
fnbeh-10-00071 April 15, 2016 Time: 16:6 # 1

ORIGINAL RESEARCH
published: 19 April 2016

doi: 10.3389/fnbeh.2016.00071

Edited by:
James P. Herman,

University of Cincinnati, USA

Reviewed by:
Seth Davin Norrholm,

Emory University School of Medicine,
USA

Dimitri De Bundel,
Vrije Universiteit Brussel, Belgium

*Correspondence:
Gina L. Forster

gforster@usd.edu

Received: 08 December 2015
Accepted: 29 March 2016

Published: 19 April 2016

Citation:
Davies DR, Olson D, Meyer DL,
Scholl JL, Watt MJ, Manzerra P,

Renner KJ and Forster GL (2016) Mild
Traumatic Brain Injury with Social

Defeat Stress Alters Anxiety,
Contextual Fear Extinction, and

Limbic Monoamines in Adult Rats.
Front. Behav. Neurosci. 10:71.

doi: 10.3389/fnbeh.2016.00071

Mild Traumatic Brain Injury with
Social Defeat Stress Alters Anxiety,
Contextual Fear Extinction, and
Limbic Monoamines in Adult Rats
Daniel R. Davies1, Dawne Olson1, Danielle L. Meyer1, Jamie L. Scholl1, Michael J. Watt1,
Pasquale Manzerra1, Kenneth J. Renner2 and Gina L. Forster1*

1 Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of
South Dakota, Vermillion, SD, USA, 2 Center for Brain and Behavior Research, Department of Biology, University of South
Dakota, Vermillion, SD, USA

Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying
posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a
rodent model of stress concurrent with mTBI produces characteristics of PTSD such
as impaired contextual fear extinction, while also examining concurrent alterations to
limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats
were exposed to social stress or control conditions immediately prior to mTBI induction,
and 6 days later were tested either for anxiety-like behavior using the elevated plus
maze (EPM), or for contextual fear conditioning and extinction. Brains were collected
24 h after EPM testing, and tissue from various limbic regions analyzed for content
of monoamines, their precursors and metabolites using HPLC with electrochemical
detection. Either social defeat or mTBI alone decreased time spent in open arms of
the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced
by the combination of treatments. Further, rats exposed to both social defeat and
mTBI exhibited greater freezing within extinction sessions compared to all other groups,
suggesting impaired contextual fear extinction. Social defeat combined with mTBI
also had greater effects on limbic monoamines than either insult alone, particularly
with respect to serotonergic effects associated with anxiety and fear learning. The
results suggest social stress concurrent with mTBI produces provides a relevant animal
model for studying the prevention and treatment of post-concussive psychobiological
outcomes.

Keywords: mild traumatic brain injury, social stress, posttraumatic stress disorder, anxiety, fear conditioning,
monoamine

INTRODUCTION

Mild TBI is one of the most common brain injuries, contributing to 75 percent of total TBI
cases (Center for Disease Control and Prevention [CDC], 2003). Clinical evidence suggests mild
traumatic brain injury (mTBI) increases the risk for anxiety disorders (Bryant and Harvey, 1999;
Moore et al., 2006). This relationship is further exemplified by a recent study of a military
population, in which 43.9 percent of those who received a mTBI met the diagnostic criteria for
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posttraumatic stress disorder (PTSD) compared to just 16.2
percent of those receiving other injuries during deployment
(Hoge et al., 2008). In addition, debilitating symptoms of mTBI,
including heightened anxiety, can persist for several years post-
injury in one third of all patients (Belanger et al., 2007; Kennedy
et al., 2007). Given the often persistent nature of mTBI, there is
a substantial need for understanding the mechanisms by which
mTBI may promote emergence of anxiety disorders, such as
PTSD, in order to develop effective preventative treatments.

Comparison of clinical research findings and preclinical
animal models of mTBI reveal a substantial overlap between
brain regions implicated in PTSD and those most affected by
mTBI. For example, smaller hippocampal volume has been
associated with PTSD in human studies (Karl et al., 2006; Woon
et al., 2010), and animal studies show that mTBI increases
cell death and reduces neuronal numbers in the hippocampus
(Henninger et al., 2005; Kwon et al., 2011; Dawish et al., 2012;
Kovesdi et al., 2012; Meyer et al., 2012). In addition, increased
amygdala activation is observed when individuals with PTSD
are exposed to reminders of traumatic events (Shin et al., 1997,
2004, 2005; Liberzon et al., 1999; Rauch et al., 2000, 2006; Pissiota
et al., 2002; Hendler et al., 2003; Armony et al., 2005; Milad
et al., 2006; Morey et al., 2009, 2012), while mTBI causes an
increase in the number of neurons in the rat amygdala (Meyer
et al., 2012). Furthermore, rats exposed to mTBI also exhibit
heightened anxiety-like behavior, as well as enhanced contextual
fear conditioning (Meyer et al., 2012) consistent with what has
been observed in human studies of PTSD in the laboratory
(e.g., Grillon and Morgan, 1999). Therefore, there appears to be
some consistency in the alterations to hippocampal and amygdala
structure and function that could explain increased anxiety-like
signs and fear following mTBI.

However, current preclinical models of mTBI do not show
some of the neural and behavioral alterations that often observed
in human studies of mTBI or PTSD. For instance, PTSD sufferers
exhibit reduced anterior cingulate cortex (ACC) activity when
presented with negatively valenced stimuli (Shin et al., 1999;
Williams et al., 2006; Kim et al., 2008), and reduced activity in this
region is thought to relate to impaired fear extinction (Orr et al.,
2000; Milad et al., 2006, 2008; Quirk et al., 2006; Blechert et al.,
2007; Jovanovic et al., 2009; Jovanovic and Norrholm, 2011).
Furthermore, deficits in medial and dorsolateral prefrontal cortex
activity are also believed to contribute to the fear and anxiety
symptoms of PTSD (Jovanovic and Norrholm, 2011; Elder et al.,
2012; Kovesdi et al., 2012). Clinical evidence suggests that mTBI
in humans also results in similar decreases in frontal cortex
activity (McAllister et al., 2001; Soeda et al., 2005), while animal
models of mTBI have not shown alterations to these frontal
regions (e.g., Kwon et al., 2011; Meyer et al., 2012). Moreover,
animal studies of mTBI also have not demonstrated altered fear
extinction in a manner consistent with exposure to stressors
(trauma) and the psychobiological sequelae (Grillon and Morgan,
1999; Meyer et al., 2012; Genovese et al., 2013; Sierra-Mercado
et al., 2015). Hence, there is a need to develop a more relevant
preclinical model of mTBI with which to examine the neural
mechanisms that would promote post-concussive psychological
signs.

One important variable that may be missing in the majority
of mTBI models is stress/arousal, given that concussive rodent
models are induced under anesthesia. Mild TBI is often sustained
during times of heightened arousal or stress (combat, domestic
violence, accidents, sports), similar to traumatic experiences that
can lead to PTSD (Moore et al., 2006). Therefore, we developed a
rat model incorporating stress concurrent with the mTBI injury.
In this model, we exposed rats to the ethologically relevant
stressor of social defeat immediately prior to inducing mTBI to
increase stress/arousal at the time of injury. Rodent social defeat
is a well-validated paradigm that has been shown to have face,
etiological, construct and predictive validity for modeling the
neurobiological factors underlying human psychiatric disorders
that are promoted by social stress/subordination (Hammels
et al., 2015). Rodents exposed to either acute or repeated social
defeat from a more aggressive conspecific exhibit many of the
same behavioral and physiological responses as elicited by social
confrontation in humans, such as anxiety-like behavior, social
withdrawal, anhedonia, elevations in sympathetic activity and
plasma glucocorticoid release, and changes to monoaminergic
activity in stress-responsive limbic regions (Bjorkqvist, 2001;
Huhman, 2006; Toth and Neumann, 2013; Hammels et al., 2015).
Thus, rodent social defeat has considerable ethological relevance
for replicating the biological responses accompanying states of
high stress and arousal in humans.

Here we test the hypothesis that combination of social
defeat stress and mTBI produces greater increases in anxiety-like
behavior, contextual fear conditioning and fear extinction deficits
than either treatment alone. Since alterations to monoamines
in the limbic system are thought to mediate fear and anxiety
states (Millan, 2003; Forster et al., 2012; Hindi Attar et al.,
2012; Stockhorst and Antov, 2015), we also examined whether
these combined insults affected monoamine levels and activity
in limbic regions including the amygdala, hippocampus, and
medial prefrontal cortex. Overall, the goal of this study was to
determine whether social defeat stress with mTBI could be an
effective model for elucidating the neurobiological relationship
between mTBI and post-concussive psychobiological signs

MATERIALS AND METHODS

Animals
Adult male Sprague-Dawley rats aged between 8 and 12 weeks
(N = 106; Animal Resources Center, The University of South
Dakota, Vermillion, SD, USA) were used for testing. Animals
were housed two per cage after weaning (3 weeks old) and
maintained in a reverse light cycle (12 h light/12 h dark), at
22◦C, 60% relative humidity with food and water available ad
libitum. All behavioral testing was performed at least 1 h after
the onset of the dark phase (10:00 AM) under red lighting.
The experiments were approved by the Institutional Animal
Care and Use Committee of South Dakota and the USAMRMC
Office of Research Protections Animal Care and Use Review
Office, and were conducted in accordance with the National
Institute of Health Guide for the Care and Use of Laboratory
Animals.
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Social Defeat and Plasma Collection
All rats were acclimated to the social defeat/control testing
environment so that any behavioral differences could only be
attributable to the social stress pretreatment rather than handling
or novel cage exposure. For acclimations, rats were placed
individually into an empty cage in the testing room for 40 min
for three consecutive days. Twenty-four hours following the last
acclimation, rats assigned to the social defeat treatment were
transferred into the home cage of a larger resident male, who
had been housed in isolation for at least 6 weeks to increase
territoriality and aggressiveness (Watt et al., 2009; Novick et al.,
2011). Resident males were allowed free contact with the intruder
for 10 min and the number of submissions the intruder exhibited
in response to resident attacks were recorded (Watt et al., 2009).
Following this, a wire mesh barrier was inserted into the cage
to separate the two animals from physical contact for 30 min
and create a situation of inescapable stress for the intruder
(Watt et al., 2009). Defeat intensity (0–5 scale) was calculated for
each trial, based on the number of submissions and the overall
strength of the defeat. Control animals were placed into novel
cages without a resident male for 40 min (Watt et al., 2009). To
validate the defeat procedure as reliably eliciting a stress response,
a separate group of defeated and control rats (N = 10/group)
were rapidly decapitated 30 min after the separation period, and
blood was collected for plasma measurement of stress-induced
corticosterone. This time point matched the time at which mTBI
was induced in the following experiments.

Surgery to Induce mTBI
Within 30 min of the conclusion of social defeat or control
procedures, rats underwent sham or mTBI surgery. The mTBI
was induced using a mild closed-head weight drop. This
procedure produces an injury mimicking a mild concussive
injury by altering neuronal number, region volume and number
of apoptotic cells in the limbic system, which is accompanied by
cognitive deficits, increases anxiety-like behavior and enhanced
contextual fear conditioning (Henninger et al., 2005, 2007; Meyer
et al., 2012). Weight drop was achieved using a custom-built
apparatus (Meyer et al., 2012), consisting of a Plexiglas tube
(inner diameter = 11 mm, length = 100 cm) with 5 mm holes
drilled every 2 cm to minimize friction and air resistance. Within
this tube, a 175 g cylindrical brass weight (10 mm diameter)
was held 42 cm above the anesthetized subject’s skull by an
electromagnetic switch.

Rats were induced to anesthesia using 4% isoflurane in
3.0 L/min O2, with anesthesia maintained at 3% isoflurane
delivered through a nose cone. After induction, the rat’s
temperature was maintained at 37 ± 0.5◦C using a feedback
heating pad system (Harvard Apparatus, Holliston, MA, USA).
A mid-line scalp incision and fascial clearing was used to
expose the skull before placing the anesthetized rat in a
prone position under the weight drop device. The animal’s
head was secured using two Plexiglas blocks on either
side, which also minimized impact-related lateral movement.
A cylindrical, polyacetyl transducer rod (diameter = 10 mm,
weight = 32.6 g, length = 15.75 cm) was placed in a vertical

position in direct contact with the skull, immediately posterior
to bregma and centered on the intraparietal suture. Once the
anesthetized, animal and transducer rod were properly aligned,
the electromagnetic switch was released and the brass weight
was dropped directly onto the transducer rod, which transferred
the impact to the animal. The transducer rod was immediately
grasped after the initial contact to prevent a second impact from
recoil.

Rats were returned from the weight drop device to the surgical
area to check that no skull fractures resulted from the injury,
which would indicate a greater class of injury than mild TBI
(i.e., moderate or severe). Once this was assured and visible
bleeding had ceased, the wound was closed using wound clips,
and the rat removed from anesthesia and administered an
analgesic (ketoprofen 5 mg/kg im.). Sham rats underwent the
same anesthesia induction and surgical procedures, including
being moved to the weight drop device, sans weight drop impact.
Care was taken to ensure that mTBI and sham groups were under
anesthesia for comparable amounts of time to minimize any
differences relatable to anesthesia duration (Meyer et al., 2012).

Measurement of Plasma Corticosterone
Blood was centrifuged (5000 rpm) and the plasma was stored at
−80◦C until analyzed. Ten microliters of plasma per subject was
used in a 100-fold dilution, with plasma corticosterone measured
using a corticosterone enzyme linked immunoassay kit (Enzo
Life Sciences, Farmingdale, NY, USA) as previously described
(Scholl et al., 2009). Samples, assay controls, and standards were
run in duplicate. Plasma corticosterone levels were detected by
absorbance of samples at 405 nm (wavelength correction set at
595 nm) and compared to known corticosterone standards using
an automated plate reader and KinetiCalc Jr. software (Bio-Tek
Instruments, Winooski, VT, USA). The detection limit of this
assay was 27.0 pg/ml, with sample corticosterone levels expressed
as ng/ml of plasma.

Elevated Plus Maze Testing and Brain
Collection
Six days post-surgery, rats (N = 10/group) were tested on the
elevated plus maze (EPM) as described previously (Meyer et al.,
2012). Each arm of the EPM (Noldus Information Technology,
Leesburg, VA, USA) was 50 cm long × 12 cm wide, and the
maze was elevated 1 m above the ground with a digital camera
suspended overhead. Animals were placed in the center of the
maze facing toward a closed arm and allowed to explore freely
for 5 min. The number of entries into open arms, cumulative
time spent in each arm (sec), and total distance moved (cm)
was measured using Ethovision XT 5.1 automated tracking
software (Noldus Technologies). Twenty-four hours following
EPM testing, rats were decapitated, with brains rapidly removed
and frozen on dry ice and stored at−80◦C.

Monoamine Analysis
Frozen brains were sliced coronally at −10◦C into 300 µm
serial sections. Relevant limbic regions were microdissected on
a freezing plate (Physitemp Instruments, Inc., Clifton, NJ, USA)
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using a 20 gage cannula, and included the basolateral/lateral
amygdala, central nucleus of the amygdala, medial amygdala,
medial prefrontal cortex, dorsal hippocampus, and ventral
hippocampus. All samples were expelled into 60 µL sodium
acetate buffer (pH: 4.95) containing the internal standard alpha-
methyl-dopamine, and stored at−80◦C until further analysis.

The monoamines epinephrine, norepinephrine, dopamine,
the dopamine metabolite 3,4-dihydroxyphenylacetic acid
(DOPAC), the serotonin precursor 5-hydroxytryptamine (5-
HTP), serotonin, and the serotonin metabolite 5-hydroxy
indoleacetic acid (5-HIAA) were measured as previously
described (Scholl et al., 2009; Barr et al., 2013). Briefly, each
sample was thawed to lyse cells, had 2 µl ascorbate oxidase
(1 mg/ml) added, and then was centrifuged at 15,000 × g for
3 min. The supernatant (45 µl) was injected using an Waters
717 Plus Autosampler (Waters Corp., Milford, MA, USA). The
monoamines were separated using a Nova-Pak C18 4 µm column
(Waters Corp.) and electrochemically detected using an LC-4C
detector (BioAnalytical Systems, Inc., West Lafayette, IN, USA)
and a glassy carbon electrode set at a potential of +0.6 V vs.
an Ag/AgCl reference electrode. The mobile phase contained
14 g citric acid, 8.6 g sodium acetate, 110 mg 1-octane-sulfonic
acid, 150 mg EDTA disodium salt, and 100 ml methanol in
1 L deionized water. The pellet was dissolved in 0.4 N NaOH
and protein content was measured using the Bradford assay
(Bradford, 1976). Monoamine concentrations (pg) were obtained
by calculating peak height compared to known standards, and
were corrected for recovery using CSW32 v1.4 Chromatography
Station for Windows (DataApex, Prague, Czech Republic). The
final monoamine value (pg/µg) was obtained by normalizing
pg amine to tissue protein content (µg). Measures of dopamine
and serotonin activity were approximated as the ratio of DOPAC
to dopamine and of 5-HIAA to serotonin, respectively, while
capacity for serotonin synthesis was estimated from the ratio of
serotonin to 5-HTP.

Contextual Fear Conditioning and
Extinction
Separate groups of rats that did not undergo EPM testing
(N = 11–12 for each group) were tested for contextual fear
conditioning and extinction, beginning 7 days after surgery.
Contextual fear conditioning tests took place over 4 days,
and followed the procedures of Meyer et al. (2012). On the
acquisition day, rats were placed in a foot shock chamber (30 cm
× 30 cm; Noldus Information Technology) with an overhead
camera within a sound-attenuating chamber (Med-Associates, St.
Albans, VT, USA) and were allowed to explore freely for 2 min.
After 2 min, a total of 10 electric shocks (0.75 mA, 2 s duration)
were delivered at intervals of 74 s through the testing chamber
floor (Meyer et al., 2012), with shock delivery controlled by
Ethovision 3.1 (Noldus Information Technologies). The rats then
remained in the chamber for an additional 2 min with no shocks
delivered before being removed. On test days 1–3, rats were
placed for 8 min in same chambers as on acquisition day, with
no shocks delivered, to determine the extent of contextual fear
learning and extinction of contextual fear conditioning. Video

footage was later scored for freezing behavior using Ethovision
3.1 by an observer blind to treatment. Freezing behavior was
defined as complete immobility except for minor movements
required for respiration (Forster et al., 2006).

Data Analysis
Data from behavioral tests and monoamine concentrations were
tested for outliers using the Grubbs’ test prior to analysis.
Plasma corticosterone levels were compared between defeated
and control rats using one way ANOVA. Behavior on the EPM,
monoamines, and unconditioned freezing responses to foot
shock during contextual fear acquisition were compared among
treatment groups using separate one way ANOVA. Use of one
way ANOVA was necessary in order to establish if each treatment
alone (mTBI vs. social defeat) produced differential effects,
which would not have been possible using a two way ANOVA,
where possible interactions between factors preclude such direct
pairwise comparisons between stress and mTBI. Significant
effects were followed by Student-Newman-Keuls (SNK) post hoc
tests for multiple comparisons. Furthermore, significant effects of
treatment on monoamine levels were followed up with Pearson
Product Moment Correlation tests to determine any relationship
between the monoamine and time spent in open arms of the
EPM. For conditioning tests, within-session and across-session
freezing data from the three test days were analyzed among
groups for each day using two-way ANOVA with one repeated
measure (time), with post hoc SNK tests used where applicable.
The alpha level was set at 0.05 throughout.

RESULTS

Anesthesia and Behavioral Parameters
Related to Treatment
There were no significant differences in defeat intensity between
social defeat + sham (2.7 ± 0.270) and social defeat + mTBI
(2.11 ± 0.269) groups [F(1.43) = 2.504, p = 0.121]. Furthermore,
time under anesthesia during surgery did not significantly
differ among all sham (18.023 ± 0.424 min) and all mTBI
(17.674± 0.369 min) rats [F(1,84) = 0.385, p= 0.536].

Plasma Corticosterone Levels Following
Social Defeat
The concentration of plasma corticosterone (ng/mL) was
significantly higher in rats exposed to a single episode of
social defeat animals than in control animals [F(1,21) = 41.547;
p < 0.001; Figure 1].

Anxiety-like Behavior in Elevated Plus
Maze
Both social defeat and mTBI independently affected the number
of entries [Figure 2A; F(3,36) = 3.296, p = 0.031] and time
spent in open arms of the EPM [Figure 2B; F(3,33) = 10.331,
p < 0.001]. Rats exposed to social defeat in the absence of
mTBI (social defeat + sham) made significantly fewer open
arm entries (Figure 2A) and spent less time in the open arms
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FIGURE 1 | Plasma corticosterone concentration 30 mins after social
defeat or control treatment. ∗ indicates significant difference between
groups (p < 0.05).

(Figure 2B), than controls that received sham surgeries (SNK,
p < 0.05 for both comparisons). Similarly, mTBI treatment in
control-handled rats was sufficient to reduce both open arm
entry (Figure 2A) and duration (Figure 2B) compared to sham
controls (SNK, p < 0.05). Social defeat on its own had equivalent
effects to mTBI only, with no difference in either number of
entries (Figure 2A) or time spent in open arms (Figure 2B)
between social defeat + sham and control + mTBI groups
(SNK, p > 0.05). However, the combination of social defeat
with mTBI had the greatest effect on anxiety-like behavior,
reducing the number of open arm entries not only compared
to control + sham treatment but also in comparison to both
defeat alone or mTBI alone (Figure 2A, SNK, p < 0.05 for
all comparisons). Likewise, the time spent in open arms was
significantly reduced in rats that received both social defeat and
mTBI compared with all other groups (Figure 2B, SNK, p < 0.05
for all comparisons). No difference existed among treatment
groups in total distance moved during the EPM test [Figure 2C;
F(3,36) = 1.004, p= 0.402].

Contextual Fear Conditioning and
Extinction
Unconditioned freezing duration in response to foot shock
was not different between groups [Figure 3A; F(3,41) = 0.229,
p = 0.876]. In contrast, two way ANOVA across the three
testing sessions revealed a significant main effect of treatment
[Figure 3B; F(3,40) = 13.706, p < 0.001], a significant main
effect of time [Figure 3B; F(23,918) = 29.029, p < 0.001] and a
significant interaction between treatment and time [Figure 3B;
F(69,918) = 2.426, p < 0.001] for freezing behavior. All treatment
groups (mTBI alone, social defeat alone, and the combined social
defeat+mTBI) exhibited more freezing compared to the control
+ sham group the first test day (SNK, p < 0.05 for all eight
time bins on test day 1; Figure 3B). However, only the combined
social defeat + mTBI group showed increased freezing compare
to controls during test day 2 (SNK, p< 0.05 for all eight time bins

FIGURE 2 | Behavioral measures from EPM testing 6 days following
stress and/or mTBI, including (A) total number of entries into open
arms, (B) total time spent in open arms and (C) total distance moved
during testing. ∗ Overlying a bar indicates significant difference between
individual groups (p < 0.05).

on test day 2; Figure 3B) and test day 3 (SNK, p < 0.05 for the
first four time bins on test day 3; Figure 3B).

Monoamine Analysis
Changes to serotonin function according to treatment were
restricted to the hippocampus (dorsal and ventral), the central
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FIGURE 3 | Freezing behavior from contextual fear conditioning testing
beginning 7 days following stress and/or mTBI, including (A) response
to footshock during fear conditioning acquisition day and (B) response
to context during the three test days in 1 min time bins, each 8 min
test separated by 24 h (as indicated by the gray dashed vertical lines).
∗ Indicates significant difference from the control + sham group, while the
symbol # indicates significant difference between the social defeat with mTBI
vs. all other groups (p < 0.05).

amygdala, and the medial prefrontal cortex. Alterations in
the concentration of 5-HTP were restricted to the ventral
hippocampus [Figure 4A; F(3,43) = 4.304, p = 0.010], with
the social defeat + mTBI group having significantly higher
5-HTP than all other groups (SNK, p < 0.027). Similarly,
the concentration of 5-HIAA was altered in the dorsal
hippocampus [Figure 4B; F(3,44) = 4.677, p = 0.006], with
the combined treatment of social defeat and mTBI producing
higher 5-HIAA concentrations than all other groups (SNK,
p < 0.015). Furthermore there was a significant negative
correlation between 5-HIAA levels in the dorsal hippocampus
and time in open arms of the EPM for social defeat + mTBI
group (correlation coefficient = −0.761; p = 0.017). In the
central amygdala, serotonergic activity (5-HIAA/serotonin) was
significantly different among treatment groups [Figure 4C;

F(3,40) = 3.973, p = 0.014], with social defeat + mTBI rats
showing higher serotonergic activity than both sham + control
(SNK, p = 0.026) and sham + mTBI (SNK, p = 0.019)
groups. However, this particular effect appeared to be driven
by exposure to social defeat, as changes to central amygdala
serotonergic activity were equivalent in all defeated rats with or
without mTBI (SNK, p = 0.197). Serotonin synthesis capacity
(serotonin/5-HTP) was only affected in the medial prefrontal
cortex [Figure 4D; F(3.40) = 3.453, p = 0.025], with exposure to
either mTBI, social defeat, or a combination of these two factors
causing reductions in the serotonin/5-HTP ratio compared to
control+ sham rats (SNK, p= 0.046). There were no differences
in either 5-HT concentrations in any brain region assayed
(Table 1).

There was a high degree of overlap between regions
showing alterations to serotonergic function and those in
which catecholamine concentrations were affected. Changes
to dopamine concentrations were only seen in the dorsal
[Figure 5A; F(3,39) = 4.758, p= 0.006] and ventral hippocampus
[Figure 5B; F(3,34) = 4.404, p = 0.01]. Increases in dorsal
hippocampus dopamine concentrations were elicited only by the
combination of social defeat and mTBI in comparison to all other
groups (SNK, p= 0.023), while in the ventral hippocampus, only
mTBI on its own caused an increase in dopamine relative to
the other groups (SNK, p = 0.047). Epinephrine in the medial
amygdala was differentially altered by treatment [Figure 5C;
F(3,39) = 4.360, p = 0.010], with epinephrine concentrations
significantly higher in the control+mTBI group when compared
to control + sham (p = 0.008) and social defeat + mTBI
(p = 0.041) groups, but not when compared to the social defeat
+ sham group (p = 0.156). The concentration of epinephrine
was also significantly different in the dorsal raphe nucleus among
treatment groups [Figure 5D; F(3,43) = 4.354, p = 0.009], with
all treatments causing reductions in dorsal raphe epinephrine
as compared to the control + sham group (SNK, p = 0.036).
Finally, there was a significant difference among groups in
norepinephrine concentration (pg/µg) in the central amygdala
[Figure 5E; F(3,42) = 6.554, p = 0.001], with the social defeat
+ mTBI group exhibiting higher norepinephrine concentrations
than all other groups (SNK, p-range = 0.001–0.033). There
were no differences in either dopamine activity (DOPAC/DA) or
DOPAC concentrations in any brain region examined (Table 2).

DISCUSSION

Several behavioral alterations were observed as a consequence
of psychosocial stress and/or mTBI in rats. Social defeat or
mTBI alone resulted in increased anxiety-like behavior, which
was exaggerated when social defeat and mTBI were combined.
These effects did not appear to be a result of alterations to
locomotion within the EPM, as all treatment groups moved
equivalent distance. The findings that either mTBI alone, or
a single social defeat, can independently increase measures of
anxiety-like behaviors replicates other published work in rodent
models (e.g., Berton et al., 1999; Calfa et al., 2006; Baratz et al.,
2009; Kwon et al., 2011; Elder et al., 2012; Kinn Rød et al., 2012;
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FIGURE 4 | Serotonin (5-HT) measurements 7 days following stress and/or mTBI, including (A) 5-HTP concentration in the ventral hippocampus, (B)
5-HIAA concentration in the dorsal hippocampus, (C) 5-HT activity in the central amygdala, and (D) 5-HT synthesis in the medial prefrontal cortex.
∗ Indicates significant difference from all other groups, while ∗ overlying a bar indicates significant difference between individual groups (p < 0.05).

Kovesdi et al., 2012; Meyer et al., 2012; Xie et al., 2013; Almeida-
Suhett et al., 2014). However, to our knowledge this is the first
report of a cumulative effect of combined social stress and mTBI
on anxiety-like behaviors, with important implications for how
mTBI-related anxiety states could be modeled in rats.

In contrast to the anxiety-like measures, the effects of social
defeat and mTBI alone or in combination on contextual fear
conditioning were similar. All three treatment groups initially
showed greater freezing behavior to the conditioned context than
controls with all groups showing equal unconditioned freezing
responses to foot shock during the acquisition day. However, rats
exposed to the combination of social defeat and mTBI showed
poorer extinction within tests sessions 2 and 3 as compared to all
other groups, including either social defeat or mTBI alone. While
some mTBI models have shown alterations in the acquisition
of fear conditioning, all have failed to show extinction deficits
in either contextual or cue-based fear conditioning paradigms
(e.g., Elder et al., 2012; Meyer et al., 2012; Genovese et al.,
2013; Sierra-Mercado et al., 2015). Therefore, the current results
suggest that social defeat stress combined with mTBI can elicit
post-concussive psychobiological signs that have often not been
observed in other mTBI paradigms, but are observed in human
laboratory studies of PTSD (Grillon and Morgan, 1999; Steiger

et al., 2015). In another model of mTBI with stress, mTBI
abolished contextual but not cue fear conditioning as elicited
in a rodent PTSD model (Ojo et al., 2014). This study differed
from the current study in the mTBI was induced after the
induction of a PTSD-like model and thus after the acquisition
phase of the fear conditioning paradigm, suggesting that the head
injury disrupted the consolidation or expression of contextual
fear conditioning. The current finding that mTBI current with
psychosocial stress potentiates the acquisition of contextual fear
conditioning warrants further studies in the timing of the mTBI,
along with combining other types of stress with mTBI or with
cued fear conditioning. This will determine whether the effects
of enhancing acquisition of fear conditioning and impairment
of fear extinction are specific to mTBI prior to fear acquisition,
specific to concurrent exposure to social defeat, or specific to
contextual fear conditioning.

Hypofunction of the prefrontal regions in PTSD is often
detected in human neuroimaging studies and is thought to relate
to associated impairments in fear extinction (Shin et al., 2001;
Milad et al., 2006; Jovanovic and Norrholm, 2011). Using the
same mTBI weight drop method employed here, we have shown
that neurons are decreased in the dorsal CA1 sub-region of the
rat hippocampus and increased in the basolateral/lateral and
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medial sub-regions of the amygdala following injury (Meyer et al.,
2012). These changes are thought to be partly responsible for
heightened anxiety and contextual fear conditioning following
mTBI (Meyer et al., 2012). This is because contextual fear
conditioning is mediated by the dorsal CA1 region of the
hippocampus, while the hippocampus does not appear to
play a role in acquiring/encoding cue-based fear conditioning
(Hunsaker and Kesner, 2008). Similarly, the hippocampus is
thought to be important for extinction of contextual fear memory
(Milad et al., 2014). However, concussive injury alone does not
affect contextual fear extinction in the current and previous
studies (Meyer et al., 2012). The expression of contextual fear

extinction deficits may also require mTBI-induced impairment of
the infralimbic medial prefrontal cortex, as this region in rats, and
the equivalent ventromedial prefrontal cortex in humans, appears
to work in concert with the hippocampus and the amygdala in
contextual fear reinstatement and contextual extinction recall
(Milad et al., 2007, 2014; Hitora-Imamura et al., 2015). In line
with this, apoptosis or neuronal numbers in any subregion of
medial prefrontal cortex of the rat are unaffected by mTBI alone
(Meyer et al., 2012). The addition of psychosocial stress at the
time of mTBI may increase the susceptibility of the medial
prefrontal cortex to enhance apoptotic cell death in this region
to contribute to contextual fear extinction deficits. Certainly,

TABLE 1 | Serotonin in the limbic system 7 days following stress and/or mild TBI.

F-Value p-Value Mean ± SEM (Pg/µg)

Control + Sham Control + mTBI SD + Sham SD + mTBI

5-HT

mPFC 0.134 0.939 3.72 ± 0.30 3.56 ± 0.28 3.52 ± 0.33 3.75 ± 0.35

BLA/LA 1.902 0.144 14.00 ± 1.25 10.49 ± 0.74 10.32 ± 1.38 12.28 ± 1.52

CeA 2.213 0.100 9.33 ± 0.88 10.61 ± 1.23 6.69 ± 0.88 8.28 ± 1.38

MeA 0.448 0.720 11.49 ± 1.23 10.34 ± 1.41 9.26 ± 1.38 10.96 ± 1.68

dHipp 1.496 0.229 5.88 ± 0.35 5.98 ± 0.35 5.27 ± 0.46 6.50 ± 0.48

vHipp 1.675 0.186 6.65 ± 0.35 7.72 ± 0.64 6.17 ± 0.68 6.09 ± 0.60

dRN 1.240 0.307 32.95 ± 1.61 29.19 ± 1.64 31.84 ± 1.76 29.38 ± 1.63

5-HTP

mPFC 1.698 0.182 0.12 ± 0.02 0.19 ± 0.03 0.17 ± 0.02 0.19 ± 0.03

BLA/LA 0.226 0.878 1.15 ± 0.21 1.01 ± 0.13 1.06 ± 0.23 1.23 ± 0.20

CeA 1.526 0.223 1.43 ± 0.12 1.48 ± 0.08 2.75 ± 0.78 2.20 ± 0.54

MeA 0.498 0.686 1.71 ± 0.06 1.810 ± 0.08 1.81 ± 0.16 1.98 ± 0.29

dHipp 1.160 0.337 0.20 ± 0.02 0.18 ± 0.03 0.16 ± 0.03 0.25 ± 0.06

dRN 1.259 0.300 5.18 ± 0.21 5.05 ± 0.38 5.55 ± 0.51 4.57 ± 0.28

5-HIAA

mPFC 1.085 0.365 4.55 ± 0.26 4.45 ± 0.19 4.64 ± 0.27 5.11 ± 0.37

BLA/LA 1.316 0.282 9.63 ± 1.19 8.31 ± 0.72 10.97 ± 1.59 11.86 ± 1.59

CeA 0.360 0.782 10.22 ± 0.32 10.13 ± 0.58 10.17 ± 0.69 10.77 ± 0.25

MeA 1.290 0.290 10.89 ± 0.57 10.31 ± 0.59 11.50 ± 0.50 11.83 ± 0.69

vHipp 1.538 0.219 5.59 ± 0.25 6.59 ± 0.39 6.84 ± 0.31 6.64 ± 0.30

dRN 0.700 0.557 22.83 ± 1.33 21.72 ± 0.99 23.62 ± 0.89 21.88 ± 0.99

5-HT Activity

mPFC 0.871 0.464 1.26 ± 0.05 1.31 ± 0.08 1.39 ± 0.09 1.44 ± 0.12

BLA/LA 1.168 0.333 0.71 ± 0.09 0.99 ± 0.18 1.17 ± 0.26 1.27 ± 0.32

MeA 1.080 0.367 1.10 ± 0.16 1.31 ± 0.24 1.81 ± 0.37 1.61 ± 0.38

dHipp 0.752 0.527 1.49 ± 0.09 1.43 ± 0.08 1.59 ± 0.08 1.57 ± 0.08

vHipp 2.935 0.045∗ 0.92 ± 0.06 0.89 ± 0.08 1.21 ± 0.10 1.12 ± 0.12

dRN 1.134 0.346 0.69 ± 0.02 0.754 ± 0.02 0.76 ± 0.03 0.76 ± 0.05

5-HT Synthesis

BLA/LA 0.400 0.754 15.50 ± 2.13 12.28 ± 2.38 14.76 ± 2.41 12.69 ± 3.08

CeA 1.072 0.372 6.22 ± 1.01 6.76 ± 0.90 3.71 ± 0.96 5.97 ± 2.03

MeA 0.145 0.932 6.45 ± 0.66 6.04 ± 1.08 6.15 ± 1.33 5.45 ± 1.16

dHipp 0.895 0.452 28.8 ± 4.22 38.45 ± 3.83 28.78 ± 3.29 37.19 ± 8.85

vHipp 1.869 0.150 48.39 ± 5.37 43.13 ± 5.16 42.69 ± 6.02 30.50 ± 5.22

dRN 0.816 0.492 6.45 ± 0.42 5.95 ± 0.30 6.00 ± 0.31 6.65 ± 0.46

∗Overall significant difference among groups with ANOVA but no significant pairwise comparisons. 5-HT, Serotonin; 5-HTP, 5-hydroxytryptamine; 5-HIAA, 5-
hydroxyindoleacetic acid; mPFC, medial prefrontal cortex; BLA/LA, basolateral/lateral amygdala; CeA, central nucleus of the amygdala; MeA, medial amygdala; dHipp,
dorsal hippocampus; vHipp, ventral hippocampus; dRN, dorsal raphe nucleus; mTBI, mild traumatic brain injury; SD, social defeat.
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FIGURE 5 | Catecholamine meatsurements 7 days following stress and/or mTBI, including (A) dopamine (DA) concentrations in the dorsal
hippocampus, (B) dopamine concentrations in the ventral hippocampus, (C) epinephrine (Epi) concentrations in the medial amygdala, (D)
epinephrine concentrations in the dorsal raphe nucleus, and (E) norepinephrine concentrations in the central amygdala. ∗ indicates significant difference
from all other groups, while ∗ overlying a bar indicates significant difference between individual groups (p < 0.05).

the current study shows that corticosterone is elevated by social
defeat at the time of mTBI, and previous work has shown that
corticosteroid receptors (glucocorticoid and mineralocorticoid)
induce apoptotic cell death following brain injury (McCullers
et al., 2002). This possibility should be tested by future work.

Social defeat had overlapping effects to those of mTBI
alone on altering monoamines in brain regions associated with
anxiety-like behaviors, fear conditioning and fear extinction. For
example, both treatments independently increased epinephrine
in the medial amygdala, and also produced equivalent decreases
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in dorsal raphe epinephrine and in medial prefrontal cortex
serotonin synthesis capacity. While the exact role of epinephrine
in the medial amygdala in mediating fearful behavior is unclear,
we have shown that mTBI produces increased neuronal numbers
and decreased apoptosis in this region (Meyer et al., 2012),
along with enhanced contextual fear conditioning equivalent
to that seen in defeat only and mTBI alone groups in the
current study. In addition, neuronal plasticity in the medial
amygdala (as measured by induction of the transcription
factor JunB) is required for consolidation of contextual fear
memories (Radwanska et al., 2015), and JunB is upregulated by
activation of beta-adrenergic receptors in other tissues (Gubits
and Yu, 1991; Brand et al., 1993). This raises the possibility
that the enhanced conditioned fear responses elicited by either

social defeat or mTBI are promoted by epinephrine-mediated
increases in medial amygdala plasticity. However, this does
not appear to be the case for when these treatments are
combined, as rats undergoing both defeat and mTBI showed
comparable increases in conditioned fear in the first testing
session, but had no change in medial amygdala epinephrine.
With regard to changes in the raphe and prefrontal cortex,
activation of α1 adrenoreceptors in the dorsal raphe excites
serotonergic neurons (Trulson and Crisp, 1984; Clement et al.,
1992), suggesting the reduction in prefrontal cortex serotonin
synthesis capacity and decreased raphe epinephrine following
either social defeat or mTBI may be functionally related. Further,
serotonergic lesions of the rat dorsomedial prefrontal cortex
enhance contextual fear conditioning (Lehner et al., 2008), so

TABLE 2 | Catecholamines in the limbic system 7 days following stress and/or mild TBI.

F-Value p-Value Mean ± SEM (pg/µg)

Control + Sham Control + mTBI SD + Sham SD + mTBI

DA

mPFC 0.242 0.867 1.33 ± 0.11 1.31 ± 0.12 1.36 ± 0.12 1.44 ± 0.12

BLA/LA 0.125 0.945 7.71 ± 0.61 7.87 ± 1.53 8.23 ± 1.46 8.70 ± 1.07

CeA 0.442 0.724 14.42 ± 1.97 13.12 ± 2.72 15.43 ± 3.01 11.41 ± 1.69

MeA 0.237 0.870 2.17 ± 0.29 1.91 ± 0.27 2.07 ± 0.37 2.28 ± 0.35

dRN 1.703 0.180 3.49 ± 0.20 2.97 ± 0.20 3.16 ± 0.15 2.90 ± 0.25

DOPAC

mPFC 1.845 0.154 0.49 ± 0.08 0.39 ± 0.03 0.32 ± 0.02 0.35 ± 0.03

BLA/LA 1.444 0.243 2.14 ± 0.12 2.40 ± 0.31 2.50 ± 0.26 3.07 ± 0.48

CeA 1.452 0.241 2.96 ± 0.34 2.63 ± 0.58 4.22 ± 0.87 4.10 ± 0.72

MeA 0.384 0.766 1.53 ± 0.44 1.93 ± 0.16 1.73 ± 0.14 1.86 ± 0.29

dHipp 1.228 0.311 0.60 ± 0.05 0.63 ± 0.05 0.71 ± 0.06 0.72 ± 0.07

vHipp 1.622 0.198 1.26 ± 0.10 1.21 ± 0.08 1.26 ± 0.10 1.62 ± 0.24

dRN 0.257 0.856 0.87 ± 0.06 0.85 ± 0.04 0.89 ± 0.03 0.85 ± 0.03

DA Activity

mPFC 0.562 0.643 0.48 ± 0.03 0.50 ± 0.03 0.53 ± 0.05 0.53 ± 0.05

BLA/LA 0.936 0.432 0.28 ± 0.01 0.36 ± 0.05 0.33 ± 0.04 0.33 ± 0.04

CeA 1.612 0.202 0.23 ± 0.04 0.19 ± 0.02 0.33 ± 0.08 0.33 ± 0.08

MeA 1.346 0.295 0.45 ± 0.10 0.92 ± 0.29 0.98 ± 0.24 0.98 ± 0.24

dHipp 0.726 0.542 12.42 ± 1.38 10.44 ± 0.77 10.42 ± 1.45 10.42 ± 1.45

vHipp 0.952 0.424 2.41 ± 0.49 1.76 ± 0.38 2.61 ± 0.50 2.61 ± 0.50

dRN 1.491 0.230 0.25 ± 0.01 0.30 ± 0.02 0.33 ± 0.04 0.33 ± 0.04

Epi

BLA/LA 1.632 0.212 0.26 ± 0.06 0.40 ± 0.14 0.17 ± 0.06 0.16 ± 0.04

CeA 1.998 0.131 0.28 ± 0.05 0.15 ± 0.03 0.40 ± 0.12 0.61 ± 0.23

dHipp 2.001 0.128 0.22 ± 0.01 0.22 ± 0.02 0.20 ± 0.03 0.30 ± 0.05

vHipp 0.981 0.411 0.08 ± 0.01 0.08 ± 0.01 0.06 ± 0.01 0.09 ± 0.01

NE

mPFC 0.033 0.992 6.03 ± 0.44 5.90 ± 0.39 5.98 ± 0.49 6.09 ± 0.45

BLA/LA 0.082 0.970 12.17 ± 1.01 12.19 ± 1.10 11.98 ± 1.16 11.58 ± 0.61

MeA 0.847 0.476 11.86 ± 1.44 9.23 ± 1.38 9.39 ± 1.05 10.65 ± 1.44

dHipp 2.215 0.100 18.92 ± 0.97 20.79 ± 1.20 17.78 ± 1.61 12.68 ± 4.09

vHipp 0.555 0.648 14.18 ± 0.99 15.16 ± 1.18 13.40 ± 0.96 14.37 ± 0.69

dRN 1.887 0.146 37.46 ± 2.48 32.53 ± 2.81 31.18 ± 1.93 30.46 ± 1.82

DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; Epi, epinephrine; NE, norepinephrine; mPFC, medial prefrontal cortex; BLA/LA, basolateral/lateral amygdala; CeA,
central nucleus of the amygdala; MeA, medial amygdala; dHipp, dorsal hippocampus; vHipp, ventral hippocampus; dRN, dorsal raphe nucleus; mTBI, mild traumatic
brain injury; SD, social defeat.
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reductions in cortical serotonin synthesis capacity may have
contributed to the increased freezing shown by both treatment
groups relative to controls (Figure 3B). Further testing is
required to determine either if cortical serotonin synthesis is
indeed reduced following either social defeat or mTBI alone to
explain heightened conditioned fear, or whether medial amygdala
adrenergic receptor blockade could prevent heightened fear
conditioning in these treatment groups.

Exposure to psychosocial stress concurrent with mTBI
resulted in a number of alterations to monoamine levels and
function that were not apparent with either stressor/insult alone,
including increased norepinephrine in the central amygdala
and increased dopamine and 5-HIAA concentrations in the
dorsal hippocampus. Serotonergic activity as estimated by the 5-
HIAA/serotonin ratio was also increased in the central amygdala,
although it should be noted that an equivalent effect was
induced by social defeat alone. Changes to hippocampal and
amygdalar serotonergic activity following combined psychosocial
stress and mTBI as compared to stress or mTBI alone may
underlie the enhanced anxiety and impaired contextual fear
extinction exhibited by these rats. For example, increased 5-
HIAA in the hippocampus is associated with increased anxiety
(Macbeth et al., 2008), and the current study shows a negative
correlation between time spent in open arms and 5-HIAA levels
in the dorsal hippocampus supportive of an anxiogenic effect of
increased 5-HIAA this region of rats exposed to social defeat
and mTBI. Furthermore, the observed heightened serotonergic
activity in the amygdala is thought to be anxiogenic (Forster
et al., 2012), although its precise role in modulating fear
extinction appears dependent upon which serotonin receptor
subtypes are activated (Bauer, 2015). Likewise, the ability of
concurrent social defeat and mTBI to increase hippocampal
serotonin function could underlie deficits in fear extinction
(Ohmura et al., 2010). Therefore, the effects of psychosocial
stress on outcomes of mTBI may partly be mediated by
modifications to limbic monoamines that are not observed in
animals subjected to stress or injury alone. These specific changes
could offer future targets to ameliorate the negative psychological
consequences of mTBI sustained during times of heightened
arousal or stress such as occurs in warfare, sporting events,

traumatic accidents or domestic violence. One limitation of the
current monoamine analysis is the ex vivo measure of basal
monoamines, and future work should assess in vivo monoamine
release in the behaving animal, or directly manipulate the
monoamines implicated here in specific brain regions to test
the role of these in the behavioral outcomes of social stress
and mTBI.

CONCLUSION

Psychosocial stress combined with mTBI had greater effects
on anxiety-like behavior, contextual fear extinction, and limbic
monoamine levels or function than either stressor/insult alone.
These results suggest that stress or heightened arousal at the
time of mTBI augments the psychobiological consequences of
concussive injury. Findings from this model suggest future work
should focus on the role of monoamines in the hippocampus,
prefrontal cortex, and amygdala in moderating the negative
psychological consequences of concussive head injury.
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