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Abstract The primary headaches, migraine with (MA)

and without aura (MO) and cluster headache, all carry a

substantial genetic liability. Familial hemiplegic migraine

(FHM), an autosomal dominant mendelian disorder classi-

fied as a subtype of MA, is due to mutations in genes

encoding neural channel subunits. MA/MO are considered

multifactorial genetic disorders, and FHM has been pro-

posed as a model for migraine aetiology. However, a review

of the genetic studies suggests that the FHM genes are not

involved in the typical migraines and that FHM should be

considered as a syndromic migraine rather than a subtype

of MA. Adopting the concept of syndromic migraine could

be useful in understanding migraine pathogenesis. We hy-

pothesise that epigenetic mechanisms play an important role

in headache pathogenesis. A behavioural model is proposed,

whereby the primary headaches are construed as behaviours,

not symptoms, evolutionarily conserved for their adaptive

value and engendered out of a genetic repertoire by a net-

work of pattern generators present in the brain and signalling

homeostatic imbalance. This behavioural model could be

incorporated into migraine genetic research.

Keywords Migraine � Tension-type headache �
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Introduction

The genetics of the primary headaches scored recent

scientific successes due to the unravelling of the genetics of

FHM. Deciphering of the patho-physiological mechanisms

of these common diseases promises to bring the much

needed knowledge for pharmacological treatments and

therapeutic interventions. There are however also problems

and controversies, some not solved by the genetic studies

performed to date. The following is a brief subjective

review of the available evidence, suggesting a role for

epigenetic mechanisms and ending with the proposal of a

behavioural model of the primary headaches possibly

useful for the genetic studies.

Primary and secondary headaches: symptoms,

syndromes or diseases? Idiopathic and syndromic

migraines

Headaches/migraines are plagued by problems of defini-

tion: these terms describe symptoms (a feature which

indicates a condition of disease, in particular one apparent

to the patient, CED 2003), and at the same time, distinctive

syndromes (a group of symptoms which consistently occur

together) [1] or diseases (a disorder of structure or function

in a human, animal, or plant, especially one that pro-

duces specific symptoms) [1] with recognisable diagnostic

features, internationally defined [2]. The problems encoun-

tered with definitions become evident when dealing with

primary or secondary headaches, and when considering

idiopathic and syndromic migraines. Secondary headaches

are those in which attacks occur due to a recognisable

cause or disease, which itself represents the primary cause

of the attacks. Syndromic migraines, contrasted with the

idiopathic ones, are those in which attacks of migraine,

clinically barely or not distinguishable from those occur-

ring in the primary migraines, occur compounded with

involvement of other systems. Syndromic migraines are
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often genetically determined. The concept of ‘‘syndromic,’’

potentially useful in the exploration of headache patho-

genesis, has been applied to conditions such as deafness,

visual loss and epilepsy, but has no place in the HCS

classification that classifies headache attacks and not dis-

eases, albeit distinguishing between primary and secondary

headaches. These considerations may apply to the genetics

of the primary headaches, since by adopting the HCS

(2004), we consider symptoms, not diseases (much as if,

studying the genetics of diabetes mellitus, we adopted a

classification of the hyperglycemias).

Genetic epidemiology of the typical migraines

The typical primary migraines (MO and MA) all have a

substantial risk of familial recurrence. When estimating the

population relative risk of migraine in specified groups of

relatives (i.e. the ratio between the probability that a rela-

tive versus a random member of the population is affected),

first-degree relatives of migraine without aura probands

have 1.9 times the risk of MO and 1.4 times the risk of MA,

whereas first-degree relatives of MA probands have nearly

four times the risk of MA and no increased risk of MO [3].

Since a family aggregation is implied when the risk ratio

exceeds one, this confirms the familial liability for the

migraines, even though familiarity is not yet heredity. A

further analysis showed however that spouses of MO pro-

bands have 1.4 times the risk of MO, and spouses of MA

probands have no increased risk of MA [3], thus backing a

hereditary liability for MO and especially MA. Twin

studies concur with this increased familial liability. Con-

cordance rates for migraine are consistently higher among

monozygotic (MZ) than dizygotic (DZ) twins. In particu-

lar, heritability estimates were around 52% in female twin

pairs raised together or apart since infancy. In MZ Danish

twin pairs, liability to MO resulted from additive genetic

effects (61%) and from individual-specific environmental

effects (39%), while in MA, correlation in liability was

0.68 in MZ and 0.22 in DZ, with heritability estimated at

0.65. Therefore, twin studies reveal that approximately

one-half of the variation in migraine is attributable to

additive genes, while the remainder is caused by unshared

rather than shared environmental factors between twins

[4, 5]. Several studies have analysed pedigrees with

migraine, segregation analysis being performed to discover

the genetic transmission pattern. Studies at first envisioned

migraine as a simple mendelian disorder, inherited

according to monogenic rules of transmission. Various

modes of inheritance, autosomal dominant with female

preponderance, possibly sex determined; autosomal reces-

sive with 70% penetrance; polygenic; maternal and

X-linked transmissions have been proposed, or rejected

[6, 7]. Finally, based on complex segregation analysis, a

multifactorial inheritance was considered the most likely

pattern even in high-risk families with MA [8]. A single

gene was considered unlikely, but, notably, in some fam-

ilies, a mendelian or mitochondrial inheritance could not be

excluded [3]. Currently, migraine is widely considered a

complex disease with multifactorial inheritance. This type

of inheritance applies to many complex/quantitative traits,

i.e. traits that vary continuously in a phenotypic range, and

in which variation is quantitative, not qualitative. Examples

of quantitative traits are height, body weight, etc. Such

traits are influenced by multiple genes (each a quantitative

trait locus QTL), each having a small quantitative effect

and interacting with the environment. However, there is

still no unequivocal evidence that migraine as a quantita-

tive trait varies continuously in the general population, and

moreover, genetic variation underlying a continuous char-

acter distribution can result from segregation at a single

locus too. Therefore, considering migraine as a quantitative

trait may still be unwarranted.

The primary headaches also display considerable

comorbidity, rarely incorporated into genetic studies. MA

is comorbid with hypomania, depression and anxiety, and

MO with phobia, panic and major depression. Other

comorbidities are stroke, dyslipoproteinemias, essential

tremor, paroxysmal dyskinesia and epilepsy. Merikangas

et al. in a longitudinal genetic epidemiology study found

that migraine was associated with mood disorders and drew

attention to the fact that age at onset of anxiety disorders

preceded, while onset of affective disorders followed that

of migraine, findings consistent with a syndromic rela-

tionship between migraine and anxiety/depression [9].

These findings have been replicated, maternal depres-

sion being significantly associated with development of

migraine in children [10]. Asthma, rhynitis and allergic

bronchitis are also important comorbidities recurring in

migraine families [11–13]. These comorbid clinical fea-

tures should be properly incorporated in the genetic studies

of the primary headaches.

Mendelian migraines? The genetics of FHM

and their putative relationship with the typical

migraines MA/MO

Migraines may be multifactorial, but mendelian migraines,

i.e., migraines that conform to a mendelian type of genetic

transmission, do exist. FHM is classified as a subtype of

migraine with aura in the HCS (2004), and it conforms to

an autosomal dominant pattern of hereditary transmission.

Joutel et al. mapped FHM to chromosome 19, and in 1996

the first FHM gene, CACNL1A4, later termed CACNA1A,

encoding the alpha1A subunit of the P/Q neural calcium
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channel, was discovered, accounting for both FHM 1 and

episodic ataxia type 2 (EA2) phenotypes [14, 15]. Spi-

nocerebellar atrophy type 6 (SCA6) was added to the FHM

and EA2 phenotypes in 1997 [16]. Thus, FHM 1, EA2 and

SCA6 are all allelic channelopathies, with missense

mutations mostly accounting for FHM, mutations disrupt-

ing the reading frame for EA2 and polyglutamine

expansions in the COOH gene terminal for SCA6. The

phenotypic spectrum of the CACNA1A mutations was at

first believed to consist either of pure FHM or of FHM

associated with cerebellar atrophy. Why some mutations

originate pure FHM while others elicit progressive or

intermittent cerebellar features remains unclear [17]. Ictal

coma after trivial trauma and essential tremor were asso-

ciated clinical features in families harbouring particular

CACNA1A mutations. The phenotypic spectrum of the

CACNA1A mutations has further expanded to include

ataxia induced by fever or high temperature [18], childhood

epilepsy [19,20] and status epilepticus [21], paroxysmal

paranoid psychosis with anxiety [22], benign paroxysmal

torticollis of infancy, considered a migraine equivalent

[23], and even myasthenic syndrome [24], since CACNA1A

is also expressed on presynaptic neuromuscular junction

terminals where it modulates transmitter release [25] even

in the absence of any morphological changes in the junc-

tion or muscle weakness [26].

The paroxysmal clinical features of migraine, ataxia and

epilepsy, together with the consideration that CACNA1A

specifies for a calcium channel and that in the tottering and

leaner mouse with epilepsy and ataxia, similar mutations

are found in the mouse homologue of the calcium channel

alpha1A subunit gene, led to the proposal that migraine be

considered a calcium channelopathy [27]. The concept of

migraine as a brain channelopathy fits well with the phe-

nomenon of spreading depression [28], implicated in

migraine attack pathophysiology. It is now accepted by the

scientific community as an explicative model for migraine.

However, the available genetic evidence is controversial or

negative (see below).

FHM was soon proved to be genetically heterogeneous,

some families linking to chromosome 1 [29,30], and a

second gene, ATP1A2, encoding the alpha2 subunit of the

Na/K ATPase, was discovered in Italian families and

accounting for a phenotype of pure FHM (FHM 2) [31].

New mutations were found in FHM 2 pedigrees [32], and

soon the phenotypic spectrum of FHM 2, initially thought

to be confined to pure FHM, broadened to include such

features as coma, triggered by minor head trauma and

angiography [33], recurrent comas [34] and epilepsy,

namely benign familial infantile febrile convulsions [35].

Finally, cerebellar ataxia associated with epilepsy and

mental retardation was described in an Italian FHM 2

family [36,37], findings later confirmed by Spadaro et al.

and Vanmolkot et al. in other families [38, 39]. Phenotypes

of alternating hemiplegia of childhood [40–42] and basilar

migraine [43] described with ATP1A2 mutations further

enlarged the clinical spectrum of FHM 2. Variability within

the same family is notable, with FHM, cerebellar ataxia,

recurrent paroxysmal dystonia and mental retardation all

recurring together [42].

Lastly, mutations in the neuronal voltage-gated sodium

channel SCN1A were reported by Dichgans et al. [44] to

account for a phenotype of pure FHM (FHM 3), and there

are still FHM families without mutations in any of the

previously described genes, implying further genetic het-

erogeneity. Sporadic patients with HM, more common in

clinical practice, also present problems, since mutations in

the known FHM genes are only rarely encountered in this

population [45].

An important corollary of the genetic discoveries

obtained in the FHM was the proposal to consider FHM as

a model for the typical migraines MO and MA [27]. This

spurred the search for the involvement of FHM genes in

MO/MA. Up to now the effort has been largely unre-

warding. This in our opinion is also due to the

misclassification of FHM as a subtype of MA [2], whereas

FHM represents a syndromic migraine (see below). Some

evidence in favour of linkage of typical migraines to the

FHM locus on chromosome 19 was initially offered by

May et al. [46], Nyholt et al. [47] and Terwindt et al. [48].

However, early negative studies [49–51] were later sub-

stantiated by systematic screening investigations of the

CACNA1A in families with MO and/or MA [52–55], and to

date, mutations in CACNA1A have never been demon-

strated in kindreds without hemiplegic migraine, with or

without aura. The same negative considerations apply to

ATP1A2. Earlier evidence in favour of a role of the Chrlq3l

locus or ATP1A2 gene in the typical migraines [56, 57] was

superseded by negative findings and absent ATP1A2

mutations in typical migraine only pedigrees, even those

displaying an apparently autosomal dominant mode of

inheritance [58–61]. The FHM 3 SCN1A gene was dis-

covered too recently for any conclusive study. Von Brevern

et al. [62] however failed to find any CACNA1A, ATP1A2

or SCN1A mutations in patients with migrainous vertigo.

Thus, there is no current evidence that the genes causing

FHM represent major susceptibility loci for the typical

migraines.

Does such negative genetic evidence imply that FHM is

not a useful model for migraine etiology? Several reviews

of migraine pathogenesis apply the FHM model of neural

channelopathy to the typical migraines. While such models

are not justified genetically, it may be contended that FHM

is nonetheless helpful in elucidating the pathophysiology of
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the migraine attacks. This consideration however is likely

to apply to several clinical conditions all characterised by

headache attacks of the migraine type. Migraine-like

attacks indeed are found not only in the typical migraines,

but also in other conditions, diseases or syndromes, in

which they occur together with symptoms and signs of

multisystem nervous or extra-nervous involvement. These

‘‘syndromic migraines’’ thus display bona fide migraine

headache attacks at some times in their clinical course, and

most of them have a genetic basis (Table 1). FHM is also

characterised by multisystem neurologic involvement

(migraine, hemiplegia, ictal recurrent comas, cerebellar

atrophy, mental retardation, epilepsy, movement disorders,

myasthenic syndrome, etc.), and therefore we make a plea

for FHM to be considered more appropriately as a syn-

dromic migraine and not a subtype of MA, as with the

current HCS classification (2004).

Linkage and association studies in the typical migraines

Several studies on the genetics of the typical migraines MO

and MA applied genetic association, linkage and genome

wide scanning methods. Most of these studies resulted in

findings that either lack verification or are controversial. For

MA, a genome wide scan on 50 multigenerational families

in Finland identified a susceptibility locus on chromosome

4q24 [70]. Other loci for MA have been reported on chro-

mosome 11q24 in Canadian families with an autosomal

dominant transmission pattern [71], and on chromosome

15q11–q13 to a genomic region containing genes encoding

for GABA-A receptors in ten Italian families again dis-

playing an autosomal dominant transmission pattern [72].

For MO, or for pedigrees with MO mixed with MA,

susceptibility loci have been reported on chromosome

6p12.2–p21.1 in Sweden [73], chromosome 5q21 [74],

chromosome 14q21.2–q22.3 in an Italian family with MO

[75], chromosome Xq24–28 in two large Australian

pedigrees [76] and chromosome 19p13.3/2 to the insulin

receptor gene INSR [77]. While many of such findings have

still to be replicated, in some cases (the INSR gene)

sequence studies have given negative results [78].

Other studies have examined candidate genes, implying

that a pathogenetic (and a priori) hypothesis was formu-

lated beforehand. This may be risky, considering that

the pathogenesis of the migraine headaches is still imper-

fectly understood. Candidate genes explored were the

mitochondrial DNA (mtDNA), or genes involved in pro-

thrombotic or cardiovascular disease, or in the metabolism

of biologic amines such as dopamine or serotonin, or in a

variety of other metabolic systems. Several of the studies

applied to mtDNA genes have yielded negative results,

even though in some families migraine was reported to

segregate with the Leber mtDNA 14484 mutation [79], and

mtDNA mutations and haplotypes (haplotype U) have been

associated with juvenile migraine stroke [80, 81] and with

cyclic vomiting, considered a migraine equivalent in the

pediatric population [82–84]. Contrasting results for genes

involved in prothrombotic/cardiovascular risk, and for

those involved in the metabolism of the biological amines

serotonin and dopamine, or in several other metabolic

pathways are summarised in Tables 2, 3, 4, and 5.

Finally, a few studies have focused on the genetics of

the chronic headaches, a major social problem, since these

chronic headaches are often associated with drug abuse and

afflict a remarkable percentage of the general population.

Chronic tension-type headache displays a substantial

familial recurrence, with lifetime relative risk estimated at

3.87 for parents and 3.53 for children of probands; the risk

is greater for females (3.35) than for males (2.59) [85].

A genetic association study of chronic headache with drug

abuse versus the dopamine metabolism genes by Cevoli

et al. [86] found that allele 4 of the exon III VNTR poly-

morphism of the dopamine receptor 4 gene DRD4 was

associated with chronic daily headache, and allele 9 of the

dopamine transporter gene SLC6A3 was more common in

Table 1 A list of proposed (and provisional) syndromic migraines

Syndromic migraines Genes (chromosome) involved Migrainous features (references)

MELAS (mitochondrial myopathy, encephalopathy,

lactic acidosis, and stroke-like episodes)

MTTL1, MTTQ, MTTH, MTTK, MTTS1,

MTND1, MTND5, MTND6, and MTTS2
(mtDNA)

Most frequent symptom: episodic sudden

headache with vomiting and convulsions

[63, 64]

CADASIL (cerebral arteriopathy, autosomal

dominant, with subcortical infarcts and

leukoencephalopathy)

NOTCH 3 (19p13.2–p13.1) MA in 22% [65]; migraine in 38% [66]

HERNS (retinopathy, vascular, with cerebral and

renal involvement and Raynaud and migraine

phenomena)

TREX1 (3p21.3–p21.2) Migraine in 70% [67]

CCM (familial cerebral cavernous malformations) KRYT 1 (7q11.2–q21) Convulsions and migraine attacks [68, 69]
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chronic daily headache associated with drug abuse than in

episodic migraine.

Genetics of tension-type headache

Remarkably, apart from an epidemiological genetic study

that demonstrated a familial aggregation for chronic ten-

sion-type headache [85], there are no other genetic studies

of this common disorder.

Genetics of cluster headache

Cluster headache (CH) has long been considered a sporadic

disease. In recent decades, however, a familial recurrence

has been appreciated, and the new HCS classification

(2004) now states that CH may be transmitted as an auto-

somal dominant disease in about 5% of cases. Several CH

cases have been reported among monozygotic twins and in

family pedigrees [129–137], and family studies indicate that

I-degree relatives of CH probands carry a 5- to 18-fold, and

Table 2 Prothrombotic and

cardiovascular risk genes and

typical migraine genetics

Prothrombotic/vascular risk genes

or mutations examined

Phenotypes

LDL receptor (19p13.2) Associated with MO [87]; not associated [88]

Factor V R/Q 506 (Leiden mutation) Associated with MA [89]

Not associated with migraine stroke [90]; not

associated with MA/MO [91]; not associated with

juvenile MA [92]

Factor II 20210 G/A Not associated with MA/MO [91]

Not associated with migraine stroke [93]

Factor XIII Val 34 Leu Not associated with migraine [94]

Decanucleotide insertion/deletion factor VII

promoter

Not associated with MA/MO [91]

Alloantigenic platelet systems HPA-1 and HPA-2 Not associated with MA/MO [91]

Deficit of protein S Associated with MA [89]

Angiotensin converting enzyme (ACE) Allele D associated with MO and more frequent

migraine attacks [95]

Endothelial NO synthase inducible (NOS3; iNOS) Not associated with migraine [96, 97]

Endothelin receptor A (ETA-231 A/G)
polymorphism

Allele G protecting from migraine [98]

MTHFR (methylene-tetra-hydrofolate reductase)

C677T/A1298C
Homozygous mutation associated with MA [99],

associated with MA [100]; risk for MA,

modulated by thymidilate synthase gene [101]

Table 3 Serotonin metabolism

genes and typical migraine

genetics

Serotonin metabolism

genes examined

Phenotypes

5-HTSERT (17q11.2–12) Allelic association with MO (increase of allele STin2.12 + decrease of allele

STin2.10) and MA (same + increase of allele Stin2.9) [102]; 5HT-TLPR

with MA [103]

Allelic association with migraine (allele Stin2.10) [104]; borderline

association with migraine [105]

No association/linkage with migraine [106, 107]

5-HT2A (13q14–21) Allelic (allele C) association with migraine aura [108]

No association with migraine [105, 106, 109, 110]

5-HT1B (6q13) No association with migraine [106, 110, 111]

5-HT1D (1p36.3–34.3) No association with migraine [106, 110, 111]

5-HT2B (2q36.3–q37.1) No association with migraine [106, 110, 111]

5-HT2C (Xq22–25) No association with migraine [106, 110, 111]

5-HT1B (6q13) No association with therapeutic response to triptans [112, 113]

5-HT1F (3p12) No association with therapeutic response to triptans [112, 113]
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II-degree relatives a 1- to 3-fold increased relative risk of

the disease [138–141]. CH has been considered a probable

autosomal dominant disease with a penetrance of 0.3–0.34

in males and 0.17–0.21 in females [142]. The exact trans-

mission pattern is however still debated [143, 144], and an

autosomal recessive pattern has been advocated in certain

families [137]. Several candidate genes have been analysed,

in particular mtDNA mutations [145–148], HLA antigens

[149–151] and CACNA1A polymorphisms [152, 153],

usually with negative or controversial results. Other genes,

such as the NO synthases NOS1, NOS2A and NOS3 [154],

the elusive amine gene cluster [155], the CLOCK gene

involved in the regulation of circadian rhythms [156,157]

and the hemochromatosis gene [158], have been found not

associated with CH. Recently, an association between CH

and a polymorphism in the hypocretin receptor 2 gene

HCRTR2 was reported by Rainero et al. [159], possibly

accounting for the circadian recurrence of the CH attacks.

Such an association, while confirmed by Schürks et al.

[160], was rejected in a European multicentric study [161].

Recently, reports of CH associated with hemiparesis during

the attacks suggested a relationship with FHM and ionic

channelopathies [162]. Preliminary genic expression stud-

ies instead documented the activation of proinflammatory

genes during the CH attack [163].

Genetics and epigenetics

Epigenetics is the study of the changes in DNA and DNA-

binding proteins that, albeit altering the structure of chro-

matin, do not modify the nucleotide sequence of DNA. The

remarkable feature here is that some of these modifications

may be associated with heritable changes in gene function.

Commonly held concepts of heredity indeed pit envi-

ronmental influences (nurture) against genetic background

(nature) as totally separate causative factors. Genetic

advances themselves have however demonstrated that the

hereditary transmission of biological changes not encoded

in the DNA sequence and dictated by environmental

influences is possible. This part of genetics, called epige-

netics, has received little or no attention in the genetic

studies of the primary headaches. It is the contention of the

author however that future epigenetic studies will account

for several hereditary features of the primary headaches, in

particular their comorbidities.

All those (meiotic and mitotic) modifications in gene

expression that are heritable but not encoded in the DNA

sequence are defined as epigenetic. Molecular mechanisms

implicated include (1) methylation of cytosine residues at

C5 in dinucleotide CpG sites (localised especially in pro-

moters of well over 40% of the genes and that, when

Table 4 Dopamine metabolism

genes and typical migraine

genetics

Genes examined Phenotypes

Dopamine receptor 2 (DRD2) Allelic association (allele NcoI) with MA comorbid

with anxiety/depression [114]

Allelic association (allele 1) with yawning/nausea

during attack of MO [115]

No allelic association (allele NcoI) with MA [116]

No allelic association with MO/MA [107, 117, 118,

119]

Dopamine receptors 1, 3, 4, 5 (DRD1, DRD3,
DRD4, DRD5)

No allelic association with migraine [115, 117, 120]

Dopamine transporter (DAT) Association with chronic daily headache with drug

abuse [86]

COMT; MAO-A No association with migraine [117, 121]

Dopamine-betahydroxylase (DBH) Association with migraine [107], especially males with

MA [122]

No association [123]

Table 5 Other genes

implicated in typical migraine

genetics

Genes examined Phenotypes

Androgen/progesterone receptors Androgen receptor not associated; progesterone receptor

associated with migraine [124]

K channel KCNN3 Allelic association (CAG repeats) with MO/MA [125]

Not associated (CAG repeats) [126]

Cytotoxic T lymphocyte antigen 4

(CTLA-4)
Not associated with migraine [127]

HLA-DRB1 Allelic association with MA [128]
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methylated, cause silencing of the gene); (2) mechanisms

of RNA interference, whereby microRNAs silence gene

expression; (3) histone (DNA associated proteins) changes:

activation or inactivation of genomic regions according to

the ‘‘histone code’’. All of these mechanisms result in the

expression or silencing of genes, and underlie such phe-

nomena as inactivation of the X chromosome and genomic

imprinting. Several epigenetic diseases are already known

that may be inherited through the somatic and the germinal

line: fragile X syndrome, in which ATRX gene mutations

modify the methylation pattern of ribosomial RNA and, by

methylation of CGG expansions in the FMR1 gene, silence

the gene; the Angelman and Prader-Willi, and Rett syn-

dromes; also, many colonic cancers and leukemias.

Important epigenetic differences that increase with age are

found even between monochorial twins [164]. Notably,

epigenetic modifications may increase with age and may

also be prevented through interventions directed at DNA or

histone methylation (with azanucleotides, antisense oligo-

nucleotides, histone deacetylase). Even more remarkably,

there is some evidence that lifestyles and even diet may

play a role [165].

Epigenetic models for the primary headaches?

There is consistent evidence that behavioural differences

typical of specific inbred animal strains are the conse-

quence of environmental influences acting especially

during development rather than DNA changes. Mice strains

with decreased environmental exploration behaviour (B6

strain) develop enhanced exploratory behaviour if nurtured

in their first 3 months of life by BALB dams, a strain

displaying intense exploratory behaviour; changes in

behaviour appear to be linked to the type of maternal care,

particularly licking of the pup by the mother, a behaviour

demonstrated to affect the status of the endocrine stress

system in mice [166]. Weaver et al. [167] showed how

maternal care in the rat (licking and grooming the pup)

modifies the methylation pattern of the promoter of the

glucocorticoid receptor gene in the hippocampus; such

epigenetic changes, evident from the first week of life,

persist throughout the animal’s life but are reversible upon

treatment with histone deacetylase inhibitors or upon

intracerebral administration of methionine (an intervention

that modifies the methylation pattern) [168].

Stress plays a remarkable role in the development of the

nervous system: removal of rat pups from the mother causes

reduced neurogenesis in the adult hippocampus through

steroid-dependent mechanisms [169], and alters serotoner-

gic transporter densities and serotonergic 1A receptors in

the rat brain [170]. Administration of steroids to the mother

before delivery causes changes in behavioural patterns in

juvenile rats [171], and maternal deprivation in the imme-

diate post-natal period modifies locomotor and steroid

release patterns in the adult rat [172]. Epigenetic mecha-

nisms also seem relevant for the formation of memory

traces [173] and more generally for cognitive development

[174]. Epigenetic mechanisms have been hypothesised for

psychiatric disorders [175, 176] and many complex and

multifactorial diseases affecting the brain or the inflam-

matory and immune systems [177–179].

There are still no studies of epigenetic mechanisms in

the primary headaches. When considering, however, the

important maternal influence in migraine genetics; the

consistent and inherited co-morbidities especially for psy-

chiatric and inflammatory-immune disorders; twin studies

documenting that only about half of the variability is due to

‘‘genetic’’ factors; it is possible to envision that epigenetic

mechanisms, especially those acting during nervous system

development in early infancy and childhood, play a role

in the heritability and pathophysiology of the primary

headaches. Preliminary studies have already analysed

attachment styles in adult migraineurs [180, 181], and a

prospective investigation demonstrated correlations between

events suffered during pregnancy and early life, and quality

of adult life 31–33 years later [182]. It is reasonable

to suggest that early life factors and attachment styles

between mother and child represent determinants of epi-

genetic changes relevant in migraine pathogenesis. Such

early pre- and post-natal environmental behavioural factors

could be usefully analysed to define endophenotypes of

adaptive behaviour useful in the genetic studies of the

primary headaches.

Final comments: a behavioural model of the primary

headaches as fight-or-flight response and sickness

behaviour to be incorporated into genetic research

Consideration of epigenetic mechanisms may help in

analysing behaviours during the headache attacks. Any

genetic studies are ultimately dependent upon the definition

of the phenomenon taken into consideration, and on how it

is conceptualised. Therefore, studies have to rely upon

conventional diagnostic criteria, in turn based on a priori

interpretations. Most genetic studies have been performed

within the frame of migraine interpreted simply as a ‘‘pain’’

trait with multifactorial inheritance. In a ‘‘harlequin’’

model, several genetic factors, each one having a small

specific weight, interact with environmental factors to

determine the migraine attack. Such a model should how-

ever be better tailored to suit phenomena such as the

migraine attack and the migraine diseases that are really

behavioural ‘‘processes’’ with an intrinsic logic of their

own [183], one that is consistent within attacks, within
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patients and within populations. There is a need to con-

ceive of the primary headaches along more useful scientific

lines. Consistently lacking in the genetic studies is for

instance any consideration of migraine as a behavioural

response to environmental and/or endogenous triggers, a

view that has scientific support [184] and that we recently

revised to accomodate a Darwinian perspective [185].

According to our view, migraine and other primary head-

aches such as CH are behaviours, not symptoms,

evolutionarily conserved for their adaptive value and

engendered out of a genetic repertoire by networks of

pattern generators present in the brain. These neural net-

works serve the homeostasis of the brain, with migraine

pain considered a kind of visceral pain signalling homeo-

static imbalance. The behavioural repertoire enacted during

the migraine attack, complete with its full panoply of pain,

cognitive, autonomic, motor, etc., symptoms and signs, is

comparable to that defined as sickness behaviour and

already known to develop in all mammals and other ani-

mals following challenge with infective and other

pathogenic agents [186]. In contrast, behaviour during the

CH attacks [187] resembles the fight-or-flight response of

hypothalamic animals. These behaviours during the head-

ache attacks really represent ‘‘healing’’ processes, and

migraine may even be evolutionarily advantageous [188].

Thus, what is relevant in this new behavioural model is not

the manifestations of the attack, but the factors triggering

it, that, migraine being of the brain, must relate to still

unknown disturbances of brain homeostasis [185].

Accordingly, it is these triggering factors rather than the

manifestations during the attacks that may represent the

features most relevant for a true dissection of the genetics

of the primary headaches.
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