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Abstract

Background: Tetracycline (Tet)-regulated expression system has become a widely applied tool to control gene
activity. This study aimed to improve the Tet-on system with superior regulatory characteristics.

Results: By comprehensively comparing factors of transactivators, Tet-responsive elements (TREs), orientations of

induced expression cassette, and promoters controlling the transactivator, we developed an optimal Tet-on system
with enhanced inducible efficiency and lower leakiness. With the system, we successfully performed effective
inducible and reversible expression of microRNA, and presented a more precise and easily reproducible fine-tuning
for confirming the target of a miRNA. Finally, the system was applied in CRISPR/Cas9-mediated knockout of nuclear

functional genetic studies.

factor of activated T cells-5 (NFAT5), a protective transcription factor in cellular osmoregulation.
Conclusions: This study established an improved Tet-on system for powerful and stringent gene regulation in
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Background

Tet-responsive expression system is a promising tool for
gene functional analysis and gene therapy. The system can
be divided into Tet-off and Tet-on types, based on whether
gene expression is allowed in the absence or presence of
Tet, respectively. The Tet-off system includes two different
units: one is TREs consisting of multiple Tet operators
(TetOs) of E. coli Tnl0 upstream of a minimal RNA poly-
merase II promoter; the other is a Tet-regulated transacti-
vator (tTA), a fusion protein of Tet repressor (TetR) and a
transcriptional transactivator VP16 of herpes simplex virus
[1]. The Tet-off system is usually used in induced gene ex-
pression lasting for a long period such as animal-based in
vivo experiments. However, sustained presence of Tet or its
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derivative doxycycline (Dox) is required to maintain the
un-induced state, which might cause side effect on the
physiology of mammals. In the Tet-on system, tTA is re-
placed by a mutant reverse tTA (rtTA), which is capable of
binding to TREs and activating gene expression only in the
presence of Dox [2].

The original version of rtTA has several limitations, such
as the requirement of high concentrations of Dox for full
activation, and the existence of high background activity or
leakiness. Urlinger and colleagues developed new rtTAs by
random mutagenesis and codon optimization [3-5]. They
successfully identified novel types of rtTA, rtTA2°-M2, and
rtTA2°-S2, with higher sensitivity to the inducer and lower
basal activity in the absence of Dox. Moreover, by using a
viral evolution system, Das and his colleages obtained some
valuable mutated forms of rtTA, which displayed enhanced
expression activity and Dox-sensitivity, as well as reduced
background [6-8]. Apart from improving the feature of
transactivator, efforts were also put into optimizing the cis
elements to which transactivators bind. By fine-tuning the
TATA box flanking sequence in the minimal promoter,
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several promoters with less leakiness and higher inducibility
were acquired [9, 10].

Currently, there are two commonly used Tet-on indu-
cible vectors, pLVX-TetOne-Puro (Clontech, Mountain
View, CA, USA) [11, 12] and pTRIPZ (Thermo Fisher
Scientific, Huntsville, AL, USA) [13, 14], which all be-
long to the so-called third generation of Tet systems.
pLVX-TetOne-Puro uses TetON3G as a transactivator
and TRE3Gs as the TREs, while pTRIPZ uses rtTA3 and
TetO6 correspondingly. Compared with the original
rtTA, both TetON3G and rtTA3 contain valuable amino
acid mutations, for example, E19G, A56P, F86Y, and
A209T. Mutation of E19G and A56P not only confers
reverse tTA feature, but also allows minute background
activity [4]. The combination of A209T and F86Y, and
even F86Y individually, significantly increases the tran-
scriptional activity of rtTA [8].

To further improve the Tet-on inducible system, we
systematically compared different transactivators, TREs,
orientations of expression cassettes and multiple pro-
moters controlling the transactivator. By combining a
series of advantageous factors, a tighter and more effi-
cient Tet-on system was developed. With the optimized
Tet-on system, we achieved excellent inducible and re-
versible expression of microRNAs (miRNAs). We further
demonstrated a more precise, easily reproducible and
cost-effective fine-tuning confirming the target gene of a
miRNA. Last, the system was used with the CRISPR/
Cas9 technique for the genetic perturbation of NFATS, a
transcription factor involved in cellular adaptation to
hypertonic stress.

Methods

Plasmid construction

The plasmid pLVX-Puro (Clontech) was used as a backbone
vector and sequentially subjected to Tth1111 digestion, blunt-
ing, Clal restriction, and recovery of the vector backbone.
An artificially synthesized MCS-Ppgi-TetON3G-P2A-Puro
fragment was PCR-amplified with Pfu DNA Polymerase
(Promega, Madison, WI, USA) and excised with Clal,
followed by ligation to the above recovered pLVX-Puro, gen-
erating pLVX-Tet2A-Puro. Then, the coding sequence of
firefly luciferase (Luc) PCR-amplified from plasmid pmir-
GLO (Promega) was excised with Notl and Mlul and li-
gated to the equally restricted pLVX-Tet2A-Puro to
become pLVX-Luc-Tet2A-Puro. Next, artificially synthe-
sized fragments of TRE3Gs, TRE3Gp, and TetO6 were ex-
cised with Xbal and Notl, and ligated to the equally
cleaved pLVX-Luc-Tet2A-Puro, yielding the plasmids pl,
p2, and p3. To replace TetON3G, the fragment of reverse
tetracycline-transactivator 3 (rtTA3) PCR-amplified from
plasmid pTRIPZ was digested with BstBI and Smal, and li-
gated to equally restricted p1, p2, and p3, producing plas-
mids p4, p5, and p6. To develop plasmids with an induced
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expression cassette in the same orientation, TRE3Gs-Luc,
TRE3Gp-Luc, and TetO6-Luc fragments were excised
from pl, p2, and p3 with BsmBI, respectively, and li-
gated to MIul/Xbal-restricted pl or p4, creating plas-
mids p7, p8, p9, pl0, pll, and pl2. Promoters Pcypvs
Periw Psvao, and Pyp. were PCR-amplified from plas-
mids pIRESneo-FLAG-HA-Ago2 (Addgene, Cam-
bridge, MA, USA), pCDH-CMV-MCS-EF1-copGFP
(SBIL, Mountain View, CA, USA), pmirGLO, and pTRIPZ,
respectively, and ligated to p2 between Xbal and BstBI to
replace Ppgk, generating plasmids p13, p14, p15, and p16.

To inducibly express microRNA, the primary sequence
of three miRNAs (hsa-miR-210, hsa-miR-21, and
hsa-miR-26a) and the coding sequence of enhanced green
fluorescent protein (EGFP) were sequentially inserted into
p2 via Miul/Clal and Notl/Miul, respectively. A plasmid
with an EGFP fragment but lacking any primary miRNA se-
quence was used as a negative control (NC). To construct a
vector inducibly expressing Cas9, a Cas9-FLAG-P2A-Puro
fragment PCR-amplified from LentiCRISPR v2 (Addgene)
was excised with No#l and Mlul, and ligated to equally re-
stricted p2; meanwhile, the EGFP coding sequence was ap-
plied to take the place of the puro fragment of p2 between
BamHI and Spel, together generating a plasmid pL-Cas9.
The artificially synthesized DNA sequence and primers
used in this study are presented in Additional file 3.

Cell culture

The HEK293A, HEK293T, HeLa, A549 and mIMCD3
cells were purchased from American Type Culture Col-
lection (ATCC, Manassas, VA, USA). Cells were cultured
in DMEM with 10% EBS in a humidified incubator with
5% CO, at 37°C. Primary human pulmonary arterial
smooth muscle cells (W(PASMCs) were purchased from
Lonza (Walkersville, MD) and cultured in SmGM-2
smooth muscle growth media consisting with smooth
muscle basal medium, 5% FBS, 0.5ng/mL human re-
combinant epidermal growth factor, 2 ng/mL human re-
combinant fibroblast growth factor, 5 pg/mL insulin, and
50 pg/mL gentamicin.

Lentiviral packaging, transduction, and inducibility

The lentivirus particles were prepared in HEK293T cells
by transfection of the following three plasmids at a ratio
of 2:1:5 - (i) psPAX2 (Addgene), (i) pCMV-VSV-G
(Addgene), and (i) a lentivirus vector. Briefly, 2 x 10°
HEK293T cells were seeded in 10-cm culture dishes.
After 12h of incubation, cells were transfected with
packaging plasmids (7.5 pg of a mixture of psPAX2 and
pCMV-VSV-G) and lentivirus vector (12.5 pug) using PEI
reagents. The culture supernatants were harvested 48 h
after transfection and used for cell infection in the pres-
ence of 5ug/mL polybrene. At 48h after infection, the
infected HEK293A cells were selected in 2 ug/mL
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puromycin for 5-7 d. The puromycin-resistant cells were
expanded and cultured in the presence of different con-
centrations of Dox for inducible analysis.

Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted with RNAiso Plus (TaKaRa,
Dalian, China). For miRNA evaluation, the mature miR-
NAs were detected using the S-Poly(T) plus method [15,
16]. For the mRNA assay, the SYBR Green method was
used with oligo (dT) plus random primers to initiate
c¢DNA synthesis [17]. The miRNA and mRNA expres-
sion levels were normalized to SNORD44 and [-actin,
respectively, and calculated using the 24" method.
Primers used in reverse transcription and qPCR are
listed in Additional file 3.

Luciferase activity assay

For transient transfection, cells were seeded in 48-well
plates. After reaching 80% confluence, cells were trans-
fected with 400 ng of luciferase inducible plasmid and
40ng of phRL-TK using polyethylenimine (PEI) re-
agents. Six hours after transfection, cells were changed
to fresh medium in the presence of different concentra-
tions of Dox and incubated for 48 h. Cells were har-
vested for luciferase activity assay and measured with a
Lumat LB9508 luminometer (Berthold, Bad Waildbad,
Germany). Firefly activity was normalized to Renilla lu-
ciferase activity. Fold induction was defined as the ratio
between the induced expression level with Dox and the
background expression level without Dox.

To perform luciferase activity assay by lentivirus inte-
gration, hPASMC and A549 cells were infected with p2,
p13, pl4, pl5 and pl6 lentivirus, respectively, and then
selected with puromycin. The stable cell lines were in-
duced with 1 pg/mL Dox for 48 h. Then, equal numbers
of stable cells were assayed for luciferase activity. Firefly
luciferase values were normalized to the copy number of
luciferase integrated into the genome of each stably cell
line, which was determined by quantitative PCR.

Western blotting

Cells were lysed with cold RIPA buffer (50 mmol/L
Tris-HCI, pH 7.5, 150 mmol/L NaCl, 1% NP-40, 0.25%
sodium deoxycholate, and 1 mmol/L. EDTA) supple-
mented with protease inhibitor cocktail (Roche, Mann-
heim, Germany) and quantified with the bicinchoninic
acid protein assay kit (Thermo Fisher Scientific). Equal
amounts of protein (~30pg) were subjected to
SDS-PAGE and transferred to PVDF membranes. After
blocking with 5% skimmed milk in TBST (20 mmol/L
Tris-HCl, pH7.6, 150 mmol/L NaCl, and 0.1% Tween
20), membranes were incubated with primary antibodies
overnight at 4 °C and then with HRP-conjugated second-
ary antibodies. The protein bands were visualized with
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the chemiluminescent detection module (Pierce Biotech-
nology, Rockford, IL, USA) and images were taken with
the Tanon-5200 imaging system (Tanon, Shanghai,
China). The following primary antibodies were used:
PDCD4 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA, SC-13054, 1:1,000), NEAT5 (Santa Cruz Biotech-
nology, SC-13035, 1:200), FLAG (GenScript, Piscataway,
NJ, USA, A00013, 1:1,000), B-actin (Proteintech, Wuhan,
Hubei, China, 66009-1-Ig, 1:10,000;), and [-tubulin
(Proteintech, 10094-1-AP, 1:5,000).

Stable Cas9 cell line

FLAG-Cas9 Lentivirus was produced as described above.
After lentiviral infection for 24 h, cells were changed to
fresh medium with 1 pg/mL Dox for 48 h. Subsequently,
the infected HEK293A cells were selected in 2 pg/mL
puromycin for 5-7 d. Next, single HEK293A cells were
picked up and cultured in 96-well plates. After ~7 d, the
cell colonies were subcultured sequentially in 24- and
6-well plates with 1 pg/mL puromycin for another 10d.
Subsequently, a fraction of selected cells were subjected
to western blotting analysis, and the rest were frozen for
future use.

sgRNA in vitro production, gene targeting, and
phenotypic analysis

Four sgRNAs targeting the human NFAT5 gene were
designed using Broad Institute CRISPRko software [18]
(Additional file 3). The sgRNA targeting red fluorescence
protein (RFP) was used as a NC. sgRNAs were in vitro gen-
erated according to the instructions of the EnGen sgRNA
Synthesis Kit (NEB, Beverly, MA, USA). Briefly, to add the
T7 promoter to the sgRNA coding sequences, Lenti-
CRISPR v2 (Addgene) as a template was PCR-amplified
using CRISPR-specific forward primers and a universal re-
verse primer. The PCR products were used as templates
for in vitro transcription with the TranscriptAid T7 High
Yield Transcription Kit (Thermo Fisher Scientific). The
resultant sgRNAs were subjected to alkaline phosphatase
treatment, phenol-chloroform extraction, dissolved in
RNase-free water and stored at — 80 °C until use.

The Cas9 stable cell line was treated with Dox (1 pg/mL)
for 2d before and during transfection. For transfection,
cells were seeded in 6-well plates and transfected with each
of the four sgRNAs or a mixture of them at a final concen-
tration of 50 nmol/L using METAFECTENE SI" reagent
(Biontex Laboratories GmbH, Munich, Germany). At 24 h
after transfection, cells were transferred to fresh medium
with 1 pg/mL Dox and 1 pg/mL puromycin for 2 d. Next,
cell colonies were picked up and subcultured sequentially
in 96-, 24-, and 6-well plates with 1 pg/mL puromycin.
Subsequently, a fraction of selected cells were subjected to
phenotypic analysis, and the rest were frozen for future
use.
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For phenotypic analysis, sgRNA-transfected cell lines
were cultured in isotonic (300 mOsm/kg) or hypertonic
(550 mOsm/kg) media for 8 and 24 h. Cells cultured for 8
h were harvested for NFATS5 protein analysis by western
blotting and TauT/SMIT expression assay by qRT-PCR.
Cells cultured for 24 h were subjected to a cell viability
assay using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega) [19, 20].

T7 endonuclease | assay

Genomic DNA was isolated from cells transfected with
sgRNA targeting RFP (NC) and NFATS. Target regions
were PCR-amplified from genomic DNA with specific
primers (Additional file 3). Then, 250 ng of purified PCR
product were denatured at 95°C for 10min and
re-annealed at — 2 °C per second temperature ramp to 85°
C, followed by a—1°C per second ramp to 25°C. The
mismatched DNA were then digested with 2 units of T7
endonuclease I (T7E1) (GeneCopoeia, Guangzhou, China)
for 1h at 37°C and separated by 2% agarose gel electro-
phoresis. Digestion efficiency was calculated by measuring
band intensities with Image] (NIH version 1.6).

Statistical analysis

Each experiment was repeated at least three times. Data
are presented as mean * standard deviation (SD). Statis-
tical analysis of the data was performed using a
two-tailed Students ¢-test with GraphPad Prism 5
(GraphPad, San Diego, CA, USA). A P-value of <0.05
was considered statistically significant.

Results

Optimal combination of TREs and transactivator

To improve the Tet-on inducible system, we evaluated
the effects of two transactivators (rtTA3 and TetON3G),
three TREs (TRE3Gs, TRE3Gp and TetO6), and two ori-
entations of the inducible expression cassette, using a
total of 12 inducible plasmids pl-pl2 (Fig. 1la-c,
Additional file 3). Luc was used as a reporter gene to as-
sess the background activity and inducible efficiency. As
Fig. 1d indicates, TetON3G had higher transcriptional
activity than rtTA3 (for example, pl-p3 vs. p4-p6).
Among the three TREs, both TRE3Gp and TetO6 sur-
passed TRE3Gs (for example, p2 and p3 vs. pl). With
regard to orientation, the induced expression cassette in
the opposite orientation (p1-p6) displayed higher Luc ac-
tivity than those in the same orientation (p7-pl2).
TRE3Gp was dominant in this regard in the opposite
orientation, while TetO6 displayed superiority in the
same one. Meanwhile, the TRE3Gs expression cassette
in the same orientation showed a remarkable back-
ground activity, indicating that these TREs, particularly
TRE3Gs, have an orientation-dependent effect.
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We further used fold induction (the ratio between the
induced expression and the uninduced background ac-
tivity) to evaluate these constructs. The plasmid p2, with
a combination of TetON3G and TRE3Gp in an opposite
orientation, had a maximal fold induction of ~ 550 (Fig.
le), being the optimal inducible system among them.
We hence applied p2 in the subsequent experiments.

Comparison of promoters controlling transactivator
expression

The promoter controlling transactivator expression is
also an important factor affecting the inducible effi-
ciency. Five promoters, Ppgix, Pcvvi PeFiw Psvao, and
Pype driving the TetON3G expression were quantified
and compared in Luc induction in HEK293A cells by
plasmid transfection (p2, p13-p16; Fig. 2a). These pro-
moters displayed different activities based on the lucifer-
ase assay (Fig. 2b). Among them, Pcyyy is the strongest,
while Ppci is the weakest, and the other three are mod-
erate. However, Pcyy displayed strong leaky activity in
the absence of Dox. Ppgk is the best promoter for the
transactivator TetON3G in terms of fold induction (Fig.
2¢). To test whether such a superiority of Ppgk is
cell-specific, we also evaluated these promoters in other
cell lines including two human cancer cell lines, HeLa
cell and A549 cell, and a mouse cell line, mIMCD3. The
results showed that Ppgk is consistently the best pro-
moter among the tested in terms of fold induction, while
Pcmy is the leakiest in all cell lines tested (Fig. 2d-i).

To assess the influence of transient transfection of
plasmid DNA on luciferase activity, meanwhile en-
large its application range of our Tet-on system, we
also compared promoters in controlling the transacti-
vators by lentiviral integration. The primary human
pulmonary arterial smooth muscle cells (hPASMCs),
as well as A549 cells were sequentially infected by p2,
pl3, p14, pl5 and pl6 lentivirus, respectively, selected
by puromycin, and induced with Dox. The results
showed that luciferase values obtained through lenti-
viral integration was similar to those via transient
transfection, and that Ppgy was still superior to other
four promoters tested in both hPASMC and A549
cells (Fig. 2j-m).

To evaluate the inducible sensitivity to Dox, we
tested pl and p2 in Luc expression under different
Dox levels. As shown in Fig. 2n, a notable luciferase
reading was observed when the concentration of Dox
was as low as 10ng/mL, and the reading gradually el-
evated with increasing amount of Dox. Overall, the
plasmid p2 surpassed pl under each Dox concentra-
tion in terms of both absolute induction and fold in-
duction (Fig. 2n and o). Moreover, p2 had a broader
dynamic range of induced expression than pl, sug-
gesting that p2 is more sensitive to Dox than pl.
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Fig. 1 Comparison of the induced efficacies of twelve Tet-on plasmids. a Comparison of two transactivators. Both TetON3G and rtTA3 were fusions of
TetR and several VP16-derived minimal ADs. TetR is composed of a DNA binding domain (BD) and a core domain following a dimerization surface.
The F67S, R171K (red arrow), and S12G (blue arrow) mutations of amino acids are indicated. b Comparison of three TREs: TRE3Gs, TRE3Gp, and TetOé.
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efficiency of 12 Tet-on plasmids (p1-p12). HEK293A cells were transfected with each of the 12 plasmids with firefly luciferase as a reporter gene. Cells
were grown in the absence or presence of 1 ug/mL Dox. After 48 h, cells were harvested for a luciferase activity assay. Firefly luciferase activity was
normalized to Renilla luciferase activity. e The fold induction of the 12 plasmids. Fold induction was defined as the ratio between the induced
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Precisely regulating expression of miRNA and its target

miRNA can post-transcriptionally regulate gene expres-
sion [21, 22]. To test the Tet-on system in inducible
miRNA expression, the primary sequences of three miR-
NAs, hsa-miR-210, hsa-miR-21, and hsa-miR-26a, were
inserted downstream of the TREs (Fig. 3a). Mature miR-
NAs were detected after Dox induction. In the absence
of Dox, miRNAs were expressed at levels resembling
that of the NC, which had no primary miRNA sequence
inserted. However, in the presence of Dox, these three
miRNAs were expressed at 7.4-, 27.0- and 45.5-fold
higher levels than in the case without Dox induction,

respectively (Fig. 3b). To precisely regulate miRNA ex-
pression, we induced miR-210-3p and miR-21-5p under
different Dox concentrations. The levels of both miR-
NAs were gradually enhanced with increasing Dox, dem-
onstrating a dose-dependent effect of the system in
miRNA expression (Fig. 3¢). Interestingly, a Dox concen-
tration over 1,000 ng/mL had a minute inhibitory impact
on miRNA expression since the miRNA level slightly de-
creased at 2,000—4,000 ng/mL. The concomitant expres-
sion of the EGFP upstream of primary miRNAs was
visualized under a fluorescence microscope, which also
manifested a Dox dose-dependent effect (Additional file 1).
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between plasmids p1 and p2

Fig. 2 Comparison of promoters controlling transactivator expression. a Schematic representation of five plasmids with different promoters,
namely, Peci, Pcmvs Periar Psvao and Pupe, for controlling the expression of the transactivator. B~I: The inducible efficiency of five plasmids (p2,
p13-p16). HEK293A (b), Hela (d), A549 (f) and mIMCD3 (h) cells were transfected with each of the five plasmids with firefly luciferase as a reporter
gene, respectively. Cells were grown in the absence or presence of Dox. Then, cells were harvested for luciferase activity assay. Firefly luciferase
activity was normalized to Renilla luciferase activity. The fold induction of luciferase activity of these plasmids in HEK293A (c), Hela (e), A549 (g)
and mIMCD3 (i) cells were calculated as the ratio between the induced expression level with Dox and the background expression level without
Dox. j-m The inducible efficiency of the five plasmids assessed by lentiviral infection. Cells of hPASMC (j) and A549 (I) were infected with
corresponding lentivirus. The stable cell lines were induced with Dox. Then, equal numbers of stable cells were assayed for luciferase activity.
Firefly luciferase values were normalized to the copy number of luciferase integrated into the genome of each stably cell line, which was
determined by quantitative PCR. The fold induction of luciferase activity in hPASMC (k) and A549 (m) were also calculated. n The Dox sensitivity
of the inducible system. HEK293A cells transfected with plasmids p1 and p2 were grown under different concentrations of Dox (0, 10, 50, 100,
500, 1,000, 2,000, and 4,000 ng/mL), and subjected to a luciferase activity assay 48 h after transfection. o The fold induction of luciferase activity

In a time-dependent study, the level of miR-210-3p
and miR-21-5p gradually increased within 2 days (Fig.
3d). However, after Dox withdrawal, the miRNA levels
gradually decreased and resembled those before induc-
tion during the following 4 days, suggesting that the
Tet-on system has a stringent time-dependent and re-
versible effect on miRNA inducibility.

Programmed cell death protein 4 (PDCD4) is a direct
target of miR-21-5p [23]. It was interesting to test
whether PDCD4 displayed quantitative regulation by
miR-21-5p with the Tet-on system. Western blot analysis
showed that the level of PDCD4 protein gradually de-
creased as the Dox level increased and reached 80%
downregulation at 500 ng/mL of Dox (Fig. 3e and f).
These results indicated that the optimized Tet-on system
allowed a precise and convenient regulation of the ex-
pression of miRNA and its target.

Tet-on control of CRISPR/Cas9 genome editing
CRISPR/Cas9 is a powerful approach for genome editing.
However, upon continuous expression of Cas9, there is
potentially a high risk of off-target effects [24—26]. In this
study, we used the optimized Tet-on vector to construct
an inducible Cas9 system, pL-Cas9. We first attempted to
develop a Cas9 stably expressing cell line (Fig. 4a). It is of
high efficiency screening the positive Cas9 cell lines
through the puromycin resistance gene co-expressing with
Cas9. We successfully obtained six Cas9 stable cell lines
from seven clones picked. These six cell lines displayed
similar expression of Cas9 (data not shown). We ran-
domly chose one of them to perform a gradual induction
with Dox. Western blot analysis showed a weak band of
Cas9 protein at 50 ng/mL Dox, and its level was gradually
enhanced with the addition of Dox, reaching significant
expression among 500—4,000 ng/mL Dox (Fig. 4b).

Next, we chose NFATS, a protective transcription fac-
tor under osmotic stress, as a target in the following
knockout study. Using an online tool, Broad Institute
CRISPRko, four sgRNAs were designed and synthesized in
vitro. Among them, sgRNA-1 targets exon 10, sgRNA-2

targets exon 12, and both sgRNA-3 and sgRNA-4 target
exon 13 of the NFATS gene (Fig. 5a, Additional file 3).

We then transfected the Cas9 stable cells with individ-
ual sgRNA or a mixture of them. To obtain an overall
estimate of the mutation efficiency, a T7 endonuclease I
(T7E1) assay was performed. The percentage of cleavage
was between 6~17% (Additional file 2). Then, we evalu-
ated the NFATS5 protein level in the pooled cell samples.
Western blot analysis showed that, despite being visible
in each samples tested, the NFATS protein exhibited a
more significant reduction in the cells transfected with
the mixture of sgRNAs (~35% decrease) than in those
transfected with a single sgRNA (most with a ~10% de-
crease) (Fig. 5b and c).

We hence used the cells transfected with the mixed
sgRNAs as the starting material to pick up and screen the
NFAT5-knockout clones. From 14 screened clones, we
successfully obtained an NFATS-defective cell line, #11.
As Fig. 5d showed, in the NC transfected with an sgRNA
targeting the RFP, modest and upregulated expression of
NFATS was observed under isotonic (300 mOsm/kg) and
hypertonic (550 mOsm/kg) conditions, respectively, which
was consistent with that hypertonicity induces NFATS ex-
pression [27]. However, NFAT5 protein was completely
lost in #11 cell line (Fig. 5d) under both osmotic condi-
tions, suggesting that the NFATS expression cassette in
#11 cell line was damaged. We performed PCR and then
DNA sequencing analysis of the NFAT5 coding sequence
of the cell line. It showed that a ~ 310-nucleotide (nt) frag-
ment between the sgRNA-3 and sgRNA-4 recognition
sites in exon 13 had been inverted in its original locus,
suggesting an occurrence of double cleavage guided by
sgRNA-3 and sgRNA-4. It possibly explained one of the
reasons why the NFATS protein exhibited a more signifi-
cant reduction in the cells transfected with the mixture of
sgRNAs than in those transfected with a single sgRNA in
Fig. 5¢c. Such an inversion of exon fragment leads to a pre-
mature translation termination of the NFATS protein,
which might be unstable and susceptible to degradation
(Fig. 5e, Additional file 3).
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Taurine transporter (TauT) and sodium myo-inositol
transporter (SMIT) are two important downstream targets
of NFATS [28]. We tested their mRNA levels under isotonic
and hypertonic conditions by qRT-PCR. As shown in Fig.
5f and g, TauT and SMIT in the NC group were increased
2.9- and 1.9-fold under hypertonic conditions compared
with their levels under isotonic ones. However, neither

TauT nor SMIT in #11 could be activated under hypertonic
condition, confirming that the NFATS gene was disrupted
in the chromosome. Given that NFATS5 has a protective
function under osmotic stress, we were interested in
whether the deficiency of NFATS5 gene would influence the
ability of cells to resist hypertonicity. The MTS cell viability
assay revealed that knocking out NFATS5 led to a 9%
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decrease of cell viability compared with that in the NC
group under hypertonic condition, confirming the import-
ance of NFATS in osmoregulation (Fig. 5h).

Discussion

Tetracycline inducible system (Tet-on and Tet-off) has
been extensively applied in biological study in vitro and
in vivo due to it having a number of advantages, includ-
ing inducibility, a broad dynamic range, and reversibility.
This study aimed to improve the Tet-on system with su-
perior regulatory characteristics. By systematically com-
paring the two transactivators TetON3G and rtTA3; the
three TREs TRE3Gp, TRE3Gs, and TetO6; both orienta-
tions of induced expression cassette; and the five pro-
moters of Ppgi, Pomve PeF1wr Psvao, and Py, controlling
transactivator expression, we successfully identified that
the design of the lentiviral p2 construct is the best
Tet-on system tested.

Between the two rtTAs studied, TetON3G displayed
higher transcriptional capacity than rtTA3 did. Both
TetON3G and rtTA3 were fusions of TetR and
VP16-derived minimal activation domain (AD). In con-
trast to two minimal ADs contained in rtTA3, three ADs
were harbored in TetON3G, which possibly enabled the
higher transactivation ability [29] (Fig. la). Apart from
the difference of AD numbers, there were three amino
acids inconsistent between TetON3G and rtTA3 at the
positions 12, 67, and 171. They were S, S, and K in
TetON3G, but G, F, and R in rtTA3, respectively. As re-
ported previously, S12G increased the sensitivity to Dox

[4], while F67S and R171K conferred both enhanced
transcriptional activity and Dox sensitivity [7]. It would
be interesting to test whether better results can be ac-
quired when S12G mutation is also introduced in
TetON3G.

The TREs are of great importance for the inducibility.
TRE3Gs and TetO6 are frequently used TREs. Moreover,
TRE3Gp, a modified type of TRE3G originating from
the plasmid pLVX-TRE3G-ZsGreenl (Clontech) with a
truncated CMV minimal promoter, also has great poten-
tial [30]. In contrast to containing six TetO1s in TetO6,
both TRE3Gs and TRE3Gp possess seven TetOs, pos-
sibly allowing higher affinity to rtTA. The differences
among these three TREs were also located in the
5'-UTR sequence of the CMV minimal promoter (Fig.
1b, Additional file 3). To reduce the background expres-
sion, a 5'-UTR fragment of Turnip Yellow Mosaic virus
was fused downstream of the initiator sequence of CMV
minimal promoter in both TRE3Gs and TRE3Gp, which
might prevent recognition by other transcription factors
in mammalian cells [9]. With a shorter 5-UTR se-
quence, TRE3Gp possesses increased sensitivity to Dox
and fold induction when compared with TRE3Gs. We
thus selected the TRE3Gp-containing system, namely, p2
plasmid, in the subsequent application study. As the
basal expression level of TRE3Gp was a little higher than
TRE3Gs, pl might be better when leakiness or toxicity
of the gene is the major concern.

The promoter controlling the transactivator produc-
tion is another critical factor influencing the efficacy of
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f, g TauT and SMIT mRNA levels in NC and #11 cell lines under isotonic or hypertonic conditions for 8 h were measured by gRT-PCR with 3-actin
as an internal control. Bar charts show the relative expression level by normalization to the level of the NC group under isotonicity. Data are
presented as mean + SD (n = 3). ***P < 0.001. h Impact of NFAT5 disruption on cellular viability under hypertonicity. The NC and #11 cell lines
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Tet-on system. As previously reported, Pcyry, Pepi and  conserved within mammalian tissues [31, 32], which was
Psvao displayed strong efficiency in controlling gene ex-  confirmed in this study that Ppgi is consistently domin-
pression, while Ppgk revealed a relatively weak level [31].  ant in multiple human and mouse cell lines. CMV pro-
However, the fold induction of Ppgx was the optimal moter was an exception in that it showed variability
among them. Promoter activities are believed to be from one cell type to another. Such variation might be
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due to different levels of promoter silencing by DNA
methylation in different cell types [33—35].

We positioned the induced expression cassette in two
orientations. The results showed that the TRE3Gs expres-
sion cassettes in the same orientation displayed higher
leaky activity, indicating an orientation-dependent effect
of TRE3Gs. Positioning the expression cassettes in the
same orientation probably led to transcriptional
read-through by the lentiviral 5° LTR promoter [36]. In
this case, the induced gene could be activated without
Dox induction when the transactivator sequence posi-
tioned in the same orientation was constitutively tran-
scribed and read through. However, since no significant
leaky background activities were found with TRE3Gp and
TetO6, such a read-through effect seemed to be
TRE3Gs-dependent.

miRNA can post-transcriptionally regulate gene expres-
sion via binding to the 3'-UTR sequence of its target
mRNA. As demonstrated in this paper, a gradual increase
of Dox induced gradual elevation of the miR-21-5p level,
which then caused a gradual reduction of PDCD4 protein,
with the lowest at 500 ng/mL of Dox. PDCD4 level slightly
increased at 1,000 and 2,000 ng/mL of Dox, seemingly
concordant with the slight inhibition of miR-21-5p expres-
sion at high levels of Dox (Fig. 3e and f). This constitutes
more solid evidence that PDCD4 is a direct target of
miR-21-5p. In the conventional miRNA studies, synthetic
miRNA mimic were used to transfect into the target cells.
The concentration of miRNA mimic in cells, however,
might be inconsistent between batches due to the vari-
ation of transfection efficiency. The optimized Tet-on sys-
tem can easily accomplish a precise, gradient expression
of miRNA, which is also in low cost by adding different
amount of Dox. Overall, the optimized Tet-on system pro-
vides a more cost-effective and precise fine-tuning to con-
firm the target gene of a miRNA.

CRISPR/Cas9 is a rapid and efficient approach for gen-
etic perturbation [37, 38]. In this study, we developed a
simplified strategy facilitating the Cas9 application. By
infection with an all-in-one lentivirus harboring rtTA
and Cas9 expression cassettes, a cell line stably express-
ing inducible Cas9 soon became available. The usage of
a short 2A peptide greatly reduces the size of the lenti-
viral vector and improves the viral titer. With the stable
cell line, we can conveniently perform CRISPR/Cas9 ex-
periments merely by introducing the in vitro-transcribed
sgRNA, which is small (~ 100 nt) and easily transfected
into cells. This system offers great convenience in
sgRNAs library screening. By contrast, the protocol from
Clontech is relatively laborious and liable to disturb cell
viability, which recommends the sequential transduction
of three different lentiviruses encoding TetON3G, Cas9,
and sgRNA (https://www.takarabio.com; Cat. No. 632633,
published on December 15, 2016).
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Conclusions

This work explored a series of combinations of Tet-on
components and identified an optimal configuration for
effective and stringent gene regulation for genetic inves-
tigations in cellular and animal sciences.

Additional files

Additional file 1: Figure S1. Concomitant expression of EGFP under
different dox levels. EGFP and the downstream primary miRNA sequence
were positioned under the control of the TREs. miRNA and EGFP were
induced under different concentrations of Dox (0, 10, 50, 100, 500, 1,000,
2,000, and 4,000 ng/mL) for 48 h. The expression of the EGFP was
examined under a fluorescence microscope. (PDF 101 kb)

Additional file 2: Figure S2. Targeted mutations revealed by T7E1
assay. The PCR products from genomic DNA of cells transfected with
sgRNA targeting RFP (NC) and NFAT5 were treated (+) or untreated (-)
with T7E1 after melting and annealing. Arrows indicate the cleaved
fragments by T7E1. The mutation efficiency is shown at the bottom.
(PDF 89 kb)

Additional file 3: Supplementary data. Primers, probe, DNA sequences,
and sgRNA information. (PDF 178 kb)
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