
Estimating Pangenomes with Roary

Farrah Sitto1 and Fabia U. Battistuzzi*,1,2

1Department of Biological Sciences, Oakland University, Rochester, MI
2Center for Data Science and Big Data Analytics, Oakland University, Rochester, MI

*Corresponding author: E-mail: battistu@oakland.edu.

Associate editor: Barry G. Hall

Abstract

A description of the genetic makeup of a species based on a single genome is often insufficient because it ignores the
variability in gene repertoire among multiple strains. The estimation of the pangenome of a species is a solution to this
issue as it provides an overview of genes that are shared by all strains and genes that are present in only some of the
genomes. These different sets of genes can then be analyzed functionally to explore correlations with unique phenotypes
and adaptations. This protocol presents the usage of Roary, a Linux-native pangenome application. Roary is a straight-
forward software that provides 1) an overview about core and accessory genes for those interested in general trends and,
also, 2) detailed information on gene presence/absence in each genome for in-depth analyses. Results are provided both
in text and graphic format.

Key words: Roary, pangenome, core genes, accessory genes.

Protocol
The concept of a pangenome, the collection of all genes
shared by multiple strains of a species, was first introduced
by Tettelin et al. (2005) and has been selectively applied to
investigate genomic variability at the species level in a few
tens of species (both prokaryotes and eukaryotes) (Vernikos
et al. 2015; McInerney et al. 2017). Since then, the applicability
of the pangenome concept has grown alongside the expo-
nential increase in sequenced genomes for subspecies lineages
(e.g., strains, isolates, subspecies). The power of knowing the
pangenome of a species resides in (i) guiding sequencing
efforts to identify new unexplored genetic diversity within a
species (represented by an open pangenome), (ii) providing
information on shared and unique traits of strains within a
species (exemplified by core and accessory genes), and, more
recently, (iii) using it to identify species boundaries (repre-
sented by a high frequency of core genes).

These large-scale applications of a pangenome necessitate
a fast and accurate software that can analyze and produce
results for tens or hundreds of lineages in a reasonable
amount of computational time. One such software is Roary
(Page et al. 2015), a Linux-native software that takes as inputs
GFF3 (General Feature Formats version 3) files (easily obtain-
able from NCBI) and outputs a series of files with statistics on
genes shared by all or most (core and soft core genes) lineages
or only by some genomes (accessory, further subdivided into
shell and cloud genes). This software is complemented by
python scripts and other software that produce a graphical
view of the results.

Although other software are available for pangenome
reconstructions, such as PGAP, PanX, get_homologues, and
Pantools (Zhao et al. 2012; Contreras-Moreira and Vinuesa
2013; Sheikhizadeh et al. 2016; Ding et al. 2018), we found
Roary to be the simplest and most flexible to use and,

therefore, a good starting point for the novice to pangenome
analyses. The potentially most challenging aspect of using
Roary is its command-line interface, which doubles as
strength because it makes it easy to be integrated into com-
putational pipelines or large-scale analyses. To acquire some
basic knowledge of command-line interface in Linux there are
many online resources, such as https://ryanstutorials.net/
linuxtutorial/commandline.php; last accessed December 9,
2019 or https://maker.pro/linux/tutorial/basic-linux-com-
mands-for-beginners; last accessed December 9, 2019, that
will help users better understand the step-by-step process
to install and use Roary described below.

Step 1: Installation of Roary
Roary is a Linux-native software that can be installed on Linux,
MacOSX, and Windows machines in a variety of ways. In this
section, we will provide a series of commands that will allow
you to install Roary in a Linux environment (see Step 5 for
installation in different operating system) (we show com-
mands to be typed with a different font). The easiest way
to run Roary is to install it in a Linux environment using the
package manager “conda,” which is part of the Anaconda
distribution. This will work also in a MacOSX environment
and the Linux Subsystem in Windows with very minor mod-
ifications (see Step 5).

The first step is to download Anaconda (https://www.an-
aconda.com/distribution/; last accessed December 9, 2019)
for the appropriate operating system and select the most
recent version of Python that is supported and updated reg-
ularly (currently it is Python 3.7) (e.g., for Linux: Anaconda3-
2019.03-Linux-x86_64.sh). Open a terminal window and type
bash�/Downloads/Anaconda3-2019.03-Linux-
x86_64.sh (if the file was downloaded in a different direc-
tory change �/Downloads to the correct location). Press

P
ro

to
co

l

� The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any me-
dium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. 37(3):933–939 doi:10.1093/molbev/msz284 Advance Access publication December 17, 2019 933

https://ryanstutorials.net/linuxtutorial/commandline.php
https://ryanstutorials.net/linuxtutorial/commandline.php
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/


Enter to start the installation and space bar to visualize the
license agreement. You will be prompted to accept the de-
fault location for installation by pressing Enter (or change the
installation location), and the installation will start (it can take
a minute or so to start seeing progress on the screen). Finally,
answer “yes” to initialize Anaconda3 by running conda init
and, at the end, you will see “Thank you for installing
Anaconda!” Enter the command source �/.bashrc
for the installation to take effect. These instructions can
also be found at https://docs.anaconda.com/anaconda/in-
stall/linux/; last accessed December 9, 2019. To test the in-
stallation, type in the Linux terminal conda –V and it will
return the version of conda you just installed. Once conda has
been installed correctly, the next step is to create an environ-
ment in which Roary will run. This can be achieved with the
following command at the command prompt (shown in
Linux as $): conda create –name Roaryenv (note
that you can use any name for the environment instead of
Roaryenv). In order to work within this environment, you will
need to activate it (this step will need to be repeated every
time you open a new terminal window): source acti-
vate Roaryenv.

Next, install Roary in your newly created environment with
the following 5 “conda config” commands:

conda config –-add channels r

conda config -–add channels

defaults

conda config –-add channels conda-

forge

conda config –-add channels

bioconda

conda install roary

To check whether installation is successful typeroary-h to
visualize the list of parameters Roary uses (fig. 1). The location
in which Roary is now installed does not have to also be the
one that will include your input and output files. We suggest
creating a separate directory in which to upload the input files
and where the output files will be saved.

Step 2: Input Files
The format of the input files for Roary is GFF3 (General
Feature Format version 3). This format includes a series of
information in a specific order and needs to be followed
strictly for Roary to accept the input file (see https://github.
com/The-Sequence-Ontology/Specifications/blob/master/gff3.
md; last accessed December 9, 2019 for a description of the
format). There are two primary ways to obtain GFF3 files: from
the NCBI website or from the software Prokka by converting
.fna files into GFF3 (see Step 5). An easy way to obtain the input
files without additional software installation is to download
genome *.gbff files from NCBI and then run the bp_gen-
bank2gff3.pl script. This is a Perl script that is installed
along with Roary and that can be found in the Roary
conda environment in the directory “bin.” It is also avail-
able through BioPerl (https://bioperl.org/INSTALL.html;
last accessed December 9, 2019) and can be easily run
in the terminal window. Note that for this script to
work, Perl needs to be installed in the system you are
using (https://www.activestate.com/products/active-
perl/downloads/; last accessed December 9, 2019). For
example, let us say that you are interested in estimating
the pangenome of three strains of Bifidobacterium ani-
malis A6, KLDS2.0603, and RH. From the Genome function
in NCBI (https://www.ncbi.nlm.nih.gov/genome; last
accessed December 9, 2019) you can browse by organism
and search for B. animalis. The individual assemblies can

FIG. 1. Roary help file. The list of options available to complete an analysis with Roary is shown with the command: roary –h.

Sitto and Battistuzzi . doi:10.1093/molbev/msz284 MBE

934

https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/linux/
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://bioperl.org/INSTALL.html
https://www.activestate.com/products/activeperl/downloads/
https://www.activestate.com/products/activeperl/downloads/
https://www.ncbi.nlm.nih.gov/genome


be visualized by selecting “Prokaryotes.” After having
identified the strains of interest, select the GenBank FTP
site on the right-hand side and download the *.gbff.gz file
for each of them (fig. 2).

Next, move all the downloaded gbff files into a single di-
rectory (if you have used a Windows machine to download
the files, upload them into the Linux machine) and, from
terminal, issue the command perl bp_gen-
bank2gff3.pl *.gbff.gz.

If you are using the perl script within the Roary environ-
ment, you will need to specify the path to the script (e.g.,
perl /home/Roaryenv/bin/bp_genbank2gff3.
pl). To identify the path of this perl script, use the command
which bp_genbank2gff3.pl. If your current working
directory is not the same as the one where the gbff files are,
either navigate into that directory and use the above com-
mand or add the path of the directory before the “*” (e.g.,
perl /home/Roaryenv/bin/bp_genbank2gff3.
pl /home/Roary/Inputs/*.gbff.gz). This com-
mand will create as many output files as the input files all
with an extension *.gff. These will be the input files for Roary.

Step 3: Parameters and Commands
Roary can be run very easily with a single short command:
roary *.gff (remember to activate the Roary environ-
ment [source activate Roaryenv] every time you
use terminal window for the first time).

This command will run Roary with default parameters (see
below) from within a directory that contains all the gff3-
converted files obtained from Step 2. All output files gener-
ated will be located in this same directory, which could make
downstream analyses more difficult. To specify an output
directory, add the option -f to the command: roary –f
output_dir *.gff (where output_dir is user-defined).

Options in Roary fall broadly into three categories: file ac-
cess, analysis settings, and visualization. The “file access” set-
tings are the least likely to need modification. They include
those that allow users to manipulate the location of inputs/
outputs and the location (path) of where the software that
Roary depends on is located. Roary requires mcl, blastp,
mcxdeblast, and makeblastdb that are installed along with
Roary within the environment in conda. However, users
can use a different location of these software, if preferred.
Additionally, users can provide directory names for outputs
(option -f).

The “analysis settings” parameters allow users to refine the
sensitivity of the analysis itself to identify core and accessory
genes. These are most likely the parameters that users will
want to modify to explore the robustness of the results to
variations. For computational speed, the -p option will allow
users to select the number of threads to use during the com-
putation. Many new computers are multicore with multi-
threads for each core, so selecting >1 (e.g., roary –f
output_dir –p 10 *.gff) for this parameter is likely
to speed up the analysis. For the pangenome calculation,
the two most important parameters are the threshold (in
percentage) of isolates required to define a core gene (-cd:
default is 99%) and the minimum percentage identity for
sequence comparisons performed by BlastP (-i: default is
95%). Decreasing the threshold of isolates will increase the
number of core genes identified, and increasing the min-
imum identity will partition the genes in more and
smaller clusters.

Finally, to visualize results, Roary has a series of options.
The standard option, which requires no additions to the pre-
vious command, will produce a series of text outputs (see
Step 4). If the user desires an additional graphical output, the
option -r can be added to produce plots using R (this option

FIG. 2. How to obtain input files in GFF3 format from NCBI. Links to proceed to download are circled in red.

Estimating Pangenomes with Roary . doi:10.1093/molbev/msz284 MBE

935



will need R and ggplot2 to be installed). Note that the graphs
can also be obtained after the results have already been pro-
duced because Roary will output R formatted files in addition
to text files. Finally, one of the most useful parameters for
visualization is the possibility of creating alignments from core
genes (options -e and -n). Such files are potentially important
for downstream analyses including phylogenetic tree recon-
struction and SNP identification. Additional visualization
tools are provided as separate scripts and packages (e.g., roar-
y_plots.py) that can be found on the main Roary website
(https://sanger-pathogens.github.io/Roary/; last accessed
December 9, 2019).

Step 4: Interpretation of Output Files
A simple run of Roary will produce 17 output files, of which
the summary_statistics.txt and the gene_presence_absen-
ce.csv are the most important. The summary_statistics text
file reports the number of genes in each of four categories
(core, soft, shell, and cloud) and also the total number of
genes in the pangenome. These values effectively describe
the nature of the pangenome of the species analyzed. The
gene_presence_absence file provides additional information
including the individual gene IDs of sequences that belong to
each of the categories in the summary statistic (although this
is not clearly stated, it can be easily inferred by calculating the
ratio of the number of genes present in each cluster and the
total number of genomes analyzed).

Other output files (starting with “number_of_”) provide
information specific to each category (i.e., core or accessory).
It should be noted that for these outputs (e.g.,
number_of_conserved_genes.Rtab) the results for ten ran-
dom iterations of the input files are shown. This is important
because pangenome calculations will vary depending on the
order in which genomes are added and results obtained from
multiple orders will allow to establish minimum and maxi-
mum boundaries around the core and accessory gene esti-
mates. These files are provided in R format to facilitate
downstream analyses. One example of such an analysis is to
obtain curves for the number of core and accessory genes to
determine whether the pangenome is closed or open
(Tettelin et al. 2005). This can be easily done using the Rtab
outputs from Roary and the create_pan_genome_plots.R
script (available in the Roary conda environment).
Unfortunately, there is no statistical analysis carried out au-
tomatically on the curves but it can be done separately, for
example, by fitting an exponential curve and calculating its
distance to the empirical curve through a least square
method or using Heap’s law (Tettelin et al. 2008).

To view results graphically, there are two outputs (ending
in _graph.dot) that allow the user to glean over information
regarding the relative position of genes that belong to either
accessory or core categories. These files can be visualized using
the open-source software Gephi (www.gephi.org; last
accessed December 9, 2019) and can be useful, for example,
to investigate patterns in gene clusters such as operons.

An interesting additional feature of Roary is the possibility
of comparing different pangenomes to identify genes that are

uniquely present in one set of strains and not others. This
kind of analysis can be done calling the query_pan_ge-
nome –a difference -–input_set_one 1.gff,
2.gff –-input_set_two 3.gff, 4.gff –g
clustered_proteins (where the *.gff files are the
names of the genomes of interest in two subsets). Finally,
the same query_pan_genome function can be used to
output genes that are unique, shared by all, or shared by some
of the strains (e.g., query_pan_genome –a union –g
clustered_proteins *.gff).

A good description of all the output files created by Roary
is available in the supplementary material of the Roary pub-
lication (Page et al. 2015) and, in a less detailed way, on the
github page (https://sanger-pathogens.github.io/Roary/; last
accessed December 9, 2019).

Step 5: Installation on MacOSX or Windows and Use
of Prokka
Installation on MacOSX
Download Anaconda3 (https://www.anaconda.com/distri-
bution/; last accessed December 9, 2019) for MacOSX
and select the most recent version of Python that is sup-
ported and updated regularly (currently it is Python 3.7)
(e.g., for Anaconda3-2019.03-MacOSX-x86_64.sh). Follow
the instructions at https://docs.anaconda.com/anaconda/in-
stall/mac-os/; last accessed December 9, 2019, which are
very similar to those for the Linux operating system.
Once conda is installed, follow the instructions given for
Linux (see Step 2) to create a Roary environment and
install Roary.

Installation on Windows
Because Roary is a native Linux software, it cannot run directly
in Windows. There are two ways of running Roary on a
Windows machine: First, Windows 10 users (version 1709
and later) can install the Linux Subsystem on Windows; sec-
ond, it can run within a virtual machine. For the first scenario,
launch Control Panel > Programs and Features > Turn
Windows Features on or off and check “Windows
Subsystem for Linux.” Then, open Microsoft store, search
for “Linux,” and select the Linux distribution desired (e.g., in
this tutorial we use Ubuntu). Install and launch the new dis-
tribution and follow the prompts to complete the installation
process in the command line window (https://docs.microsoft.
com/en-us/windows/wsl/install-win10; last accessed
December 9, 2019 and https://docs.microsoft.com/en-us/win-
dows/wsl/initialize-distro; last accessed December 9, 2019). To
be able to use Roary within your new Linux distribution, fol-
low the instructions described above for the Linux installa-
tion. For the second scenario, download the VirtualBox
installer from VirtualBox (https://www.virtualbox.org/wiki/
Downloads; last accessed December 9, 2019). Double click
the executable and proceed with the installation. Download
also the virtual machine (VM) created by the authors of Roary
from ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/
pathogens-vm.latest.ova. After starting the virtual box, go to

Sitto and Battistuzzi . doi:10.1093/molbev/msz284 MBE

936

https://sanger-pathogens.github.io/Roary/
http://www.gephi.org
https://sanger-pathogens.github.io/Roary/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/initialize-distro
https://docs.microsoft.com/en-us/windows/wsl/initialize-distro
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-vm.latest.ova
http://ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-vm.latest.ova


File! “Import appliance” and select the VM (*.ova file) you
downloaded. To start the VM, click on the green arrow icon
and a new window will open showing the VM desktop. On
the left-hand side, click on the terminal window icon (fig. 3)
and type sudo apt-get install virtualbox-
guest-utils (the password is manager).

To be able to use Roary within the VM, you will follow the
Linux installation instructions. However, this requires that files
are shared between the host (Windows) and the VM. To
achieve this, a shared directory has to be created and used
to exchange files. Within the Windows machine, go to the
Anaconda website and download the Linux version as shown
in Step 1. Save this file in a directory you will share with the
VM. Then, switch to the VM, select Devices ! “Shared
folders” ! “Shared folder settings” and click on the “Add
folder” icon on the right-hand side. Provide the path of the
location of the Anaconda installer, assign a name to the VM
(e.g., RoaryVM), a path where it will be mounted (e.g., /mnt/
share/) and check “auto mount” and “make permanent” to
ensure that the folder will be recognized upon restart of the
VM. Then, in the VM terminal, type sudo mkdir/mnt/
share/(the password is again manager) and then sudo
mount -t vboxsf RoaryVM/mnt/share/. If the
shared folder is not visible, repeat the mounting command.

The contents of the shared directory are now visible from
the VM (ls/mnt/share/) and can be used to proceed
with a normal Roary installation for Linux. Input and output
files for Roary can be exchanged through the shared folder if
the path is provided at the command line (e.g., roary –f /
mnt/share/RoaryVM/output/mnt/share/Roary
VM/input/*.gff).

Prokka to Create Input Files
An alternative way to converting gbff files into input files for
Roary is to use Prokka. This is particularly useful when gbff
files are not already available, as it may be the case for se-
quencing projects that are in progress. First, using terminal in
Linux (or in MacOSX or Windows) typecondainstall–
c conda-forge –c bioconda prokka. To check
whether Prokka was installed correctly, type prokka –
h and the menu options of Prokka will be listed.

Next, download *.genomic.fna.gz files from NCBI for the
strains of interest, extract them, and upload these uncom-
pressed files into the Linux/MacOSX/Windows machine. In
the terminal window type: prokka –kingdom
Bacteria –outdir prokka_GCA_XXXXX –genus
YYYYY –locustag GCA_XXXXX GCA_XXXXX_ASMZ

FIG. 3. Virtual machine environment to run Roary on Windows. Circled in red are the icons to start the virtual machine and the terminal window.

Estimating Pangenomes with Roary . doi:10.1093/molbev/msz284 MBE

937



ZZZZ_genomic.fna where XXXXX is the genome and
ZZZZZ is the assembly number of one of the strains and
YYYYY is the genus of the same strain (e.g., for one of the
three B. animalis strains mentioned in Step 1: prokka –
kingdom Bacteria –outdir prokka_GCA_
000816205 –genus Bifidobacterium –locus-
tag GCA_000816205 GCA_000816205.1_ASM81
620v1_genomic.fna). Repeat for all the strains (each
strain will take a few minutes to process). Each run will pro-
duce multiple output files, one of which is the GFF3 format
required by Roary.

Applications of a Pangenome
The concept of a pangenome has become useful in many
different fields, from classification to genome evolution. The
original and most typical application of the results of a pan-
genome analysis is to identify the cumulative curve of genetic
variability that can be attributed to a species as more and
more individual genomes are sequenced. In a sense, this way
of analyzing prokaryotes (or viruses) mirrors basic population
genetic studies in eukaryotes where the sequencing of mul-
tiple individuals is necessary to understand the range of poly-
morphisms within a species (Muzzi and Donati 2011; Nguyen
et al. 2015). Indeed, pangenome approaches are starting to be
used in read mapping software to account for polymor-
phisms that would otherwise be lost or lead to errors in
read alignments (Nguyen et al. 2015; Eggertsson et al. 2017).
In the case of the pangenome, gene counts are used as proxy
of genetic variability with genes unique and new to each
strain adding to the overall genetic makeup of a species.
The expectation is that, as the number of strains analyzed
grows, the number of new genes will approach 0 and the total
size of the pangenome will stabilize (reaching a plateau in an
initially exponential curve) leading to the definition of a
closed pangenome (Tettelin et al. 2005, 2008). If the plateau-
ing is not observed, the pangenome is defined open and it is
expected that more genomes will need to be sequenced to be
able to estimate the total genetic complement of the species.
Tettelin et al. (2008) have proposed to compare the new
genes’ accumulation curve with Heaps’ law to determine sta-
tistically whether a pangenome is open or closed. However,
even with this statistical framework, it is not possible to eval-
uate the functional weight, if any, of each new gene and,
therefore, their biological importance or evolutionary driving
force remains unknown. In other words, it is possible that new
genes identified in a strain will not be maintained within that
genome over long evolutionary time frames (because of se-
lective or neutral forces; McInerney et al. [2017] but see also
Rodriguez-Valera and Ussery [2012]) and, therefore, they may
not effectively contribute to the long-term genetic makeup of
the species. Additionally, considering the very small number
of sequenced genomes available compared with predicted
species numbers (Locey and Lennon 2016), it is possible
that a newly sequenced strain will reopen a currently closed
pangenome.

A more recent application of pangenomes is to better
define the concept of species in prokaryotes (Moldovan

and Gelfand 2018). Defining prokaryotic species bound-
aries is a long-standing issue that, for now, has been
approached using DNA similarity thresholds (e.g., average
nucleotide identity measures; Jain et al. 2018). However, a
pangenome approach has the advantage of adding an
evolutionary perspective by considering not only identity
(-i parameter in Roary) but also orthology/paralogy and
gene flow (Bobay and Ochman 2017; Moldovan and
Gelfand 2018).

Finally, pangenome results can be used to investigate the
correlation between the spread of some genes and the traits
they encode. A corollary software, Scoary (Brynildsrud et al.
2016), is available to work with Roary’s outputs to identify
those genes (core or accessory) that are associated with spe-
cific traits. Such analysis could explain current trait distribu-
tions and the evolutionary history of those traits (Abreo and
Altier 2019).

Alternative Resources
The number of software that can estimate a pangenome is
growing. Originally, Roary was compared with a few other
software, like PGAP, and was shown to be computationally
more efficient (speed and memory usage) while producing
comparable results (Page et al. 2015). Other tools that have
been developed since Roary was released include PGAP-X,
PanTools, and panX (Sheikhizadeh et al. 2016; Ding et al.
2018; Zhao et al. 2018). PGAP-X is unique in its visualization
features that allow to observe the alignment of multiple
genomes at once. PanTools, instead, fills a unique niche be-
cause it is built to analyze eukaryotic genomes (with genes
that have introns and exons) that Roary cannot analyze.
Finally, panX differs from Roary because it is able to analyze
genomes with higher genomic diversity between them
whereas Roary is recommended for highly similar (within
species) genomes.

Acknowledgments
We thank Cody Clark and Victoria Hall for installation and
testing of Roary. This work was supported by the National
Institute of General Medical Sciences at the National Institute
of Health (R15GM121981 to F.U.B.) and the National
Aeronautics and Space Administration (NNX16AJ30G to
F.U.B.).

References
Abreo E, Altier N. 2019. Pangenome of Serratia marcescens strains from

nosocomial and environmental origins reveals different populations
and the links between them. Sci Rep. 9(1):46.

Bobay L-M, Ochman H. 2017. Biological species are universal across life’s
domains. Genome Biol Evol. 9(3):491–501.

Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. 2016. Rapid scoring of
genes in microbial pan-genome-wide association studies with
Scoary. Genome Biol. 17(1):238.

Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile
software package for scalable and robust microbial pangenome anal-
ysis. Appl Environ Microbiol. 79(24):7696–7701.

Ding W, Baumdicker F, Neher RA. 2018. panX: pan-genome analysis and
exploration. Nucleic Acids Res. 46(1):e5.

Sitto and Battistuzzi . doi:10.1093/molbev/msz284 MBE

938



Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B,
Masson G, Zink F, Hjorleifsson KE, Aslaug J, Adalbjorg J, et al. 2017.
Graphtyper enables population-scale genotyping using pangenome
graphs. Nat Genet. 49(11):1654–1660.

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018.
High throughput ANI analysis of 90K prokaryotic genomes reveals
clear species boundaries. Nat Commun. 9(1):5114.

Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity.
Proc Natl Acad Sci U S A. 113(21):5970–5975.

McInerney JO, McNally A, O’Connell MJ. 2017. Why prokaryote have
pangenomes. Nat Microbiol. 2(4):17040.

Moldovan MA, Gelfand MS. 2018. Pangenomic definition of prokaryotic
species and the phylogenetic structure of Prochlorococcus spp. Front
Microbiol. 9:428.

Muzzi A, Donati C. 2011. Population genetics and evolution of the pan-
genome of Streptococcus pneumoniae. Int J Med Microbiol.
301(8):619–622.

Nguyen N, Hickey G, Zerbino DR, Raney B, Earl D, Armstrong J, Kent WJ,
Haussler D, Paten B. 2015. Building a pan-genome reference for a
population. J Comput Biol. 22(5):387–401.

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG,
Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-

scale prokaryote pan genome analysis. Bioinformatics
31(22):3691–3693.

Rodriguez-Valera F, Ussery DW. 2012. Is the pan-genome also a pan-
selectome? F1000Res. 1:16.

Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. 2016.
PanTools: representation, storage and exploration of pan-genomic
data. Bioinformatics 32(17):i487–i493.

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL,
Angiuoli SV, Crabtree J, Jones AL, Durkin AS, et al. 2005. Genome
analysis of multiple pathogenic isolates of Streptococcus agalactiae:
implications for the microbial “pan-genome.” Proc Natl Acad Sci U S
A. 102(39):13950–13955.

Tettelin H, Riley D, Cattuto C, Medini D. 2008. Comparative geno-
mics: the bacterial pan-genome. Curr Opin Microbiol.
11(5):472–477.

Vernikos G, Medini D, Riley DR, Tettelin H. 2015. Ten years of pan-
genome analyses. Curr Opin Microbiol. 23:148–154.

Zhao Y, Sun C, Zhao D, Zhang Y, You Y, Jia X, Yang J, Wang L, Wang J, Fu
H, et al. 2018. PGAP-X: extension on pan-genome analysis pipeline.
BMC Genomics 19(1 Suppl):36.

Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pan-genomes
analysis pipeline. Bioinformatics 28(3):416–418.

Estimating Pangenomes with Roary . doi:10.1093/molbev/msz284 MBE

939


