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ABSTRACT

Background. Models developed to predict hospital-acquired acute kidney injury (HA-AKI) in non-critically ill patients have a
low sensitivity, do not include dynamic changes of risk factors and do not allow the establishment of a time relationship
between exposure to risk factors and AKI. We developed and externally validated a predictive model of HA-AKI integrating
electronic health databases and recording the exposure to risk factors prior to the detection of AKI.

Methods. The study set was 36 852 non-critically ill hospitalized patients admitted from January to December 2017. Using
stepwise logistic analyses, including demography, chronic comorbidities and exposure to risk factors prior to AKI detection,
we developed a multivariate model to predict HA-AKI. This model was then externally validated in 21 545 non-critical
patients admitted to the validation centre in the period from June 2017 to December 2018.
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Results. The incidence of AKI in the study set was 3.9%. Among chronic comorbidities, the highest odds ratios (ORs) were
conferred by chronic kidney disease, urologic disease and liver disease. Among acute complications, the highest ORs were
associated with acute respiratory failure, anaemia, systemic inflammatory response syndrome, circulatory shock and major
surgery. The model showed an area under the curve (AUC) of 0.907 [95% confidence interval (CI) 0.902–0.908), a sensitivity of
82.7 (95% CI 80.7–84.6) and a specificity of 84.2 (95% CI 83.9–84.6) to predict HA-AKI, with an adequate goodness-of-fit for all
risk categories (v2 ¼ 6.02, P ¼ 0.64). In the validation set, the prevalence of AKI was 3.2%. The model showed an AUC of 0.905
(95% CI 0.904–0.910), a sensitivity of 81.2 (95% CI 79.2–83.1) and a specificity of 82.5 (95% CI 82.2–83) to predict HA-AKI and
had an adequate goodness-of-fit for all risk categories (v2 ¼ 4.2, P ¼ 0.83). An online tool (predaki.amalfianalytics.com) is
available to calculate the risk of AKI in other hospital environments.

Conclusions. By using electronic health data records, our study provides a model that can be used in clinical practice to
obtain an accurate dynamic and updated assessment of the individual risk of HA-AKI during the hospital admission period
in non-critically ill patients.
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INTRODUCTION

Acute kidney injury (AKI) is a frequent and serious complication
in hospitalized patients [1–3]. In addition, AKI has been associ-
ated with long-term morbidity and mortality after hospital
discharge [4, 5].

Most cases of AKI in hospitalized patients are caused by is-
chaemia or nephrotoxicity [6–8]. The risk of developing AKI
depends on the characteristics of the patient in terms of age,
presence of previous kidney disease and number and types of
comorbidities [9]. Since a large part of the AKI episodes are due
to potentially avoidable causes, knowing as accurately as pos-
sible the individual risk at any time of the hospital stay could
help decision making and implementation of preventive
measures to reduce the incidence of hospital AKI [10]. The
Kidney Disease: Improving Global Outcomes (KDIGO) guide-
lines recommend that patients be stratified for risk of AKI at
admission and managed according to their susceptibilities and
exposures to reduce the risk of AKI [11]. The incidence and risk
factors associated with AKI in patients admitted to intensive
care units (ICUs) have been extensively analysed [12, 13].
However, these models are difficult to extrapolate to non-criti-
cally ill patients since they have been developed for patients
that are under the influence of a cluster of risk factors related
to haemodynamic instability, use of vasoactive drugs, low tis-
sue oxygenation, inflammatory response and invasive proce-
dures such as mechanical ventilation that are unique to this
environment [14]. The few studies analysing the epidemiology
and risk factors associated with AKI in non-critically ill
patients have two main limitations to identify accurately the
risk factors associated with AKI. First, all of them are based on
demographic characteristics and comorbidities that have been
registered retrospectively from the discharge administrative
codes and therefore are subject to a potential bias in the col-
lection of coded information [15–20]. Second, they do not allow
us to know whether the exposure to risk factors preceded the
detection of the AKI episode [21].

The aim of our study was to develop and validate a predic-
tive model of hospital-acquired AKI (HA-AKI) in non-critically ill
patients in which risk factors are automatically obtained by in-
tegrating electronic health databases, it is ensured that the ex-
posure to risk factors precedes the detection of the AKI episode
and AKI episodes are automatically detected through electronic
systems based on the calculation of differences in creatinine
levels.

MATERIALS AND METHODS

This prospective study was performed at two different hospital
centres. The first centre developed the predictive model (study
set) and the second centre performed the external validation of
the predictive model (validation set).

Study set

The study set included patients admitted to the Vall d’Hebron
University Hospital from January to December 2017. Vall
d’Hebron is a tertiary, high-complexity hospital that provides
assistance to a population of 500 000 habitants in Barcelona,
Spain and provides all kinds of medical and surgical procedures,
including neurosurgery, cardiac surgery, endovascular catheter-
guided procedures and lung, liver, kidney and bone marrow
transplantation programmes. We included all patients
>18 years of age who were admitted to the hospital during this
period and did not meet any of the following exclusion criteria:
admission for community-acquired AKI; hospital stay <24 h; ad-
mission for elective heart surgery; direct admission from the
emergency room to the ICU; admission as a recipient of a renal,
lung, liver or bone marrow transplant; absence of serum creati-
nine measurements done at least 12 months after hospital ad-
mission; chronic haemodialysis treatment and denial of written
consent to participate in the study. Community-acquired AKI
was diagnosed whenever patients met the AKI criteria within
the first 24 h of hospital admission. Patients initially admitted
to conventional hospitalization wards who afterwards required
admission to the ICU were only included if the AKI episode was
detected while they were admitted in non-critically ill wards
prior to their admission to the ICU.

Baseline kidney function

Our patient care system integrates the laboratory databases
of the hospital and primary care registers, thus allowing
historical data to be obtained for all patients who are hospi-
talized, provided that these data appear in those registers.
Baseline kidney function was obtained from the electronic
laboratory data records of primary healthcare and defined as
the most recent glomerular filtration rate, estimated by the
Chronic Kidney Disease Epidemiology Collaboration equation,
within the 12 months prior to hospital admission.
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Definition of AKI

AKI was defined and classified in severity stages according to
the KDIGO criteria [11]. HA-AKI was defined as an increase in se-
rum creatinine �0.3 mg/dL or >50% over the baseline occurring
from the first 24 h to any time within the hospital admission.

AKI detection

The software integrated into the electronic laboratory database
was used to perform repeated comparisons among all serum
creatinine levels available for each patient during the hospital
stay and generated an identification code, assigning 1 when the
AKI criteria were met and 0 when not. It also assigned a level of
AKI severity according to the maximum differences in serum
creatinine detected. The date of AKI detection was also
recorded. The number of the admission episode was used as a
filter so that patients with more than one AKI episode during
the hospital stay were entered into the database only once, cor-
responding with the more severe episode of AKI.

Clinical evaluation at hospital admission and during
hospital stay

At hospital admission, a team of 10 trained nurses and 4
nephrologists examined the medical data and interviewed all
patients to record age, gender, ethnic group and the presence of
the following chronic comorbidities: diabetes mellitus, hyper-
tension, ischaemic heart disease (IHD), ischaemic cerebrovascu-
lar disease (ICD), ischaemic peripheral vascular disease (PVD),
chronic digestive disease, chronic liver disease, chronic conges-
tive heart failure (CCHF), malnutrition (MN), chronic obstructive
pulmonary disease (COPD), malignancy, dementia, rheumato-
logic disease, acquired immunodeficiency syndrome (AIDS)/hu-
man immunodeficiency virus (HIV), urologic disease or chronic
kidney disease (CKD). All these variables were recorded in the
general study database according to the criteria detailed in the
Supplementary methods operational definitions. Nutritional
status was assessed using theNutritional Risk Screening 2002
test [22]. The allocation of comorbidity codes to each patient
was carried out by consensus among clinical researchers. All
patients were followed up until hospital discharge. During the
hospital stay, the data of six electronic health databases, i.e. vi-
tal signs, laboratory, pharmacy prescription, interventional ra-
diology, interventional cardiology and surgery, were integrated
together using the number of the admission episode, which is
unique for each patient and common to all these databases.
Overall, the information extracted from these six databases in-
cluded haemoglobin levels, leucocyte count, oxygen saturation,
body temperature, blood pressure, heart rate and respiratory
rate, as well as a complete list of nephrotoxic drugs (detailed in
Supplementary data, Table S1) and exposure to contrast dyes or
major surgery. Every 24 h, updated information from all these
data was dumped into the general study database, which also
contained the comorbidity data and all available values of se-
rum creatinine for each patient. From these data, software gen-
erated classification codes for anaemia, hypoxaemic acute
respiratory failure, systemic inflammatory response syndrome
(SIRS), shock, exposure to nephrotoxic drugs, contrast dyes and
major surgery. Using these codes, the exposure to all these risk
factors was classified as positive (¼ 1), when the system
detected at least one exposure during the hospital stay, or neg-
ative (¼ 0), when no exposure was detected. In all cases, the sys-
tem recorded the data of exposure to each of these variables as
well as the number of exposures to them. In patients with a

code of AKI¼ 1, the exposure to these risk factors only was clas-
sified as equal to 1 when it occurred within a maximum period
of time prior to AKI detection (48 h for anaemia, SIRS and shock,
72 h for contrast dyes and surgery and 7 days for nephrotoxic
drugs). Figure 1 shows a schematic view of the interrelation pro-
cess among the different electronic databases carried out to ob-
tain the information on the clinical variables during the
hospital stay.

At hospital admission (A), chronic comorbidities are checked
by the research team according to explicit criteria and recorded
in the general database. During the hospital stay (B), the data of
five different electronic health databases are integrated using
the admission episode number and all of them dump the
requested information into the general study database. The lab-
oratory database performs repeated comparisons among all se-
rum creatinine levels and generates an identification code,
assigning a 1 when the AKI criteria are met and a 0 when not. It
also assigns a level of AKI severity according to the maximum
differences in serum creatinine detected. The date of AKI detec-
tion is also recorded. The admission episode number is used as
a filter so that patients with more than one AKI episode during
the hospital stay are entered into the system only once, corre-
sponding with the more severe episode of AKI. The follow-up of
haemoglobin levels is used to generate a classification code of
anaemia. The level of oxygen saturation is used to generate a
code of hypoxaemic acute failure. Information on blood leuco-
cyte levels, together with temperature, heart and respiratory
rate, are integrated to generate a code for SIRS and information
on blood pressure, together with the prescription of vasoactive
drugs, is used to generate a code for shock. A complete list of di-
rect nephrotoxic drugs is introduced in the pharmacy prescrip-
tion database, which generates a code of exposure every time
the prescription list contains any of these drugs. The databases
of radiology, angioradiology and interventional cardiology pro-
vide information about the exposure to contrast dyes and the
database of surgery provides information about major surgery
and anaesthesia. In all cases, the system records the data for ex-
posure to each one of these factors. In patients with a code of
AKI¼ 1, the exposure to risk factors is classified as equal to 1
only when it occurs within a maximum period of time prior to
AKI detection (48 h for anaemia, SIRS and shock, 72 h for con-
trast dyes and surgery and 7 days for nephrotoxic drugs). In
patients with a code of AKI ¼ 0, the exposure to risk factors is
classified as positive (¼ 1), when the system detects at least one
exposure during the hospital stay, or negative (¼ 0), when none
is detected. In both cases (AKI and no AKI), the number of expo-
sures to each risk factor is also recorded.

Unlike the haemoglobin level, arterial oxygen saturation,
heart rate, respiratory rate and blood pressure level, being nu-
merical variables that can be directly transferred into the gen-
eral database, both circulatory shock and SIRS are complex
variables that, to be automatically detected using a software-
guided detection code, require the integration of data from vari-
ous electronic records and the definition of classification algo-
rithms. In both cases, before using them in statistical analyses,
we analysed the accuracy of the automatic detection systems in
a sample of 3426 patients. To do this, using data blindly
obtained by two independent clinical investigators, we per-
formed a concordance analysis between the identification of
cases using electronic detection systems and the diagnosis
made by the investigators using clinical criteria, as well as
an analysis of interobserver agreement for both clinical
diagnoses. The results of these analyses are summarized in
Supplementary data, Table S2.
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Validation set

The predictive model obtained at the Vall d’Hebron Hospital
was externally validated in patients admitted to the Arnau de
Vilanova Hospital of Lleida between June 2017 and December
2018. Arnau de Vilanova Hospital is a high-complexity teaching
centre that provides assistance to 490 000 habitants. This centre
provides similar activities as the Hospital Vall d’Hebron with
the exceptions of transplant programmes and cardiac surgery.
The selection of patients and the study procedures were done
according to the same criteria stated for the study set. The
external validation study was performed by an independent
research team that did not participate in the development of
the predictive model and it was tested in the hospital electronic
health record only.

The ethics committee of the Arnau de Vilanova Hospital was
consulted and they decided that informed consent was not nec-
essary for the validation of the model, given that no type of in-
tervention was carried out on the patients.

Statistics

The incidence and prevalence calculations included the total
number of admissions. For patients who developed more than

one AKI episode during the hospital admission, only the most
severe episode was included in the study. Patients were consid-
ered to be at risk each time they were admitted to the hospital
and therefore patients who were admitted two or more times
during the study period were included in the calculations on
each admission, except when readmission occurred within
30 days after hospital discharge. Results are given as the mean-
6 standard deviation (SD) or median and [interquartile range
(IQR), 25th percentile–75th percentile]. Differences in risk factors
between groups were calculated by the Student’s unpaired
t-test oranalysis of variance test. Qualitative variables were
compared using the chi-squared test. Concordance analyses be-
tween qualitative variables were done by the kappa coefficient.
P-values <0.05 were considered statistically significant. To de-
termine which variables were independently associated with
AKI, we carried out a univariate analysis comparing patients
with and without AKI. All the variables with a P-value <0.1 in
the univariate analysis were entered into stepwise multiple lo-
gistic regression analysis with a forward selection method
based on changes in the likelihood ratio (LR). Odds ratios (ORs)
were calculated from the regression coefficients as an approxi-
mation of the relative risk. The predictive value of the logistic
model was evaluated using the C statistic, Cox and Snell R2 and
Nagelgerke R2. Model overfitting was prevented using the
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FIGURE 1: Schematic representation of the interrelation between electronic databases performed to obtain updated clinical information during the hospital stay.
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Akaike information criterion (AIC) [23, 24]. The Hosmer–
Lemeshow test [25] was used as well to calculate the discrimi-
nation power and goodness-of-fit of the logistic model. Results
are presented according to theTransparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis guidelines for risk prediction models [26, 27]. Once
obtained in the study set, the predictive logistic model was
blindly tested on the external validation set by an independent
group of researchers who did not participate in the develop-
ment of the predictive model. Statistical analyses were per-
formed with the Statistical Package for the Social Sciences for
Windows version 20.0 (IBM, Armonk, NY, USA).

RESULTS
Study set

During the study period there were 42 449 hospital discharges.
Figure 2 shows the flow chart for patient selection. The final
study group comprised 36 852 patients. Of this cohort, 1453
(3.9%) developed AKI, with an incidence of 39 AKI episodes/1000
hospital admissions. Distribution by AKI stages was Stage 1, n ¼
1069 (73.5%); Stage 2, n ¼ 258 (17.8%) and Stage 3, n ¼ 126 (8.7%).

Table 1 summarizes the demographic characteristics,
comorbidities, clinical events and procedures during the hospi-
tal stay in the study group, classified according to the presence
of AKI. AKI patients were older and more frequently male than
non-AKI patients. Comorbidities including IHD, ICD, ischaemic
PVD, chronic liver disease, CCHF, MN, COPD, malignancy, uro-
logic disease and CKD stages were also more frequent in AKI
patients. The AKI risk increased linearly as glomerular filtration
rate decreased. Patients with AKI also showed significantly
higher rates of urgent admission, anaemia, acute respiratory

failure, SIRS, shock, major surgery and exposure to contrast
dyes and nephrotoxic drugs.

The results of the logistic model to predict AKI are summa-
rized in Table 2. The highest ORs were associated with ad-
vanced stages of CKD, shock, acute respiratory failure and SIRS.
The model showed an AUC of 0.907 (95% CI 0.902–0.908), with a
sensitivity of 82.7 (95% CI 80.7–84.6) and a specificity of 84.2 (95%
CI 83.9–84.6) to predict HA-AKI and showed an adequate good-
ness-of-fit for all risk categories (Table 3; v2 ¼ 6.02, P ¼ 0.64).

Supplementary data, Table S3 summarizes the results of the
stepwise forward procedures done to develop the final logistic
model, including changes in the LRs, Cox and Snell R2,
Nagelkerke R2 and AIC.

Validation set

The demographic characteristics, comorbidities and clinical
parameters of the study and external validation cohorts are
summarized in Table 4.

When compared with the study set, patients of the valida-
tion set showed significantly lower prevalences of major sur-
gery and patients with AIDS/HIV. There was as well a
significant difference in the distribution of CKD stages between
the two centres. In the validation set, 807/21 545 (3.7%) devel-
oped HA-AKI, with an incidence of 37.4 AKI episodes/1000 hos-
pital admissions. Distribution by AKI stages was Stage 1, n ¼ 605
(75%); Stage 2, n ¼ 129 (16%) and Stage 3, n ¼ 736 (9%), with no
significant differences between the study set and validation set.
When the predictive model was tested in the validation set, it
showed an AUC of 0.905 (95% CI 0.904–0.910), with a sensitivity
of 81.2 (95% CI 79.2–83.1) and a specificity of 82.5 (95% CI 82.2–
83) to predict HA-AKI and an adequate goodness-of-fit for all
risk categories (v2 ¼ 4.2,P ¼ 0.83; Table 5).

There were no significant differences between the AUC
obtained in the study set and that obtained in the validation set
(Figures 3 and 4).

DISCUSSION

In this study we integrated the information of six electronic
health databases commonly used in clinical practice to develop
and externally validate a predictive dynamic model that allows
one to accurately estimate the individual likelihood of suffering
AKI at any time during a hospital stay in non-critically ill
patients. In the study group, the final logistic model identified
two sets of risk factors. The first set included the demographic
data and the patient’s chronic comorbidities. The second in-
cluded a set of risk factors related to the patient’s clinical status
and to the exposure to major surgery, contrast media or nephro-
toxic drugs during the hospital stay. This model showed a high
sensitivity and specificity to predict hospital AKI and showed
an adequate calibration for all risk categories, both in the study
group and in the validation group. When compared with previ-
ously published risk models, our model differs at various points.
First, unlike previous studies, our study provides a model that
allows estimating the risk of HA-AKI tailored to patients admit-
ted to non-critical hospital wards. Moreover, in order to obtain a
predictive model that could be exportable to hospitals with dif-
ferent characteristics and complexities, patients who were ad-
mitted for programmes and/or procedures such as cardiac
surgery or solid organ or bone marrow transplantation that are
not commonly available at all hospital centres were deliberately
excluded. This potential scalability to less complex centres
could be demonstrated as the model had the same performance

42 449 patients discharged
between 1 January 2017
and 31 December 2017

39 375 patients included

3074 patients excluded: 
• Length of stay < 24 h, n = 945
• Direct admission for elective
  heart surgery, n = 465
• Direct admission to ICUs, n = 98   
• Admission as a recipient of renal,
  lung, liver or bone marrow
  transplant, n = 285
• Absence of serum creatinine
  measurements done at least
  12 months after hospital admission,
  n = 1020 
• Chronic hemodialysis treatment,
  n = 245  
• Denial of written consent, n = 16

36 852 patients
included in the study

2523 patients excluded due
to community-acquired AKI

FIGURE 2: Flow chart for patient selection.
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in the validation set as in the study set. Second, in our study,
comorbidities were not obtained through the administrative
discharge codes but were checked case by case. Moreover, the
classification of comorbidities was performed using explicit and
objective definition criteria. In this way, biases related to dis-
crepancies in assigning administrative codes to clinical condi-
tions or to the lack of coding of certain comorbidities were
minimized as much as possible. As proof of this, the prevalen-
ces of certain comorbidities observed in our cohort of patients
are higher than those reported from administrative discharge
codes in previous studies [28, 29]. Additionally, in our cohort,
the prevalence of comorbidities such as MN, which are barely
recorded in the diagnostic codes of discharge, showed similar
figures than those described in studies specifically designed to
analyse its prevalence [30]. Overall, these differences are in
agreement with previously published data that demonstrate
the variability and limitations of administrative data to define
co-morbidities and clinical conditions [31]. Third, comorbidities
were considered separately, which allowed assigning a risk to
each of them and identifying independent predictors of AKI risk
such as MN, which are not described in previous models. In ad-
dition, our model allowed stratifying the risk associated with re-
nal function in greater detail than that provided by the
dichotomous classification, depending on the presence or ab-
sence of chronic renal failure. Fourth, the main novelty of our

study is the prospective monitoring of the evolution of the clini-
cal data of the patients through integration and cross-talk be-
tween the different electronic databases containing all these
data. This procedure allowed us to analyse the dynamic expo-
sure to risk factors related to the clinical status of patients dur-
ing the hospital stay, such as hypoxaemia, haemoglobin level,
blood pressure changes, contrast dyes or nephrotoxic drugs,
prior to the detection of the AKI episode. This integration
allowed as well to perform an accurate transformation of single
variables such as blood pressure, heart rate, arterial oxygen sat-
uration, prescription of vasoactive drugs or blood leucocyte
counts into more complex variables defining specific syn-
dromes such as SIRS and circulatory shock. Electronic records
also allowed us to record the exposure to the same variables
and risk factors in patients who did not develop AKI during the
hospital admission. This approach made it possible to estimate
the individual risk, based on the actual exposure to each risk
factor. Lastly, since our predictive model was developed from
the values of risk factors assessed prior to AKI detection, our
model allows one perform dynamic monitoring of risk and even
to predict the changes in the individual risk that are expected to
happen every time the values of different predictive risk factors
change.

Our group recently performed external validation of one of
the most recent predictive models of acute renal failure, the

Table 1. Demographic characteristics, chronic comorbidities, clinical events and procedures during the hospital admission and univariate lo-
gistic analysis of variables associated with HA-AKI in the study group

Variables Total AKI Non-AKI OR (95 % CI)

Patients, n (%) 36 852 (100) 1453 (3.9) 35 399 (96)
Gender (male), n (% ) 16 782 (45.5) 879 (60.5) 15 903 (44.9) 1.76 (1.59–1.96)
Age (years), mean (SD) 54.9 (20.6) 73 (15.0) 54 (20.5) 1.065 (1.061–1.070)
Chronic comorbidities, n (%)

Diabetes 6837 (18.6) 574 (39.5) 6263 (17.7) 3.04 (2.73–3.39)
Hypertension 14 507 (39.4) 990 (68.1) 13 517 (38.2) 3.46 (3.09–3.87)
IHD 2728 (7.4) 194 (13.4) 2534 (7.2) 2.00 (1.71–2.34)
ICD 2560 (6.9) 181 (12.5) 2379 (6.7) 1.98 (1.68–2.32)
Ischaemic PVD 1924 (5.2) 138 (9.5) 1786 (5.0) 1.98(1.65–2.37)
Chronic digestive disease 2132 (5.8) 70 (4.8) 2062 (5.8) 0.82 (0.64–1.05)
Chronic liver disease 1277 (3.5) 123 (8.5) 1154 (3.3) 2.74 (2.26–3.33)
CCHF 2988 (8.1) 225 (15.5) 2763 (7.8) 2.16 (1.87–2.51)
MN 8524 (23.1) 766 (52.7) 7758 (21.9) 3.97 (3.57–4.42)
COPD 5383 (14.6) 537 (37.0) 4846 (13.7) 3.7 (3.10–4.30)
Malignancy 5278 (14.3) 496 (34.1) 4782 (13.5) 3.32 (2.97–3.71)
Dementia 332 (0.9) 14 (1.0) 318 (0.9) 1.07 (0.63–1.84)
Rheumatologic disease 1543 (4.2) 58 (4.0) 1486 (4.2) 0.95 (0.73–1.24)
AIDS/HIV 293 (0.8) 28 (1.9) 265 (0.7) 2.61 (0.76–3.86)
Urologic disease 2731 (7.4) 172 (11.8) 2559 (7.2) 1.72 (1.46–2.07)

CKD stages, n (%)
0þ 1 30 260 (82.1) 879 (60.5) 29 381 (83.0) Reference
2 3654 (9.9) 192 (13.2) 3462 (9.8) 1.85 (1.58–2.18)
3 2171(5.9) 231 (15.9) 1940 (5.5) 3.98 (3.42–4.63)
4 767 (2.1) 151 (10.4) 616 (1.7) 8.19 (6.77–9.91)

Clinical variables during hospital admission, n (%)
Urgent admission 24 441 (66.3) 1282 (88.2) 23 159 (65.4) 3.96 (3.37–4.66)
Anaemia 5417 (14.7) 528 (36.3) 4889 (13.8) 3.56 (3.19–3.98)
Acute respiratory failure 1827 (5.0) 286 (19.7) 1541 (4.4) 5.39 (4.69–6.19)
SIRS 658 (1.8) 271 (18.7) 387 (1.1) 20.74 (17.58–24.48)
Circulatory shock 650 (1.8) 300 (20.6) 350 (1.0) 26 (22.09–30.73)
Major surgery 12 127 (32.9) 594 (40.9) 11 533 (32.6) 1.43 (1.29–1.59)
Exposure to contrast media 3353 (9.1) 303 (20.9) 3050 (8.6) 2.80 (2.45–3.19)
Exposure to nephrotoxic drugs 19 145 (52.0) 1011 (69.6) 18 134 (51.2) 2.18 (1.94–2.44)
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Madrid Acute Kidney Injury Prediction Score (MAKIPS) [32]. This
model can be calculated automatically from electronic medical
records and could be easily implemented in clinical practice.
With our validation, we conclude that the MAKIPS can be a use-
ful tool, easily obtainable from electronic records data, to pre-
dict AKI in hospitals of different complexity. However, this
model, as well as many others described, has the main limita-
tion that it does not include dynamic factors. The inclusion of
dynamic changes of possible acute precipitants in the models is
technically complex and constitutes a challenge for future re-
search. It could lead to a significant improvement in the dis-
crimination of predictive models and could also generate
dynamic predictive models capable of detecting changes in the
risk profile of patients throughout the hospital stay.

Our model has some limitations that affect neither its pre-
dictive capacity nor its calibration but must be highlighted.
First, the record of clinical variables such as blood pressure,
heart rate, respiratory rate or oxygen saturation were automati-
cally dumped into the study database; however, these values
are not without potential error related to the variability in the
manual introduction of these variables into their corresponding
databases. Second, although the model allows AKI to be accu-
rately predicted, it does not predict its severity stage. Third, our
data indicate that integrating data from different electronic
databases make it possible to obtain a reliable prediction of
the risk of AKI. However, the model obtained in our study is not
the only one that can be obtained with the combination of these
data. As exposure to each of the acute complications or

Table 2. Final multivariate model selected by forward stepwise logistic regression to predict HA-AKI

Variables b Standard error Wald OR (95% CI) P-value

Gender (male), n (% ) 0.21 0.069 9.63 1.29 (1.08–1.42) 0.002
Age (years), mean (SD) 0.05 0.003 218.25 1.05 (1.04–1.05) <0.001
Chronic comorbidities

Diabetes 0.48 0.085 31.67 1.61 (1.36–1.90) <0.001
Hypertension 0.17 0.073 5.76 1.19 (1.03–1.37) 0.016
Ischaemic heart disease 0.32 0.101 10.02 1.38 (1.13–1.67) 0.002
Ischaemic peripheral vascular disease 0.41 0.123 11.31 1.51 (1.19–1.93) 0.001
Chronic liver disease 1.04 0.126 68.95 2.84 (2.22–3.63) <0.001
CCHF 0.48 0.079 37.05 1.61 (1.38–1.88) <0.001
MN 0.25 0.078 10.23 1.29 (1.10–1.50) 0.001
COPD 0.32 0.085 14.03 1.37 (1.16–1.62) <0.001
Malignancy 0.59 0.089 40.27 1.76 (1.48–2.10) <0.001
Chronic urologic disease 0.96 0.117 67.02 2.60 (2.07–3.27) <0.001

CKD stages
0þ 1 Reference
2 0.89 0.096 84.42 2.42 (2.01–2.93) <0.001
3 1.38 0.098 198.25 3.98 (3.28–4.82) <0.001
4 2.04 0.125 265.63 7.67 (5.99–9.78) <0.001

Clinical variables during hospital admission
Urgent admission 0.79 0.097 66.42 2.21 (1.83–2.67) <0.001
Anaemia 0.78 0.069 125.61 2.18 (1.90–2.49) <0.001
Acute respiratory failure 1.26 0.097 169.11 3.53 (2.92–4.27) <0.001
Acute heart failure 0.69 0.095 53.24 2.00 (1.66–2.41) <0.001
SIRS 1.25 0.129 94.88 3.50 (2.72–4.5) <0.001
Circulatory shock 1.82 0.127 205.48 6.16 (4.80–7.89) <0.001
Major surgery 0.99 0.076 169.43 2.70 (2.32–3.13) <0.001
Exposure to contrast media 0.52 0.087 36.52 1.69 (1.43–2.00) <0.001
Exposure to nephrotoxic drugs 0.57 0.070 67.04 1.77 (1.54–2.03) <0.001

Table 3. Hosmer–Lemeshow’s goodness-of-fit of the logistic predictive model in the study group

Risk deciles

AKI¼ 0 AKI¼ 1

TotalObserved Expected Observed Expected

<0.0008504 3684 3683.9 2 2.1 3686
0.0085041–0.0016950 3678 3680.7 8 5.3 3686
0.0016951–0.0031772 3675 3675.8 11 10.1 3686
0.0031773–0.0053733 3663 3660.6 15 17.3 3678
0.0053733–0.0087714 3655 3656.7 30 28.2 3685
0.0087715–0.0140660 3644 3641.7 42 44.2 3686
0.0140661–0.0228354 3628 3615.7 56 68.2 3684
0.0228355–0.0394850 3586 3575.0 100 110.9 3686
0.0394851–0.0850955 3471 3477.2 214 207.7 3685
>0.0850955 2715 2731.0 974 957.9 3689

v2 ¼ 6.01. P ¼ 0.645.
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nephrotoxic agents can occur at different times after hospital
admission, in order to relate the exposure to them with the de-
velopment of AKI it was necessary to define a maximum period
of time between exposure and detection of AKI. In our study,
the duration of this period of time was defined by consensus of
the research group using pathophysiological criteria. The defini-
tion of other periods of time, based on alternative criteria,
would modify the prevalence of exposure to these risk factors

and consequently the magnitude of the associations found
between these variables and AKI.

In conclusion, our study provides an externally validated
model based on demographic data, specific comorbidities, acute
clinical conditions and procedures that can be used in clinical
practice to obtain an accurate dynamic assessment of the indi-
vidual risk of suffering AKI during the entire hospital stay pe-
riod in patients admitted into non-critical hospitalization

Table 5. Hosmer–Lemeshow’s goodness-of-fit of the logistic predictive model in the validation group

Deciles of risk

AKI¼ 0 AKI¼ 1
Total

Observed Expected Observed Expected

<0.0009026 2154 2153.6 1 1.4 2155
0.0009027–0.0018699 2151 2149.9 2 3.1 2153
0.0018700–0.0032362 2150 2149.5 5 5.4 2155
0.0032363–0.0054175 2143 2145.2 11 8.7 2154
0.0054176–0.0085382 2144 2140.2 10 13.8 2154
0.0085383–0.0127563 2134 2131.9 20 22.1 2154
0.0127564–0.0214063 2121 2118.3 33 35.6 2154
0.0214064–0.0391575 2093 2092.6 61 61.3 2154
0.0391575–0.0874214 2034 2035.0 120 118.9 2154
>0.0874214 1612 1623.3 546 533.6 2158

v2 ¼ 4.2. P ¼ 0.836.

Table 4. Comparison of demographic characteristics, comorbidities and clinical variables between the study set and the external validation set

Variables Study set Validation set P-value

Patients, n 36 852 21 545 –
Gender (male), n (%) 16 782 (45.5) 9932 (46) 0.19
Age (years), mean (SD) 549 (20.6) 60.1 6 19.7 0.38
Chronic comorbidities, n (%)
Diabetes 6837 (18.6) 3942 (18.3) 0.44
Hypertension 14 507 (39.4) 8389 (38.9) 0.27
IHD 2728 (7.4) 1573 (7.3) 0.66
ICD 2560 (6.9) 1486 (6.9) 0.83
Ischaemic PVD 1924 (5.2) 1163 (5.4) 0.36
Chronic digestive disease 2132 (5.8) 1228 (5.7) 0.68
Chronic liver disease 1277 (3.5) 775 (3.6) 0.41
CCHF 2988 (8.1) 1659 (7.7) 0.08
MN 8524 (23.1) 4869 (22.6) 0.14
COPD 5383 (14.6) 3102 (14.4) 0.49
Malignancy 5278 (14.3) 3038 (14.1) 0.47
Dementia 332 (0.9) 172 (0.8) 0.1
Rheumatologic disease 1543 (4.2) 851 (4) 0.56
AIDS/HIV 293 (0.8) 86 (0.4) <0.0001
Urologic disease 2731 (7.4) 1573 (7.3) 0.63
CKD stages, n (%)

0þ 1 30 260 (82.1) 17 731 (82.3) 0.015
2 3654 (9.9) 2198 (10.2) –
3 2171 (5.9) 1142 (5.3) –
4 767 (2.1) 474 (2.2) –

Clinical variables during the hospital admission, n (%)
Urgent admission 24 441 (66.3) 14 422 (66.9) 0.13
Anaemia 5417 (14.7) 3189 (14.8) 0.74
Acute respiratory failure 1827 (5) 1120 (0.5) 0.19
SIRS 658 (1.8) 383 (1.8) 0.97
Circulatory shock 650 (1.8) 370 (1.72) 0.68
Major surgery 12 127 (32.9) 6753 (31.3) <0.0001
Exposure to contrast media 3353 (9.1) 2068 (9.6) 0.6
Exposure to nephrotoxic drugs 19 145 (52) 11 144 (51.7) 0.59
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wards. This model is highly versatile and allows for performing
repeated manual risk estimation, using the prediction algo-
rithm, to provide an automatic risk measure updated in real
time in those centres where it is possible to carry out a complete
integration of the healthcare databases containing the neces-
sary information.
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