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SARS-CoV-2 spread rapidly, causing millions of deaths across the globe. As a result, demand for medical supplies
and personal protective equipment (PPE) surged and supplies dwindled. Separate entirely, hospital-acquired
infections have become commonplace and challenging to treat. To explore the potential of novel sterilization
techniques, this study evaluated the disinfection efficacy of Fathhome's ozone-based, dry-sanitizing device by dose

and time response. Inactivation of human pathogens was tested on non-porous (plastic) surfaces. 95.42-100%
inactivation was observed across all types of vegetative microorganisms and 27.36% inactivation of bacterial
endospores tested, with no residual ozone detectable after completion. These results strongly support the hy-
pothesis that Fathhome's commercial implementation of gas-based disinfection is suitable for rapid decontami-
nation of a wide variety of pathogens on PPE and other industrially relevant materials.

1. Introduction

The spread of SARS-CoV-2 took the world by surprise in late 2019,
revealing gaps in global pandemic preparedness and leaving tragedy in
its wake. Evading containment due to its high transmissibility and
airborne spread, SARS-CoV-2 infected 272 million people causing 5.3
million deaths (as of December 2021) [1-3].

Properly worn, Personal protective equipment (PPE) has been shown
to be one of the most effective tools in preventing the spread of COVID-19
[4]. Face masks, gloves, face shields, and surgical gowns are all recom-
mended to reduce rates of COVID-19 transmission in a medical setting. In
contrast, masks are recommended for the general public in situations
with a high risk of infection [3,5,6]. However, due to the high trans-
missibility and persistence of SARS-CoV-2 across the globe, the use and
consumption of PPE increased along with the waste inherent to its
disposal [7]. As demand for PPE surged globally after the onset of
COVID-19, manufacturing and supply systems were slow to fill the gap
[8]. A major contributing factor to both the shortage of PPE and their

Abbreviations: PPE, Personal protective equipment; OGB, Ozone-gas-based.

increased burden of waste is their designation for one-time use. Gowns,
for example, can spread infection if not changed after contact with
potentially contaminated surfaces, patients, or materials. Thus, dis-
infecting and reusing the PPEs not only solves the supply-demand
problem but can reduce the burden of waste generated from single-use
PPE, especially non-degradable plastics (face shields, goggles, etc.) [7].

Ozone-gas-based (OGB) devices developed by Fathhome Inc of Oak-
land, CA have previously demonstrated promising results in decontami-
nating over 99.99% of coronaviruses on both solid and porous surfaces in
a self-contained, ozone-generating device that uses no water or chemicals
[9,10]. Fathhome seeks to proliferate low-cost, rapid disinfection tech-
niques at a global scale through a simple OGB approach and a novel
containment and neutralization system for that ozone. These devices
offer the potential to thoroughly decontaminate PPE and other
high-touch equipment by eliminating infection vectors, thus extending
the usability of PPE items, alleviating shortages, and reducing costs in
healthcare, industrial, or personal settings. Disinfection times as low as
15 min resulted in nearly 100% inactivation of viral particles [11].
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Disinfection times for other currently available methods range from 55
min to overnight, which can be limiting at a large scale [12]. Other
decontamination approaches include ultraviolet radiation, chemical
disinfectants, vapor phase hydrogen peroxide, heat, and microwave ra-
diation. While these approaches reduce the viability of pathogens, they
also damage PPE materials reducing airflow, fit, filtration efficacy, and
imparting lingering, unpleasant odors, thereby undermining their bene-
fits [12,13]. Finally, water-based disinfection methods have posed
challenges to industries such as food processing, where there is a need to
remove pathogens without introducing moisture. There is an undeniable
need for fast, large-scale, and water-free disinfection techniques [14].
In addition, to use scenarios in the SARS-CoV-2 pandemic, hospital-
acquired infections have been an ongoing problem for decades [15,16]
and steadily grow more hazardous as multi-antibiotic-resistant patho-
gens become ubiquitous [17,18]. While previous research has shown
Fathhome dry sanitization devices to be effective against viruses, no
work has been done to assess its effectiveness against other common
pathogens such as bacteria, fungi, or their spores. In this study, we
evaluate the Fathhome prototype against a broad phylogenetic spectrum
of microorganisms relevant in industry and healthcare settings by
quantifying the number of viable microorganisms present on a surface
before and after exposure to ozone in the Fathhome device. With these
data, we can calculate the sanitization efficiency of the device and its
potential efficacy for use in large-scale decontamination efforts.

2. Materials and methods
2.1. Organisms

All organisms were stored at —80 °C and streaked to single colonies
on 10 cm agarose plates with suitable media (Table 1). Cultures were
grown overnight at appropriate temperatures (Table 1) and then stored at
4 °C until use (unless otherwise stated, see endospore assay). A single
colony from a culture no more than one week old was used to inoculate a
5 mL liquid culture in a Falcon Brand 14 mL polypropylene Round Bot-
tom Tube (Corning Science 352,059; Reynosa, Mexico) that was then
incubated overnight at 200 rpm and a temperature suitable for the spe-
cific organism (Table 1). The following day, optical density (OD) was
measured at 600 nm using a Beckman DU640 (Beckman Coulter Life
Sciences; Indianapolis, Indiana), and the culture was diluted to a specific
OD600 which is consistent with culture density between 1x10° and
1x10® depending on the organism (Table 1). This standardized pathogen
stock was used in all experiments to test the Fathhome device's efficacy.

Organisms were selected based on their relevance to medical and
industrial settings as well as their phylogenetic diversity. Common
healthcare-associated pathogens include Escherichia coli O157:H7,
Methicillin-Resistant Staphylococcus aureus, Multidrug-Resistant Pseudo-
monas aeruginosa, Clostridioides difficile, Drug-resistant Candida auris, and
Vancomycin-Resistant Enterococcus [1,9,18]. This study tested the ca-
pacity of the Fathhome device to effectively kill these species or
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phylogenetically similar surrogates (Fig. 1). C. difficile endospores were
represented by Bacillus subtilis, and C. auris was represented by Saccha-
romyces cerevisiae. Due to the high risk of transmissibility and increased
burden of containment, all organisms used in the study were less virulent
strains (for example, E. coli K12 MG1655 was used in place of E. coli
0157:H7).

2.2. The Fathhome device

Fathhome's ozone-based dry sanitizer is equipped with a computer-
controlled ozone generator and a catalytic manganese dioxide-copper
oxide (MnO2-Cu02) converter. The system maintains biocidal levels of
sanitizing ozone gas ranging from 10 ppm to 70 ppm depending on de-
vice settings, and a vacuum pump maintains internal pressures between
—30 kPa and —15 kPa, ensuring that no ozone escapes the device during
the sanitization cycle. In addition, the onboard computer constantly
monitors sanitizing-gas levels outside the device to ensure zero emissions
during and after a sanitization cycle.

Once the vacuum seal is generated, ozone is produced via the electric
cleavage of atmospheric oxygen (02) into elemental oxygen (027, which
combines with uncleaved elemental oxygen molecules to create Os. An
onboard ozone sensor and microcontroller maintain target ozone con-
centration levels. The sanitizing chamber's ozone-gas concentration level
was continuously monitored during operation using a NIST Calibrated
ozone sensor (FD-600-03 Ozone Analyzer 0-100 ppm range with 1 ppm
resolution; Forensics Detectors, Rolling Hills Estates, CA, USA) connected
directly to a 3/32” sensor port on the FATHHOME device's vacuum
chamber. At all times, the chamber contents were held under negative
pressure, with the only exit for all gasses in the system being pumped
through the MnO2-CuO2-03 catalytic converter to ensure environ-
mentally safe device exhaust within OSHA and FDA guidelines. In
addition, an external ozone sensor (Aeroqual Series 500 Portable Ozone
Monitor with EOZ Sensor Head rated for 0-10 ppm and 0.01 ppm reso-
lution) was located just outside the chamber and detected no ozone
above the background during all stages of device functioning and

——Saccharomyces cerevisiae BY4742
L cCandida auris

_ Pseudomonas aeruginosa 287
4‘E3almonel/a enterica
Escherichia coli str. K-12 substr. MG1655
Clostridioides difficile
Enterococcus durans BDGP3

Staphylococcus aureus 23237
Bacillus subtilis subsp. subtilis str. 168

Fig. 1. A microbial phylogeny containing medically relevant bacteria and fungi
and their genomically similar surrogates. Organisms tested in the Fathhome
device are denoted with an asterisk. A broad spectrum of organisms was tested,
including members of Gammaproteobacteria, Enterobacteriaceae and Pseudomo-
nadales; Firmicutes, Bacillaceae and Staphylococcaceae; and Basidiomycetes,
Saccharomycetales.

Table 1
Organisms and growth conditions.
Organism Strain Genotype GenBank Accession Source Growth 0D600
Number
Escherichia coli K12 F- lambda- ilvG- rfb- 50 rph-1. NC_000913.3 Blattner et al. (1997) [24] LB media 37 °C 0.1
MG1655
Pseudomonas aeruginosa ~ mPAO1 WT CP027867.1 Varadarajan et al. (2020) LB media 37 °C 0.1
[25]
Staphylococcus aureus ATCC 23235 WT CP094663 This study LB media 37 °C 0.05
CP094664
Bacillus subtilis 168 trpC2 AL009126 Zeigler et al. (2008) [26,27] LB media 37 °C 0.1
Saccharomyces BY4742 MATalpha his3A1 leu2A0 lys2A0 JRIRO0000000 Song et al. (2015) [28,29] YPD media 30 0.7
cerevisiae ura3A0 Brachmann et al. (1998) [30] °C
Enterococcus durans BDGP3 WT CP022930.1 Wan et al. (2017) [31] BHI media30°C 0.1

2 0D600 Dilutions to produce cultures between 1 x 10° and 1 x 107 Colony Forming Units (CFUs)/mL for plating.
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exhaustion. For the duration of this study, the Fathhome device was kept
inside of BSL-2 containment.

2.3. Experimental setup

To test the efficacy of Fathhome's dry sanitizing device to prevent the
persistence of human pathogens, 5 pl of stock pathogen culture was ali-
quoted in the bottom of a well in two 96-well, flat-bottomed plates
(Greiner Bio-One GmbH #655801; Frickenhausen, Germany) and
allowed to dry in a biosafety cabinet for approximately an hour or until
an opaque crust formed (Fig. S1A). These plates are referred to as “dry
droplet” plates. A set of serial dilutions was also prepared using the stock
pathogen culture. 80 pL of the diluted cell suspensions was plated on 15
cm agarose plates with appropriate media. These plates are referred to as
“pre-spread” plates. One dry droplet plate and a series of pre-spread
plates were placed in the Fathhome device and exposed to ozone for 5
or 15 min, while the remaining control plates were run through the
vacuum cycle in the Fathhome device with ozone production disabled.
All organisms were tested in quintuplicate in each of two independent
experiments for each organism.

After ozone or control exposure, dried cell droplets were resuspended
in 100 pL of an appropriate medium warmed to 37 °C in a water bath.
Samples were allowed to resuspend at room temperature for 5 min, after
which time they were thoroughly mixed using a multichannel pipette.
Serial dilutions were made by adding 10 pL of the cell suspension to 90 pL
of the warmed appropriate media and mixing with a pipette. Of the
diluted cell suspensions, 80 pL was plated on 15 cm agarose plates with
appropriate media for each organism. Samples were left overnight in an
incubator heated to the appropriate temperature for optimal growth
except for Saccharomyces cerevisiae which required an additional 24 h
incubation period to yield countable colonies.

2.4. Bacillus subtilis endospore assay

To assess the ability of the Fathhome device to inactivate highly
resistant B. subtilis endospores, 5 mL cultures were grown to nutrient
depletion (about seven days) and evaluated for the presence of endo-
spores via light microscopy (Fig. S1 B). The Schaeffer-Fulton method for
endospore staining was used to prepare slides for microscopy. Vegetative
cells were inactivated via Pasteurization in an 80 °C water bath for 10
min, leaving only viable endospores in the culture. As per the above
protocol, 5 pl of stock pathogen culture was aliquoted in the bottom of a
well in two 96-well, flat-bottomed plates, allowed to dry in a biosafety
cabinet, and exposed to ozone. Samples were resuspended for 5 min in
appropriate media as before, serially diluted, plated, and incubated
overnight.

2.5. Sequencing

The six species were isolated, five re-sequenced to confirm genome
integrity and similarity [18-25], and the sixth strain, S. aureus (ATCC
23235) described here, has no published genome, nor has it been sub-
mitted to a public sequence repository. However, the sequence is avail-
able from ATCC that compares closely with ours. The organisms were
streaked onto agar plates containing an appropriate growth medium
(Table 1). Purified colonies were amplified overnight in an appropriate
liquid medium at an appropriate growth temperature (Table 1). An
aliquot was used for 16 S PCR for bacterial species and ITS PCR for yeasts.
PCR Cleanup was performed with AMPure XP Beads and sequence
identification by ABI 3730XL Sanger sequencing. Genome assemblies
were constructed using Hierarchical Genome Assembly Process 2
(HGAP2) from SMRT Analysis version 2.0 using BLASR alignment. Celera
assembler was used for assembly, and Quiver for consensus polishing.
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3. Results

The Fathhome device is based on antimicrobial ozone technology and
has previously demonstrated an ability to inactivate greater than 99% of
E. coli on contaminated fabric [9,10]. To test the disinfection efficiency of
the Fathhome device on a broad spectrum, six phylogenetically diverse
and medically relevant organisms were selected and tested. The organ-
isms, five bacteria, including E. coli, B. subtilis, P. aeruginosa, S. aureus, E.
durans, and one fungal species, S. cerevisiae (Table 1), were chosen based
on their relevance to medical and industrial settings as well as their
phylogenetic diversity. For example, Escherichia coli is common on sur-
faces in hospitals and is frequently used in industry [17], while Pseudo-
monas aeruginosa is a common opportunistic pathogen that causes over
32,000 hospital-borne infections annually [1]. Accuracy in species
identification was confirmed by whole-genome sequencing. We specif-
ically describe the sequence of the Staphylococcus aureus strain (ATCC
23235) since the other species were previously sequenced and published
[18-25] and confirmed by us. The S. aureus genome was assembled using
the Flye assembler [26] and is composed of a circular chromosome of
length 2,762,338 bp and a plasmid of length 27,265 bp (>200-fold
coverage). The PGAP annotation [27] of both the chromosome and the
plasmid predicts 2762 protein-coding genes, 62 pseudogenes, six rRNA
operons, and 59 tRNAs. The plasmid likely confers beta-lactamase
resistance as it contains the three genes, Class A beta-lactamase (BlaZ),
beta-lactamase regulatory sensor-transducer (BlaR1l), and the
beta-lactamase repressor (Blal) of the beta-lactamase (bla) operon. Like
other S. aureus strains, the genome contains prophages, two nearly
complete (42,788 and 45,165bp) and one partial copy (12,366 bp). At
the nucleotide level, they have little sequence similarity.

We placed droplets containing approximately 1.00 E*%-1.00 E*08
bacteria or fungi on the bottom of plates, dried them for 30 min at 37 °C,
and exposed them to ozone for 5 or 15 min. Representative ozone
exposure profiles are shown in Fig. 2 and were calculated to be, on
average, 108.7 and 306.1 ppm *minutes of ozone for the 5- and 15-min
treatments, respectively. For each organism, we included pre-spread agar
plates resulting in 99.94-99.99% percent killing after 15-min ozone
exposure for vegetative cells (p < 0.05). For dry droplets treated for 5
min, S. cerevisiae yielded the highest inactivation at 92.23% killing (p =
0.001), and E. coli yielded the lowest inactivation at 50.55% killing (p =
0.004). For dry drops treated for 15 min, S. aureus produced the highest
inactivation at 100% killing (p = 0.00002), and S. cerevisiae yielded the
lowest inactivation at 95.42% killing (p = 0.001). Overall, the highest
inactivation for dried droplets on a solid surface was observed for
S. aureus with 100% killing at 15 min and the lowest for E. coli with
50.55% killing at 5 min.

To determine the efficacy of ozone-based disinfection of bacterial
endospores, we generated endospores by allowing cultures to reach
nutrient depletion, killing viable vegetative cells via Pasteurization, and
validating endospore percentage using staining and light microscopy
(Figure panel of representative staining). We then placed 1.00 E*°6-1.00
E*% endospores on the bottom of plates, dried them for 30 min at 37 °C,
and exposed them to ozone for 30 or 60 min. Representative ozone
exposure profiles are shown in Fig. 3 and were calculated to be 1043 and
2501 ppm*minutes for the 30- and 60-min treatments, respectively. We
included pre-spread plates, which yielded 90.07% killing (p = 0.005) for
bacterial endospores after 15 min. The highest inactivation of bacterial
endospores in dry droplets was observed at 60 min with 27.36% killing
(p = 0.007), and the lowest inactivation was observed at 30 min with
15.57% killing (p = 0.016).

In conclusion, we illustrated that decontamination provided by
Fathhome's ozone-based dry sanitizer is highly effective in inactivating a
wide array of microbes. We demonstrated that brief ozone exposure at
20 ppm for 15 min could eliminate 95.69-100% of vegetative Gram-
negative and Gram-positive bacteria and 95.42% of fungi on solid
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Fig. 2. The effect of 5- and 15-min ozone exposure on the viability of vegetative bacteria and fungi. (A). Plots depicting ozone concentration in ppm that bacterial and
fungal cells were exposed to for either 5 or 15 min. The ozone data were recorded via a NIST Calibrated ozone sensor (FD-600-O3 Ozone Analyzer). (B-E). 5 u 1
droplets were applied to the bottom of 96-well plates, dried, and exposed to ozone for 5 or 15 min. Bacterial or fungal cells were resuspended and grown on
appropriate solid media. Colonies were quantified in CFU/mL with respect to untreated controls. In conjunction with dried droplets, bacterial suspensions were spread
onto Petri dishes with a suitable growth medium ahead of treatment. Plates were placed uncovered in the Fathhome device and exposed to ozone for 15 min. Plates
were incubated, and colonies were quantified in CFU/mL with respect to untreated controls.

surfaces (Table S1). Beyond eliminating vegetative cells, we demon- chronic overuse and misuse of antibiotics in healthcare settings, the past
strated that brief ozone exposure at 20 ppm for 60 min could inactivate ten years have seen a dramatic rise in multi-drug resistant organisms [5].
27.36% of highly resistant B. subtilis endospores. Today, one in 31 hospital patients will acquire a nosocomial infection
during treatment [18]. As a result, hospital-acquired infections have

4. Discussion become commonplace and challenging to treat. To date, containment
remains a key strategy in reducing the spread of healthcare-associated

With the development of novel antimicrobial therapies slowing and infection, with protecting patients and healthcare personnel being the
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Fig. 3. The effect of 30- and 60-min ozone exposure on the viability of bacterial endospores. (A) Plots depicting ozone concentration in ppm that endospores were
exposed to for either 30 or 60 min. The ozone data were recorded via a NIST Calibrated ozone sensor (FD-600-O3 Ozone Analyzer). (B) Droplets (5 pl) were applied to
the bottom of 96-well plates, dried, and exposed to ozone for 30 or 60 min. Bacterial endospores were resuspended and grown on appropriate solid media. Colonies
were quantified in CFU/mL with respect to untreated controls. In conjunction with dried droplets, endospore suspensions were spread onto Petri dishes with an
appropriate growth medium ahead of treatment. Plates were placed uncovered in the Fathhome device and exposed to ozone for 15 min. Plates were incubated, and

colonies were quantified in CFU/mL with respect to untreated controls.

highest priority. Standard techniques include isolating infected patients
and exposed personnel along with sanitization of contaminated surfaces
and equipment, including PPE [15]. Current sterilization measures
include chemical disinfectants (such as bleach or ethanol as active in-
gredients), ultraviolet radiation, vapor phase hydrogen peroxide, heat,
and microwave radiation. Although these approaches efficiently reduce
the viability of drug-resistant bacteria and fungi, some also damage the
PPE in question, undermining the benefits of sterilization and reuse [16,
19]. Beyond potential damage to PPE, many existing sterilization
methods are time-consuming. For example, even Autoclaves commonly
require the user to wipe down instruments being sterilized with ethanol
before treatment. The Fathhome device offers 95.42-100% disinfection
in times as low as 15 min without compromising the integrity of PPE. In
doing so, the Fathhome device surpasses currently existing methods in
both speed, safety, and ease of use.

Ozone is a potent oxidizing agent previously demonstrated to inhibit
microbial growth [20]. In vegetative cells, it has been proposed that
ozone mediates killing through lipid and protein oxidation, causing
membrane disruption [4]. Beyond killing living bacteria, ozone has been
shown to inactivate bacterial endospores— a known nuisance in the
healthcare industry due to their durability and resistance to several
common disinfection strategies, including heat, chemicals, irradiation,
and desiccation [21,22]. Current strategies include daily disinfection of
surfaces with sporicidal agents and treatment with UV light [23]. In
addition to daily disinfection, all PPE used by medical staff must be
discarded upon exiting a patient's isolation ward, thereby placing strain
on both healthcare staff and the environment [23]. There exist several
endospore-forming organisms of concern, including Bacillus anthracis, the
causative agent of anthrax; Clostridium botulinum, the causative agent of
botulism; and Clostridioides difficile, a healthcare-associated pathogen, all
of which are highly antibiotic-resistant and cause disease in humans.
C. difficile specifically poses a significant burden, causing an estimated
223,900 cases in hospitalized patients and 12,800 deaths in the United
States in 2017 alone, with cases rising since [21]. Using Bacillus subtilis as
a proxy for C. difficile endospores due to lower risk to researchers and
genomic similarity, the Fathhome device demonstrated 27.36% killing in
as little as 60 min.

While disinfection with the Fathhome device yielded a high bacteri-
cidal activity, this study was limited to the sanitization of non-porous
surfaces only. Masks, respirators, gowns, and other types of PPE are
often multi-layered and composed of various porous materials. As such,
PPE may therefore reflect different sterilization requirements not
addressed by the scope of this study. Although ozone's ability to deeply
penetrate porous items, including PPE, has been previously documented,
additional research is warranted to describe the rate and degree of
disinfection provided by the Fathhome device. While 27.36% killing of
bacterial endospores was achieved by the Fathhome device in 60 min,

further characterization of sporicidal activity is warranted. Increased
duration of exposure and higher concentration of ozone may yield higher
percent killing. Additional study is required to establish the relationship
between ozone exposure and appropriate percent killing.
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