 

while all other cardiovascular risk factors did not change 
significantly (Table 5).

Discussion

To the best of our knowledge, this is the first study 
analyzing the longitudinal relationships of the sulfated 
steroidome in obese children participating in a lifestyle 
intervention. Our data show that concentrations of CS 
before intervention are higher in children who finally 
lost weight, which points to a higher capacity to sulfate 
cholesterol. This fact can be due to increased SULTs 
activity, to a decreased activity of sulfatases or to a 
combined effect of all enzymes.

The finding that children with higher CS 
concentrations loose more weight than those with lower 
CS concentrations are in line with the observation that 
obese girls with PCOS (a disease which has been reported 
to be associated with a disruption of sulfation (15,16)) 

Table 3 Comparison of age, pubertal stage and steroid sulfates between boys and girls.

Boys Girls P-Value

Number 28 38
Age (years) 12 (IQR 10–13) 11 (IQR 8–13) 0.111
Prepubertal (%) 17 (61) 18 (47) 0.151
CS (µM) 1087 (IQR 882–1304) 903 (IQR 704–1000) 0.003
PregS (µM) 35 (IQR 28–54) 25 (IQR 14–43) 0.049
17OH-PregS (µM) 5 (IQR 3–8) 4 (IQR 1–7) 0.173
16OH-DHEAS (µM) 78 (IQR 55–172) 76 (IQR 59–145) 0.989
DHEAS (µM) 875 (IQR 477–1080) 551 (IQR 284–881) 0.009
A-3-S (µM) 45 (IQR 26–58) 25 (IQR 13–35) <0.001
AS (µM) 305 (IQR 200–392) 433 (IQR 220–581) 0.111
ES (µM) 106 (IQR 67–149) 152 (IQR 66–178) 0.143

Data as median and interquartile range (IQR), P-value derived from Fisher exact test or Mann–Whitney U test.
A-3-S, androstenediol-3-sulfate; AS, androsterone sulfate; CS, cholesterol sulfate; DHEAS, dehydroepiandrosterone sulfate; ES, epiandrosterone sulfate; 
PregS, pregnenolone sulfate.

Table 4 Comparison of steroid sulfates between prepubertal and pubertal children.

Prepubertal Pubertal P-Value

Number 35 31
Gender 17 (49%) boys 11 (35%) boys 0.287
CS (µM) 945 (IQR 755–1149) 939 (IQR 801–1211) 0.782
PregS (µM) 31 (IQR 17–41) 29 (IQR 20–56) 0.508
17OH-PregS (µM) 5 (IQR 2–6) 5 (IQR 2–9) 0.407
16OH-DHEAS (µM) 64 (IQR 37–100) 95 (IQR 67–204) 0.003
DHEAS (µM) 529 (IQR 299–789) 901 (IQR 601–1160) 0.002
A-3-S (µM) 24 (IQR 14–41) 37 (IQR 25–53) 0.023
AS (µM) 250 (IQR 165–393) IQR 341–619) <0.001
ES (µM) 77 (IQR 57–142) 160 (IQR 116–204) <0.001

Data as median and interquartile range (IQR), P-value derived from Fisher exact test or Mann–Whitney U test.
A-3-S, androstenediol-3-sulfate; AS, androsterone sulfate; CS, cholesterol sulfate; DHEAS, dehydroepiandrosterone sulfate; ES, epiandrosterone sulfate; 
PregS, pregnenolone sulfate.
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have greater difficulties to lose weight compared to 
girls without PCOS (31). The underlying mechanisms 
are unclear so far and cannot be analyzed by our study.  
An impact of insulin resistance seems unlikely since CS 
was not related to HOMA in our study. Furthermore, it has 
been reported that CS and SULTs are important regulators 
of glucose metabolism inhibiting hepatic gluconeogenesis 
(32): In mice, CS alleviated insulin resistance and lowered 
the expression of liver gluconeogenic gene.

CS can also give rise to PregS – a key molecule to 
control steroidogenesis (33). Children who lost weight 
showed a significant rise in the concentration of this 
compound after 1 year, in contrast to children who did 
not lose weight. Higher concentrations of PregS decrease 
the amounts of free unconjugated pregnenolone, the 
starting metabolite for the synthesis of androgens and 
corticoids. Similarly, DHEAS increased more in children 
with substantial BMI-SDS reduction compared to children 
without BMI-SDS reduction in the 1-year observation 
period. Similarly, this decreases the availability of DHEA 
and has an impact on steroid biosynthesis. Such an effect 
can be clearly observed in STSD patients, with higher 
DHEAS concentrations but lower DHEA levels than 
controls (19, 34).

Therefore, our results pointing to a higher capacity 
to synthesize steroid sulfates in obese children with 
weight loss are coherent with previous reports in 
which substantial weight loss in obese children was 
associated with a decrease of unconjugated androgens 
or corticoids (1, 2, 6). A general scheme for these ideas 
is depicted in Fig. 1.

The persistently elevated androgen sulfates after 
weight loss are in line with previous studies demonstrating 
elevated DHEAS after weight loss in long-term follow-up 
studies (1, 2). Our findings could suggest an irreversible 
maturation of the zona reticularis and the formation of 
sulfated androgens in obese children or shifted balance 
of STS and SULTs. Once the developmental path of 
adrenarche has been initiated, it continues irreversibly 
as reflected by the increasing sulfated androgen 
concentrations during the study period even after 
successful weight loss. We cannot decipher, however, 
whether obesity has been the first event which has only 
secondarily initiated exaggerated adrenarche or whether 
exaggerated adrenarche has actually been the first hit 
promoting development of obesity as the secondary 
event, which has also been suggested by others (12, 35). 
One potential mechanism explaining the increased levels 
of most sulfated steroids could be a lower activity of STS 
or of 3βHSD2, since 3βHSD2 could also have sulfatase Ta

b
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activity (19). Interestingly, adrenarche is accompanied by 
a lower expression of 3βHSD2 (36).

Except 17OH-PregS, none of the sulfated androgens 
were associated to cardiovascular risk factors including 
insulin resistance. This finding is in contrast to 
unconjugated androgens, which are related to parameters 
of the metabolic syndrome (2, 5, 6, 7, 8, 9). However, 
systolic BP was significantly related to 17OH-PregS both 
in cross-sectional and longitudinal analyses. Further 
studies are necessary to prove whether this relationship is 
relevant and to analyze the underlying mechanisms.

Most sulfated androgens and their precursors were 
higher in boys compared to girls, with the exception of 
AS, ES, 16OH-DHEAS and 17OH-PregS. We anticipated 
this difference previously for AS and ES based on the 
differences in STS activity between males and females 
(19). As previously described, DHEAS and CS had the 
highest concentrations of all analyzed steroid sulfates 
(19,21). DHEAS and A-3-S production normally starts to 
increase at the age of 6–8 (adrenarche) and reaches its 

highest concentrations in blood at around 20–30  years 
of age in males and females (37, 38). The relationship 
between blood concentrations of sulfated steroids and 
age is well known (39). The increase of sulfated steroids 
with age could also be observed in our study, with the 
exception of CS, which showed similar levels in all 
children after one year of intervention. CS is the only 
measured sulfated steroid, which is not of adrenal origin 
and can be synthesized in other tissues (21).

Of interest, we found strong correlations between 
the concentrations of many sulfated steroids. These 
correlations are similar to the ones reported before in 
adult males (19). Synthesis of sulfated steroids is not only 
possible by a sulfation reaction of unconjugated steroids. 
Enzymatic conversion of some sulfated steroids into 
others is also a well-known physiological reaction. For 
instance, DHEAS can be converted into A-3-S, and PregS 
can be hydroxylated to produce 17OH-PregS (33, 40, 41). 
As a consequence, steroid biosynthesis in humans is a 
complex set of interconnected pathways (19).

Table 7 Associations between changes (Δ) of steroid sulfates and changes (Δ) of anthropometrics and cardiovascular risk factors 

at baseline (Spearman correlation).

ΔCS ΔPregS
Δ17αOH 
PregS

Δ16αOH 
DHEAS ΔDHEAS ΔA-3-S ΔAS ΔES

ΔBMI-SDS 0.11 −0.16 0.17 0.07 −0.26* 0.026* −0.15 −0.11
ΔSystolic blood pressure 0.09 0.07 0.24* 0.07 −0.31** 0.04 −0.09 −0.01
ΔDiastolic blood pressure 0.16 −0.14 0.03 −0.10 −0.19 −0.02 −0.14 −0.09
ΔFasting glucose −0.13 −0.11 −0.07 −0.16 −0.22* −0.21* 0.02 0.02
ΔHOMA −0.04 −0.01 0.04 0.05 −0.37*** 0.22* −0.09 0.02
ΔCholesterol 0.36** −0.27* −0.07 −0.33** −0.18 0.03 −0.21* −0.30**
ΔHDL-cholesterol 0.04 −0.11 −0.17 0.01 0.01 0.03 −0.21* −0.30**
ΔLDL-cholesterol 0.22 −0.18 −0.23 −0.22* −0.19 0.04 −0.04 −0.11
ΔTriglycerides 0.21* −0.07 0.08 −0.11 −0.16 0.11 −0.24* −0.37**

*P < 0.05; **P < 0.01; ***P < 0.001.
A-3-S, androstenediol-3-sulfate; AS, androsterone sulfate; CS, cholesterol sulfate; DHEAS, dehydroepiandrosterone sulfate; ES, epiandrosterone sulfate; 
HDL, high-density lipoprotein; LDL, low density lipoprotein; PregS, pregnenolone sulfate.

Figure 1
Overview of the steroidogenesis in obese children 
during weight loss. The increase of sulfated 
steroids affects the concentration of 
unconjugated steroid precursors and therefore of 
hormonal steroids.
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Strengths and limitations of the study

The strengths of this study are its longitudinal design, 
the analyses of a comprehensive profile of intact steroid 
sulfates by state-of-the-art LC–MS/MS (21) and the 
study of a homogenous cohort of obese children naive 
to drugs. However, our study presents some potential 
limitations. First, BMI percentiles were used to classify 
overweight. Although BMI is a good measure for 
overweight, one needs to be aware of its limitations as 
an indirect measurement of fat mass. Second, we did 
not have a control group of normal weight children. 
Third, our study sample was too small to study gender 
differences on the changes of sulfated steroids in weight 
loss. Finally, weight loss may be too small to measure 
effects on sulfated steroids. On the other hand, a 
reduction of ≥0.5 BMI-SDS, as achieved in our children 
with substantial weight loss, is reported to normalize 
many hormonal and metabolic changes in childhood 
obesity like insulin sensitivity, the cardiovascular 
risk factor profile, hormones including unconjugated 
androgens and adipocytokines (1, 2, 6, 23, 24).

In summary, most sulfated androgens and their 
precursors were higher in boys compared to girls. 
Furthermore, there is an increase in the levels of sulfated 
steroids, which can be associated to age in both groups, 
but in addition, children with weight loss showed higher 
capacity to sulfate steroids. This capacity was present 
before the intervention, with higher CS blood levels. 
Sulfated androgens were not related to cardiovascular 
risk factors except 17OH-PregS, which was related to 
systolic BP. There is still a great need for further research 
on the alterations of sulfated steroids in obesity also to 
understand how the activity of enzymes related to the 
synthesis of these compounds, including SULTs, STS and 
probably 3βHSD2, can be altered in obesity. This study 
also points to the importance of quantifying sulfated 
steroids at different ages, in order to establish ranges for 
some compounds like CS and PregS. This could provide 
additional information previous to medical intervention 
in the treatment of obesity.
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