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ABSTRACT Kodamaea ohmeri is a symbiont of the small hive beetle (SHB), which is
a scavenger of honey bee colonies. The SHB causes absconding of the economically
important honey bee (Apis mellifera) and deposits K. ohmeri in the honeycomb. We
describe long-read sequencing and further analyses of the K. ohmeri genome.

The small hive beetle (SHB), Aethina tumida, deposits its symbiotic yeast (Kodamaea
ohmeri, Saccharomycotina) when infesting honey bee (Apis mellifera) colonies (1, 2).

K. ohmeri ferments honey, creating an odor and slimy appearance used for SHB
diagnostics (3), as well as volatiles that mimic honey bee pheromones, which may
attract more SHBs to the hive (2). K. ohmeri is also a human pathogen (4) and produces
ethanol and food flavors (5).

Macerated midguts of bees from a SHB-infested honey bee colony were plated on
yeast-peptone-dextrose agar (Sigma) with antibiotics and incubated at 25°C. A single
colony was picked to produce an overnight culture, which was pelleted for genomic
DNA (gDNA) extraction using the MagAttract high-molecular-weight (HMW) DNA kit
(Qiagen). Primers ITS1_F, ITS4_R, NL1_F, and NL4_R were used in Phusion (NEB)
reactions for identification.

A whole-genome sequence (WGS) library was constructed using the SMRTbell
express template prep kit v1, size selected on a BluePippin system with a 15-kb cutoff,
and sequenced on a PacBio Sequel system. One single-molecule real-time (SMRT) cell
produced 6,057,833,952 bp in 835,386 reads for �475� coverage. PacBio data were
corrected, trimmed, and assembled into 27 contigs with Canu v1.7.1 (6) using the
parameters genomeSize � 12.16m and correctedErrorRate � 0.105. One contig flagged
as circular was identified as the mitochondrion by BLAST. MUMmer v4.0.0beta2 (7)
confirmed the overlapping ends. Circularization and removal of contigs contained
within another contig were performed with Circlator v1.5.0 (–b2r_length_cutoff 60000
–split_all_reads [8]). Three iterations of Arrow (SMRT Link v5.1.0) polishing produced a
20-contig assembly (QUAST [9] and Galaxy v4.6.3 [10]), with 12,583,843 bp, 42.75% GC
content, an N75 value of 1,584,252 bp, an L75 value of 5, and a largest contig of
2,525,569 bp. BUSCO v3 (11) assessment using the Fungi odb9 and Saccharomycetales
odb9 data sets indicated 99% and 93.8% completeness, respectively. MAKER 3.01.02-
beta (12) with AUGUSTUS v3.3.2 (13) and trained Candida guilliermondii, the previous
species before reassignment and closest relative available (14), predicted 5,239 genes.
Gene descriptions were assigned via BLASTP (BLAST� 2.8 [15]) against the Reviewed
(Swiss-Prot) database following support protocol 3 (16). BlastKOALA v2.1 (17), eggNOG-
mapper (DIAMOND v4.5.1) (18), and GO FEAT v1.0 (19) assigned 58.9% proteins with
KEGG orthology identifiers and 4,574 proteins with Clusters of Orthologous Groups.
Twenty-eight percent of the annotatable predicted proteins are involved in cellular
processes/signaling, 25% in information storage/processing, and 28% in metabolism.
antiSMASH v5-beta (fungi) (20) identified a squalene synthase but no prominent natural
product gene clusters for secondary metabolism. Because the SHB genome possesses
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no invertase for sucrose metabolism (21), we searched the proteome of K. ohmeri for
genes that might assist in gut metabolism and identified an invertase and a hexose
transporter. Identification of transaldolase and xylulose kinase genes corroborates the
production of ethanol by xylose-fermenting K. ohmeri strains (5). To identify K. ohmeri
sequences in the SHB genome assembly as speculated based on BLASTN, the K. ohmeri
assembly was fragmented (500 bp) using BBMap v38 (22) and mapped to the SHB
genome (assembly number GCA_001937115) using HISAT 2.1.0 (23), followed by
SAMtools and BLASTN. Ribosomal DNA genes were mainly identified among the 1.14%
of the K. ohmeri assembly that aligned to SHB (0.64% once and 0.50% more than once)
using BLASTN. NCBI’s SRA taxonomy analysis found 1.6% alignment.

This genome will help unravel bee-SHB-yeast tripartite interactions, improve next-
generation sequencing SHB studies, and advance clinical and industrial efforts.

Data availability. Data were deposited at GenBank under BioProject number
PRJNA525764 (BioSample number SAMN11074024, SRA number SRR8889280, and assem-
bly number SKFK00000000). The strain was deposited at CBS-KNAW Collections–West-
erdijk Fungal Biodiversity Institute as CBS 15370.
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