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Psychophysiological interaction (PPI) is a regression based method to study task

modulated brain connectivity. Despite its popularity in functional MRI (fMRI) studies, its

reliability and reproducibility have not been evaluated. We investigated reproducibility

and reliability of PPI effects during a simple visual task, and examined the effect of

deconvolution on the PPI results. A large open-access dataset was analyzed (n = 138),

where a visual task was scanned twice with repetition times (TRs) of 645 and 1,400ms,

respectively. We first replicated our previous results by using the left and right middle

occipital gyrus as seeds. Then regions of interest (ROI)-wise analysis was performed

among 20 visual-related thalamic and cortical regions, and negative PPI effects were

found between many ROIs with the posterior fusiform gyrus as a hub region. Both the

seed-based and ROI-wise results were similar between the two runs and between the

two PPI methods with and without deconvolution. The non-deconvolution method and

the short TR run in general had larger effect sizes and greater extents. However, the

deconvolution method performed worse in the 645ms TR run than the 1,400ms TR run

in the voxel-wise analysis. Given the general similar results between the twomethods and

the uncertainty of deconvolution, we suggest that deconvolution may be not necessary

for PPI analysis on block-designed data. Lastly, intraclass correlations (ICC) between the

two runs were much lower for the PPI effects than the activation main effects, which raise

cautions on performing inter-subject correlations and group comparisons on PPI effects.

Keywords: reproducibility, reliability, test–retest, psychophysiological interaction, deconvolution

INTRODUCTION

Psychophysiological interaction (PPI) is a widely usedmethod to study task related brain functional
connectivity changes (Friston et al., 1997). It employed simple regression-based method to model
taskmodulated connectivity effects, thus enabling whole brain exploratory analysis. Therefore, even
though there are more sophisticated methods available, e.g., dynamic causal modeling (Friston
et al., 2003), PPI is still a valuable method for functionalMRI (fMRI) data, given that our knowledge
on large-scale task related connectivity is still quite limited. Several modifications of the PPImethod
have been made after it was proposed, including adding a deconvolution step to deal with the
asynchrony between task design and fMRI hemodynamic response (Gitelman et al., 2003) and
introducing a generalized framework to model more than two experimental conditions (McLaren
et al., 2012).
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A PPI effect is defined as an interaction between the time
series of a brain region (physiological variable) and a (or more)
task design variable (psychological variable). Noises of both the
physiological and psychological variables go into the interaction
term, so that the interaction effect is much noisier than the
main effects of task free connectivity (physiological main effect)
and task activation (psychological main effect). This makes PPI
analysis having lower statistical power than simple connectivity
and conventional activation analysis. Since PPI analysis has been
increasingly used to study group differences and inter-subjects
variability, it is important to evaluate the reproducibility and
reliability of the PPI methods (Vul et al., 2009; Dubois and
Adolphs, 2016). Voxel-based meta-analysis has been used to
examine consistency of PPI results across studies (Di et al.,
2017a). However, because the tasks used in different studies
varied greatly, the motivation of a meta-analysis on PPI was
rather to identify different connectivity that were modulated by
different tasks, than to simply identify consistent connectivity
cross studies with different tasks (Di et al., 2017a). Nevertheless,
the reliability of PPI effect has not been directly examined.

One critical step for the PPI method is to properly deal
with the asynchrony between task design and observed blood-
oxygen-level dependent (BOLD) signals. An earlier solution is to
convolve the psychological variable with hemodynamic response
function (HRF). Then the PPI term x1PPI could be expressed as:

x1PPI = xPhysio · (zPsych ∗ hrf ) (1)

where xPhysio represents the physiological variable, zPsych
represents the psychological design variable, and ∗ represents
convolution operator. However, this calculation is not
appropriate if the interaction happened faster than the slow
hemodynamic response. Therefore, a deconvolution procedure
is required (Gitelman et al., 2003) to find a variable zPhysio that:

xPhysio = zPhysioi ∗ hrf (2)

If this could be achieved, then the interaction could be calculated
at the neuronal level and then convolve with HRF:

x2PPI = (zPsych · zPhysio) ∗ hrf (3)

We can also put Equation (2) to Equation (1), so that:

x1PPI = (zPsych ∗ hrf ) · (zPhysio ∗ hrf ) (4)

Mathematically, x1PPI and x2PPI are not equivalent. Therefore,
deconvolution seems necessary. However, effective
deconvolution depends on assumptions such as, known
HRF and noise characteristics in the BOLD signals (Roebroeck
et al., 2011; O’Reilly et al., 2012). Unfortunately, there are
substantial amount of variability in HRF both across brain
regions and across subjects (Handwerker et al., 2004). On the
other hand, if a task design is slower than the hemodynamic
response, e.g., a blocked design, the PPI terms calculated from the
above mentioned two methods could be very similar. We have
demonstrated that the PPI results of a block-designed visual task

are spatially corresponding very well between the deconvolution
and non-deconvolution PPI methods (Di et al., 2017b). Whether
to perform deconvolution then needs to compromise between
the deviation between the PPI terms calculated in different
ways and the uncertainty of deconvolution (Di et al., 2017b).
Therefore, it might be better to not perform deconvolution for
a block-designed task, which is actually recommended by FSL
(FMRIB Software Library; Jenkinson et al., 2012; O’Reilly et al.,
2012). For event-related designed task, however, deconvolution
may be still necessary, because the PPI terms calculated from
the deconvolution and non-deconvolution methods may be
dramatically different.

We recently demonstrated negative PPI effects (reduced
connectivity) between the middle occipital gyrus to the fusiform
gyrus and supplementary motor areas in a simple block-
designed checkerboard task compared with a fixation baseline
(Di et al., 2017b). Here, we further analyzed a larger sample
of checkerboard data (n = 138) of two separate runs with two
repetition times (TR: 645 and 1,400ms; Nooner et al., 2012). The
aims of the current study are to first evaluate reproducibility and
reliability of PPI effects in the checkerboard task. Additionally,
we investigated the impact of PPI calculation methods on the PPI
results and their reproducibility and reliability. We operationally
defined reproducibility as whether previously reported clusters
could be observed in the current analysis, and whether the
clusters reported in one run could be observed in the other run.
Quantitatively, we utilized Dice coefficient to quantify overlaps of
voxels on thresholded maps (Rombouts et al., 1998; Taylor et al.,
2012). Next, we used intraclass correlation (ICC) to quantify
test–retest reliability. Because the short TR run has about twice
the number of time points as the long TR one, we predict that
statistical results would be better for the short TR run compared
with the long TR run. In addition, shorter sampling rate may
provide more accurate estimate of hemodynamic response,
therefore deconvolution PPI method should work better for the
short TR than the long TR runs.

METHODS

Simulations on the Correlations between
PPI Terms
The hemodynamic response is a slow response compared with
neuronal events, which can be understood as a low-pass filter.
Intuitively, if a task design is slow enough, e.g., a blocked
design, the convolution with the HRF may not affect PPI
calculations much. To directly demonstrate this relationship
between design alternating length and the effect of convolution
on PPI calculation, we firstly performed a simulation. In this
simulation, we defined a simple block-designed task with equal
on and off periods with different cycle lengths (from 8 to
80 s), and a simple event-related design with fixed inter trial
interval of 12 s (Figure 1A). We used a typical sampling rate
of 2 s, so that the event-related design could be expressed as
alterations of one time bin (2 s) of a trial and five time bins
(10 s) of the baseline condition (The first column in Figure 1A).
The remaining columns in Figure 1A show block designs with
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FIGURE 1 | Simulations of the correlations between PPI terms calculated from deconvolution and non-deconvolution methods. (A) Illustrates different task designs

that were used for the simulation. Each column represents a task design. E in the x axis represents the event-related design, with 1 time bin (2 s) of the trial condition

and 5 time bins (10 s) of the baseline condition. The remaining columns show block designs with different frequencies of repetition. For example, 80 s cycle means

40-s on and 40-s off of the task condition related to the baseline. Physiological variables at the neuronal level were generated using Gaussian random variables for

1,000 times. (B) Shows boxplots of correlations across the 1,000 simulations between PPI terms calculated from two methods: (1) the two simulated variables were

convolved with the HRF and then multiplied to form the PPI term; (2) the two simulated variables were multiplied and then convolved with the HRF.

FIGURE 2 | Examples of PPI terms calculated by the deconvolution and non-deconvolution methods for the two TR runs.

different frequencies of repetition. For example, 80 s cycle means
40-s on and 40-s off of the task condition related to the baseline.
We then simulated the physiological variable of neuronal
activities as a Gaussian variable for 1,000 times. For each design
and simulated “neuronal” physiological variable, we calculated
PPI terms using two ways: (1) each variable convolved with
the canonical HRF and then the two convolved variables were
multiplied to form a PPI term (corresponding to x1PPI in Equation
4); (2) the two variables were multiplied and then convolved with
the canonical HRF (corresponding to x2PPI in Equation 3). We
then calculated the correlations of the PPI terms calculated from
the two methods. The code for this simulation can be found at:
https://github.com/dixy0/PPI_correlation_demo.

fMRI Data and Task Design
We used the checkerboard fMRI data with TRs of 645 and
1,400ms from the release 1 of Enhanced Nathan Kline
Institute—Rockland Sample (http://fcon_1000.projects.nitrc.
org/indi/enhanced/). One hundred and forty-six subjects’

data with age equal or larger than 20 years old were included
for analysis. Six subjects’ data were discarded due to large head
motion during fMRI scanning in any of the two scans (maximum
frame-wise displacement (FD) (Di and Biswal, 2015)>1.5mm or
1.5◦). One subject’s data were deleted because of poor coverage
of the lower occipital lobe, and another subject’s data were
deleted because of failure of coregistration and normalization.
The effective number of subjects was 138 (89 females, 45 males, 1
unidentified). The mean age of the sample was 47.8 years (20–83
years).

The checkerboard task consisted of 20 s fixation block and
20 s flickering checkerboard block repeated three times. A blank
screen was presented after the third checkerboard block until
fMRI scan was complete. The task was scanned for two separate
runs with two TRs: 645 and 1,400ms, respectively. For the 645ms
run, 239 or 240 fMRI images were scanned for each subject. The
following parameters were used: TR = 645ms; TE = 30ms; flip
angle = 60◦; voxel size = 3 × 3 × 3mm3 isotropic; number
of slices = 40. For the 1,400ms run, 98 fMRI images were
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FIGURE 3 | (A) Activations (t maps) of visual checkerboard presentation for the 645ms TR run (upper) and 1,400ms TR run (lower). The threshold t-value

corresponds to one-tailed significance at p < 0.001. (B) Overlaps (Dice coefficients) between the two TR runs using t threshold (left) and percentile threshold (right).

(C) Test–retest reliability map (intraclass correlations, ICC) of activations between the two runs is shown on the left, which were thresholded at ICC > 0.2. The

histograms of ICC of activations between the two TR runs in significant voxels and whole brain are shown on the right. The significant voxels were determined using

intersection of the two runs each thresholded at p < 0.001.

scanned for each subject. The following parameters were used:
TR = 1,400ms; TE = 30ms; flip angle = 65◦; voxel size = 2
× 2 × 2mm3 isotropic; number of slices = 64. Anatomical T1
images were scanned using MPRAGE (magnetization-prepared
rapid acquisition with gradient echo) sequence with the following
parameters: TR = 1,900ms; TE = 2.52ms; flip angle = 9◦; voxel
size = 1 × 1 × 1mm3 isotropic. More information of the data
can be found in Nooner et al. (2012).

fMRI Data Analysis
fMRI Data Preprocessing
Functional MRI (fMRI) data preprocessing and analysis were
performed using SPM12 software (http://www.fil.ion.ucl.ac.uk/
spm/) under MATLAB environment (http://www.mathworks.
com/). For the 645ms run, the first 14 images (9 s) were discarded
from analysis, resulting in 225 images for each subject. For the
1,400 TR run, the first five images (7 s) were discarded from
analysis, resulting in 93 images for each subject. The functional
images were motion corrected, and corregistered to subject’s
anatomical images. The anatomical images were segmented,
and the deformation field images were used to normalize the
functional images intoMNI space. The data from the two TR runs
were both resliced and resampled at a spatial resolution of 3 × 3
× 3 mm3. Lastly, the functional images were smoothed using a
6mm full width at half maximum (FWHM) Gaussian kernel.

Activation Analysis
We first defined functional ROIs of the visual thalamus and lower
visual area by performing general linear model (GLM) analysis

on the checkerboard task. The checkerboard task was modeled
as a box-car function, with 1 representing the checkerboard
condition and 0 representing the fixation or blank screen. The
box-car function was convolved with the canonical HRF to
form a predictor of BOLD responses. Two regressors of the first
eigenvariate of BOLD signals in white matter and cerebrospinal
fluid (CSF), and 24 regressors of Friston’s autoregressive head
motion model (Friston et al., 1996) were also added in the
model as covariates. An implicit high-pass filter of 1/128Hz
was also implemented in the model. The high-pass filtering
is accomplished in SPM by using discrete cosine transform
functions. The effective high-pass filtering cutoffs were then
0.0069Hz (1/145.125 s) for the 645ms TR run and 0.0077Hz
(1/130.2 s) for the 1,400ms TR run. The GLM model was
estimated for each voxel in the brain to identify regions that
showed similar patterns of activations as the task design. The
beta maps of task activation were used for group level analysis
using a one sample t-test model. Statistical significant clusters
were identified by using cluster level statistics based on random
field theory. Clusters were first identified using a one-tailed
t-test at p < 0.001, and cluster extent was determined using false
discovery rate (FDR) at p < 0.05.

Definition of Regions of Interest
We performed two types of PPI analyses, voxel-wise analysis
using seed regions that were activated by the checkerboard task
and ROI-based analysis among visual thalamus and cortical
visual areas independently defined from other toolbox. In the
activation analysis of the current data, the posterior visual cortex
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FIGURE 4 | Psychophysiological interaction (PPI) results for the left middle occipital gyrus (LMOG) seed during checkerboard presentation in the two runs of TR

(repetition time) 645ms and TR 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 137. The last

row illustrates the number of overlapped negative PPI results in the four scenarios. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology

Institute) space.

and the posterior portion of the thalamus were robustly activated
by the visual checkerboard stimulation in both TR runs. We
therefore defined the left and rightmiddle occipital gyrus (LMOG
and RMOG) and the thalamus as regions of interest (ROIs)
based on the activations. To define the ROIs with proper size,
we increase the threshold to t > 16 to define the LMOG and
RMOG, and made an intersection between the two runs. The
size of LMOG was 222 voxels, and the size of RMOG was
259 voxels. Thalamus was defined using a threshold of p <

0.001, with an intersection between the two runs. Because the
visual thalamus is small, left, and right ROIs were combined to
form a single thalamus ROI (171 voxels). Different thresholds
were chosen to ensure that these ROIs are similar in size. The
eigenvariate of a ROI was extracted with adjustment of effects of
no interests (headmotion,WM/CSF variables, and low frequency
drifts).

For the ROI-based analysis, we defined the visual thalamus
as the regions that show functional associations with the lateral
visual network in resting-state (Yuan et al., 2016). Cortical visual
areas were defined by using probabilistic cytoarchitectonic maps.
These areas include the OC1/OC2 (occipital cortex; Amunts
et al., 2000), ventral and dorsal OC3 and OC4 (Rottschy
et al., 2007; Kujovic et al., 2013), OC5 (Malikovic et al.,
2006), and FG1/FG2 (fusiform gyrus; Caspers et al., 2013). For
the probabilistic maps of these regions, we first performed a
winner-takes-all algorithm to define unique regions of each area,
and then split them into left and right regions. As a result,
there are 20 ROIs (left and right thalamus, OC1, OC3, OC3d,
OC3v, OC4d, OC4v, OC5, FG1, and FG2). The eigenvariate
of a ROI was extracted with adjustment of effects of no
interests (head motion, WM/CSF variables, and low frequency
drifts).
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FIGURE 5 | Psychophysiological interaction (PPI) results for the right middle occipital gyrus (RMOG) seed during checkerboard presentation in the two runs of TR

(repetition time) 645ms and TR 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 137. The last

row illustrates the number of overlapped negative PPI results in the four scenarios. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology

Institute) space.

Psychophysiological Interaction Analysis
PPI analysis was performed using SPM12 with updates 6685.
PPI terms were calculated by using both deconvolution method
and non-deconvolution method. For the deconvolution method,
the time series of a seed region was deconvolved with the
canonical HRF, multiplied with the centered psychological box-
car function, and convolved back with the HRF to form
a predicted PPI time series at hemodynamic response level.
For the non-deconvolution method, the box-car function of
psychological design was convolved with the HRF to form a
psychological variable, and it was centered and multiplied with
the raw seed time series. Figure 2 shows examples of PPI terms
calculated from the two methods in the two TR runs.

For voxel-wise PPI analysis, separate GLMs were built for
the LMOG, RMOG, and thalamus seeds, and for the two TR

runs. The models included one regressor representing the task
activation, one regressor representing the seed time series, one
regressor representing the PPI term, and the covariates the
same as the activation GLMs descripted above. Group-level one
sample t-test was used on the corresponding PPI effects, to
test where in the brain showed consistent PPI effects with a
seed region. For both positive and negative contrasts, a one-
tailed t-test of p < 0.001 was first used to define clusters, and
then a FDR cluster threshold of p < 0.05 was used to identify
statistical significant clusters. For the ROI-wise analysis, PPI
GLM models were built for each of the 20 ROIs, and applied to
all other ROIs as a dependent variable. The GLMmodel included
one psychological variable, one physiological variable, one PPI
variable, and one constant term. The covariates were not included
because they have already been regressed out from all ROI time
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FIGURE 6 | Psychophysiological interaction (PPI) results for the thalamus seed during checkerboard presentation in the TR (repetition time) run of 645ms. There is no

significant PPI effects of the thalamus seed in TR run of 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of

freedom) of 137. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space.

series. PPI effects were calculated between each pair of ROIs,
resulting in a 20 × 20 matrix of beta values for each subject. The
matrices were symmetrized by averaging corresponding upper
and lower diagonal elements (Di et al., 2017b), with a total of
190 (20 × 19/2) unique effects. Group-level one-sample t-test
was performed on each element of the matrix. For both positive
and negative contrasts, a one-tailed t-test of p < 0.001 was used
to identify significant PPI effects. This threshold was chosen to
match with voxel-wise analysis. We also used FDR correction on
the total of 190 effects. And the results are similar to what using a
p < 0.001 threshold. However, FDR depends on the distribution
of all tested p-values, making it difficult to compare between two
runs. Therefore, we adopted p < 0.001 to report ROI-based PPI
results.

Reproducibility and Reliability
We operationally define reproducibility as overlaps of supra-
threshold clusters. Dice coefficient was used to quantify
reproducibility (Rombouts et al., 1998). Two strategies were
used to threshold the maps or matrix from the two TR runs.
First, statistical t maps or t matrices from the two TR runs
were thresholded using a common t-value, ranging from 1.7
(approximately corresponds to p < 0.05) to 7. However, it is
possible that the effect sizes in the two TR runs are systematically
different, so that using a same t-value could generate very
different numbers of supra-threshold voxels or elements in the
two runs. Therefore, we also thresholded t maps or t matrices
based on the percentile of t-values within a map or matrix.
This could ensure that the numbers of supra-threshold voxels or
elements are the same between the two TR runs.

We operationally define reliability as test–retest reliability
between the two TR runs, as quantified as ICC (Zuo et al.,

2010a). Voxel-wise ICC maps or each ROI and ICC matrices
across 20 ROIs were calculated between two TR runs for
each PPI method. At each voxel or matrix element, ICC was
calculated from a 138 (subject) by 2 (run) matrix by using
a MATLAB function written by Zuo et al. (2010a). Because
only voxels that have significant effects might show meaningful
reliability, we displayed histograms of ICCs within significant
voxels or elements with reference to those in the whole brain.
For task activations, the significant voxels were determined using
intersection of the two TR runs each thresholded at p< 0.001. For
PPI effects of each ROI, the significant voxels were determined
using intersection of the two TR runs and two methods each
thresholded at p< 0.01. This slightly liberal threshold was chosen
to ensure enough number of voxels survived in the conjunction
of the four scenarios. The whole brain mask was determined as
all voxels in the brain, including WM and CSF.

Coefficient of Variation
We calculated coefficient of variation to estimate measurement
error of task activations and PPI effects. Coefficient of variation
was calculated in ROIs that showed significant activation effects.
Specifically, the LMOG, RMOG, and thalamus ROIs that were
used as seed in the PPI analysis were used to represent activation
effects. For the PPI results, we performed a conjunction analysis
of the voxel-wise negative PPI effects across all the eight contrasts
(2 PPI methods × 2 TR runs × 2 seeds) using a threshold of
p < 0.01, and identified 27 ROIs that showed common negative
PPI effects. Beta values of activations or PPI effects of these ROIs
were extracted. Coefficient of variation was calculated based on
the method assuming the variation is proportional to the mean
(Bland and Altman, 1996). It measures within subject variations
(across the two TR runs in the current case) relative to the

Frontiers in Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 573

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Di and Biswal Reproducibility and Reliability of PPI

FIGURE 7 | Matrices of psychophysiological interaction (PPI) results among the 20 regions of interest of visual thalamus and visual cortex for the two TR (repetition

time) runs and two methods. (A) PPI results using the deconvolution method in the TR 645 ms run. (B) PPI results using the non-deconvolution method in the TR

645ms run. (C) PPI results using the deconvolution method in the TR 1,400ms run. (D) PPI results using the non-deconvolution method in the TR 1,400ms run. The

resulting clusters were thresholded at p < 0.001.

mean effects of the two runs. Specifically, coefficient of variation
was calculated based on a 138 (subject) × 2 (run) matrix. The
beta values were first logarithmic transformed. Variation was
then calculated for each subject, and a square root of mean
variations across subjects was calculated. The resulting value
was then transformed back using an exponential function, and
subtracted by 1. The script for calculating coefficient of variation
is available at: https://github.com/dixy0/PPI_correlation_demo.
The resulting value represents the percentage of variation of
a measure relative to the mean. Coefficients of variation were
calculated on the LMOG, RMOG, and thalamus ROIs to reflect
measurement errors of the task activations, and were calculated
on the 27 ROIs from the analyses of the LMOG and RMOG seeds
to reflect measurement errors of the PPI effects.

RESULTS

Simulations on the Correlations between
PPI Terms
The distributions of PPI correlations for each task design are
shown in Figure 1B. For the block designs, the PPI correlations

are a function of block cycle length.With longer design cycle, e.g.,
>40 s (20-s on and 20-s off), the correlations of PPI terms could
be higher than 0.9. Practically, most of the block-designed fMRI
experiments have longer block cycles than 20-s on and 20-s off.
If the block alterations become faster, the correlation between
PPI terms decreased. And for the event-related design, the
mean PPI correlations were below 0.5 and with large variations.
This simulation demonstrates that if a neuronal activity time
series is known, using convolved time series to calculate PPI
term (i.e., x1PPI) could be very similar to what calculated by
first multiplying the two variables and then convolving (i.e.,
x2PPI) for typical block designed experiments. In real fMRI
data, the “neuronal” physiological variable is not known, and
has to be estimated by using deconvolution. Considering the
similarities of the PPI terms and the caveats of deconvolution,
PPI calculations without deconvolution may be a better choice
for block designed experiments. On the other hand, the PPI
correlations in the event-related design are much smaller (r <

0.5, meaning <25% of shared variance). So that deconvolution
is still a necessary step for PPI analysis in event-related designed
experiments.
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FIGURE 8 | Illustration of consistently reduced connectivity during

checkerboard presentation compared with fixation in the ROI-based (region of

interest) psychophysiological interaction (PPI) analysis in the two TR (repetition

time) runs and two methods. Numbers on the bottom represent z coordinates

in MNI (Montreal Neurology Institute) space.

Activations of the Checkerboard Task
Both TR runs showed highly significant activations in the visual
cortex, as well as in the posterior portion of the thalamus
(Figure 3A). The overlaps (Dice coefficients) of thresholded t
maps between the two TR runs were as high as 0.7 (Figure 3B)
at most of the shown t range or percentile range. And
Dice coefficients went down when only extremely activated
voxels were thresholded. The visual cortex regions also showed
high test–retest reliability (ICC > 0.7; Figure 3C). However,
the activations of the thalamus only showed small test–retest
reliability around 0.2. The histograms of ICCs in the significant
voxels and in the whole brain are shown on the right
of Figure 3C.

Psychophysiological Interactions
The voxel-wise PPI analysis of the LMOG and RMOG seeds
conveyed very similar patterns. The PPI effects of the LMOG seed
for the two TRs and two methods are shown in Figure 4. We first
observed that even though spatial extents of PPI effects varied
across the two TR runs and two PPI methods, the negative PPI
effects in previously reported regions, i.e., supplementary motor
area and higher visual cortex, could be observed from all four
scenarios. The deconvolution method in 645ms TR run had the
smallest spatial extent and statistical significance, while the non-
deconvolution method in 645ms TR run had the largest spatial
extent and strongest statistical significance. Both methods in TR
of 1,400ms showed similar spatial extent and significance levels.
The last row in Figure 4 demonstrates the overlaps of negative
effects in the four scenarios. Similar results were found in the
analysis of the RMOG seed (Figure 5).

The voxel-wise PPI analysis of the thalamus seed only showed
significant effects in the 645 TR run, but with different brain
regions with opposite effects in the two PPI methods (Figure 6
and Table S1). With deconvolution method, the thalamus seed
showed significant positive PPI effects with the middle cingulate
gyrus, anterior portion of the thalamus, bilateral anterior insula,

basal ganglia, and right fusiform gyrus. Whereas, with non-
deconvolution method, the thalamus seed showed significant
negative PPI effects with the bilateral occipital pole regions.
There were no consistent results between two TR runs and two
methods. Therefore, subsequent analysis was only performed on
the LMOG and RMOG seeds.

We next performed ROI-based PPI analysis among the 20
regions of visual thalamus and cortical visual areas (Figure 7).
The 645ms TR run showed more significant PPI effects than
the 1,400ms TR run. And non-deconvolution method showed
more significant PPI effects than the deconvolution method.
A prominent number of connectivity changes are between the
bilateral FG1 regions and other lower level visual areas ranging
from OC1, OC2, to OC4. We performed a conjunction analysis
of PPI results across the four scenarios, and identified five
connections with reduced connectivity in checkerboard than
in fixation. The regions and connections are highlighted in
Figure 8.

Reproducibility of PPI Effects
Since we observed similarities of spatial clusters and connectivity
between the two TR runs, we next examined reproducibility
of PPI effects by calculating Dice coefficients of thresholded
statistical maps or PPI matrices between the two TR runs
(Figure 9). For the voxel-wise analysis of both LMOG and
RMOG seeds, when varying t threshold, the non-deconvolution
method showed higher level overlap compared with the
deconvolution method (Figure 9A). When thresholding
statistical maps with matched number of surviving voxels,
a similar pattern could still be observed that the non-
deconvolution method produced larger overlaps than the
deconvolution method (Figure 9B). For the ROI-wise analysis,
however, Dice coefficients were at similar level between two PPI
methods at most t and percentile thresholds. But at very high t
threshold or percentile thresholds, the deconvolution method
seemed to produce larger overlaps (higher Dice coefficients;
Figures 9C,D).

Reliability of PPI Effects
We calculated ICC between the two TR runs to reflect reliability
of PPI effects. The voxel-wise maps of ICC showed that there
were typically low reliability in both methods and ROIs, even in
the regions that showed consistent negative PPI effects (Figure
S1). We then plotted the histograms of ICCs in voxels from
the whole brain (gray lines) and within regions that showed
significant PPI effects (red lines; Figures 10A–D). It turns out
that the distributions of ICCs within significant regions are
only slightly different from the distributions of correlations in
the whole brain, with means around 0.07. The distributions
of ICCs were not different between deconvolution and non-
deconvolution methods. Similar distributions of ICCs were also
found for the ROI-wise analysis (Figures 10E,F, and Figure S2).
We found five PPI effects that were consistently significant in
both TR runs and methods. And the ICCs for the five effects were
also small and close to zero.
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FIGURE 9 | Dice coefficients of thresholded negative PPI effects between the two TR runs as functions of t threshold and percentile threshold for the voxel-wise

analysis (upper panels) and ROI-wise analysis (lower panels). (A) Dice coefficients of negative PPI effects from the voxel-wise analysis between the two TR runs using

the t threshold. (B) Dice coefficients of negative PPI effects from the voxel-wise analysis between the two TR runs using the percentile threshold. (C) Dice coefficients

of negative PPI effects from the ROI-wise analysis between the two TR runs using the t threshold. (D) Dice coefficients of negative PPI effects from the ROI-wise

analysis between the two TR runs using the percentile threshold. The lowest t used for calculating overlap is 1.7, which approximately corresponds to p < 0.05. The

lowest percentile is 80, which is approximately corresponds to the largest proportions of voxels at p < 0.05.

Measurement Error
We calculated coefficients of variation (Bland and Altman, 1996)
on task activations and PPI effects to reflect measurement
error (Figure 11). The variations of activation in the LMOG
and RMOG were about 70% of the mean activation, while the
variation of activation in the thalamus was about 270% of the
mean activation (Figure 11A). In contrast, the variations of PPI
effects through the 27 ROIs were about 500% of the mean effects
for both the LMOG and RMOG seeds (Figures 11B,C), which
indicated much larger variation of PPI effects compared with
activations. The deconvolution and non-deconvolution methods
had similar level of coefficients of variations. But when directly
comparing the two methods, there was a trend that the non-
deconvolution method had smaller coefficients of variation than
the deconvolution method in most of the ROIs (Figures 11D,E).

Miscellaneous Analysis
To gain further insight to the cases of deconvolution failure, we
calculated correlations of PPI terms between deconvolution and

non-deconvolution methods for the LMOG and RMOG seeds
(Figure 12A). In both TR runs, the distributions of correlations
centered approximately on 0.7, and there were outliers whose
correlations were only 0.2 or 0.3. This is in contrast with the
simulation results (Figure 1B, 40 s cycle), where the correlations
were around 0.9.

We identified the worst case in Figure 12A (black arrow
indicated), and deconvolved and reconvovled it with the HRF
using SPM’s method (Figure 12B). The raw and reconvovled
signals look dramatically different, with the reconvolved signal
resembling a smoothed version of the original signal. Smoothness
is indeed the case for the SPM version of deconvolution
(Gitelman et al., 2003), because it utilizes regularization to
suppress high frequency components of cosine basis functions
those were used to approximate the neuronal level physiological
variable. To directly illustrate this point, we performed fast
Fourier transformation on the time series of the RMOG for
all the subjects on the raw, deconvolved, and reconvolved time
series for the two TR runs (Figure 13). It could be seen that
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FIGURE 10 | Histograms (normalized) of intraclass correlations of PPI effects between the two TR runs across the whole brain (gray lines) and in statistically significant

voxels or effects (red lines). (A–C) Show the results of the left middle occipital (LMOG) seed, right middle occipital (RMOG) seed, and ROI-based analysis using the

deconvolution method, respectively. (D–F) Show the results of the LMOG seed, RMOG seed, and ROI-based analysis using the non-deconvolution method,

respectively. The significant voxels or effects were determined using intersection of the two runs and two methods each thresholded at p < 0.01.

after deconvolution, high frequency components have been
suppressed in both TR runs. Particularly, there is a black line
that shows higher power between frequencies of 0.2 to 0.4Hz in
the raw data plot of 645ms TR run, which coincides to be the
outlier observed in Figure 12. The high frequency component
was suppressed, so that the reconvolved signal looks smooth.

DISCUSSION

By analyzing two separate runs of visual checkerboard task from
a large sample (n = 138), the current study first replicated
previously reported negative PPI effects between visual cortex
and widespread brain regions, and then showed negative PPI
effects among visual areas centered in the bilateral fusiform
gyrus. By comparing results from two separate runs, we showed
that group averaged effects were largely reproducible; however,
the inter-subject reliabilities of the PPI effects were typically
low. By comparing the deconvolution and non-deconvolution
PPI methods, we demonstrated that the results by the two
methods were in general very similar, but the non-deconvolution
produced larger statistical effects and spatial extents. The non-
deconvolution method may reduce inter-subject variations and
increase overlaps of results between the two runs in some
circumstances compared with the deconvolution method.

Functional Connectivity during
Checkerboard Stimulation
The voxel-wise analysis of the LMOG and RMOG seeds
replicated our previous results which only analyzed a sub-set of
26 subjects (Di et al., 2015, 2017b). In our previous work (Di et al.,

2017b) we could only identify significant PPI effects using the
RMOG seed, while the current study demonstrated similar PPI
effects from both the LMOG and RMOG seeds. Furthermore, we
illustrated that the spatial extent of regions that showed reduced
connectivity with the MOG seed could be much larger and
extended to other brain regions such as the insula and bilateral
sensorimotor cortex. This further suggests a higher extent of
functional segregation between the visual cortex and other brain
systems during such a simple visual stimulation task compared
with the fixation. The current study also extended previous
study by analyzing task modulated connectivity effects among
cytoarchitectonically defined visual areas. Reduced functional
connectivity was observed among many visual areas, with the
bilateral FG1 as hub regions. FG1 is the most posterior portion of
the fusiform gyrus, which just laid anterior to the occipital cortex
(Caspers et al., 2013). It is thought a transition zone between
lower retinotopic visual areas and higher category specific brain
areas, and integrates information from different retinotopic
visual areas to higher category specific brain areas (Caspers et al.,
2014). Therefore, it is reasonable to see that the FG1 showed
reduced functional connectivity with many lower visual areas in
the checkerboard condition, because the simple stimuli cannot
form a meaningful percept of a specific category.

The thalamus is a critical subcortical structure in the brain,
which not only relay sensory information to the cortex, but also
thought to mediate corticocortical communications (Guillery
and Sherman, 2002; Saalmann and Kastner, 2011). The PPI
analysis of the thalamus, however, did not show consistent effects
in different TR runs or different methods. It may because that
the visual thalamus is small in size compared with cortical visual
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areas, and the signals in the thalamus are not reliable enough. The
current results do suggest some reduced connectivity between
the visual thalamus to the primary visual cortex, and increased
connectivity between the visual thalamus to the anterior portion
of the thalamus, basal ganglia, and insula. However, the results
are weak and unreliable, especially considering that the current
analysis had included 138 subjects.

Reproducibility and Reliability of PPI
Effects
To our knowledge, the current study is the first one to evaluate
reproducibility and reliability on PPI effects. The current analysis
did not only reproduce the results reported previously (Di et al.,
2017b), but also examined the reproducibility between two runs.
Although the two runs were scanned using different parameters,
most importantly the temporal and spatial resolutions, the
patterns of PPI effects turned out to be quite similar between
the two runs. The run with 645ms TR seemed to generate larger
spatial extent in the voxel-wise analysis and more statistically
significant results in the ROI-wise analysis. This is consistent with
our prediction, because there are more time points in the 645ms
TR run than in the 1,400ms TR run, which could yield higher
statistical power. We do notice that in some scenarios, i.e., voxel-
wise analysis with deconvolution, the PPI results in 645ms TR
run had smaller effect size and spatial extent, which might be due
to failure of deconvolution.

On the other hand, the results indicated that inter-subject
reliabilities are typically low (around 0.07) no matter which PPI
method was used. The low reliability should be compared with
those of simple task activations, which showed reasonably high
reliability regardless of the scan length. The reliability of PPI
effects in the current analysis are also much lower than previous
reported test–retest reliabilities on task activations (Raemaekers
et al., 2007; Plichta et al., 2012) and resting-state functional
connectivity (Zuo et al., 2010b; Guo et al., 2012). Of course the
short scan lengths could be one factor that explains the low
reliability of PPI effects. But it should be also emphasized that the
reliability of higher order interaction effects (i.e., the PPI) should
be much lower than the main effects of task activations and
task-free functional connectivity. A scan length that is sufficient
for obtaining reliable task activations may not be necessarily
enough to yield reliable task modulated connectivity estimates.
This factor should be taken into account when designing studies
on task based connectivity.

Deconvolution and PPI
The PPI results using both the deconvolution and non-
deconvolution methods are in general very similar. This is
consistent with the simulation showing that the PPI term
calculated from the convolution then multiplication method
is very similar to the hypothetical PPI term with a known
neural activity in a block-designed task. When comparing the
differences of PPI results with these two methods, the non-
deconvolution method seems to be able to generate larger
statistical effects and greater spatial extents or number of
significant effects. The non-deconvolution method also increased
the Dice coefficients of thresholded PPImaps between the two TR

runs. However, the Dice coefficients of thresholded PPI matrices
between the two TR runs are quite similar between the two PPI
methods, and the deconvolution method may be even benefiting
at higher thresholds. These results highlighted the uncertainty of
deconvolution method in PPI analysis.

We have shown that the correlations of PPI terms between
deconvolution and non-deconvolution methods may have
outliers whose correlations were only 0.2 or 0.3 (Figure 12),
which is in contrast with the simulation results (Figure 1B). The
lower correlations of PPI terms from empirical data compared
with the simulations imply that there might be some uncountable
variations introduced during the deconvolution/convolution of
real fMRI data. Indeed, deconvolution is rather a practical
problem to recover underlying signals from some recorded
measures, than a simple mathematical problem as depicted
in Equation (2). In the practical context, measurement noises
need to be taken into account in the deconvolution model. For
fMRI, the goal of deconvolution is to recover neuronal activities
from observed BOLD signals, where there are plenty of noises
during MRI recording. The deconvolution should be expressed
as follows with an additional error term:

xPhysio = zPhysio ∗ hrf + ε (5)

In this circumstance, some noises would be removed during
deconvolution so that a signal deconvolved and convolved back
with a HRF will no longer be the same as the original signal. The
noise characteristics and regularization methods for recovering
zPhysio become critical to the success of deconvolution.

As have been shown in Figure 13, SPM’s deconvolution
method explicitly suppresses high frequency components with
the intention that the hemodynamic response is slow therefore
high frequency components may represent noises. But this may
overly smooth the data and remove useful information in higher
frequency bands, thus making PPI results with the deconvolution
method less sensitive than those with the direct PPI method. This
problem may be more severe for short TR data, because there
are more high frequency components in the data. On the other
hand, high frequency signals in BOLD have been increasingly
recognized as functionally meaningful (Chen and Glover, 2015;
Gohel and Biswal, 2015; Lewis et al., 2016), and high frequency
components may be critical for connectivity dynamics. Given
that multiband imaging technique has made fMRI sampling rate
much faster, proper treatment of high frequency signals may
be critical in deconvolution of fMRI signals and connectivity
analysis in general.

Given the facts that the two PPI methods can generate
similar results for the current block-designed task and the non-
deconvolution method may increase statistical power, we lean
toward a conclusion that the non-deconvolution PPI method
may be a better choice for a block-designed task. This is
in line with the recommendation by FSL (O’Reilly et al.,
2012). Of course, deconvolution is still necessary for an event-
related task design, because the PPI terms calculated from
the convolution then multiplication method are dramatically
different from those calculated from the multiplication then
convolution method (Figure 1). It’s also worth mentioning that
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FIGURE 11 | Measurement errors as revealed by coefficients of variations (CV) (Bland and Altman, 1996) for the activation (A) and psychophysiological interaction

(PPI) results (B,C). Please notice the different scales in y axes. (D,E) Demonstrate the differences of CV on PPI effects between the deconvolution and

non-deconvolution methods. LMOG, left middle occipital gyrus; RMOG, right middle occipital gyrus; Tha, thalamus.

FIGURE 12 | (A) Histograms of correlations between PPI terms with and without deconvolution across all subjects from both the LMOG and RMOG ROIs for the two

TR runs. (B) For the worst case as spotted by the black arrow in (A), we show the raw time series and the time series with deconvolution and re-convolution with

hemodynamic response function.

it has been suggested that the beta series method (Rissman
et al., 2004) might be an alternative method for event-related
designed data (Cisler et al., 2014). Lastly, there are indeed many
variety of deconvolution methods (Makni et al., 2008; Havlicek
et al., 2011; Wu et al., 2013), and some of the methods may
be more suitable for fMRI signals and PPI analysis. Systematic
comparisons between these different methods are needed in the
future.

The current analyses are mostly based on empirical fMRI
data. One limitation of empirical analysis is that there is no
known ground truth to compare with. Simulation may be an
alternative way to approach the question. However, development
of biological realistic models for task modulated connectivity is
still challenging, so that the deconvolution problem is difficult
to study using simulations at the current stage. In addition,
the similarities and differences between PPI results of the
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FIGURE 13 | Power spectrums of time series from the right middle occipital gyrus seed for each of the 138 subjects for the 645ms run (upper panels) and 1,400ms

run (lower panels). Each line in a plot represents one subject. Left, middle, and right panels show the power spectrum of the raw, deconvolved, and re-convolved

time series, respectively.

deconvolution and non-deconvolution methods depend on the
variability of hemodynamic response in real fMRI data, which
cannot be simply derived from simulations. Therefore, we believe
that the current empirical analysis is suitable for the question of
deconvolution.

Practical Implications on PPI Analysis
The current study analyzed data from a simple task design
with one task condition and one baseline condition. In real
fMRI experiments, however, there are usually more than
two conditions. To deal with multiple conditions, it was
recommended that each task condition is modeled separately
with respect to all other conditions (McLaren et al., 2012). In
such “generalized PPI” framework, each experimental condition
is modeled as the same way as the checkerboard condition in the
current study. It is reasonable to conclude that the similarities of
PPI results with and without deconvolution could be generalized
to experiments with more than two conditions.

Task related functional connectivity as measured by PPI
analysis is typically much smaller, in terms of effect size,
reproducibility, and reliability, than simple task activations, and
has much larger measurement error. To ensure enough statistical
power and reliability, a larger sample size than typical activation
studies and enough scan length for each subject are necessary.
The design for an fMRI task needs to consider scan length
as a critical factor, if the goal of the study is to examine
task related connectivity. To date, it is still largely unknown
how long a scan is needed for reliability capture task related
connectivity. We can only get some insights from resting-state
connectivity research, where large scale test–retest datasets are
available (Biswal et al., 2010; Zuo et al., 2014). In resting-state
literature, it has been suggested that at least 5min of scan is

needed for reliability estimate functional connectivity (Van Dijk
et al., 2010; Birn et al., 2013). Then at least 5min of scan length
for a single task condition is needed for task based fMRI. If the
PPI effects are going to be compared between two experimental
conditions, which is usually the case for a well-designed cognitive
neuroimaging study, the required scan length would be much
longer. Of course, direct examinations of the effect of scan length
on task related connectivity estimates are still needed in future
research.

The PPI method takes advantages of the dynamic aspect of the
BOLD signals. Therefore, it’s preferable to adopt faster sampling
rate to capture temporal dynamics, which may in turn lead to
sacrifice of other aspects of the signals, e.g., spatial resolution. The
current results support the idea that shorter TR may be beneficial
for PPI analysis. Of course, faster sampling rate could be
accomplished by new developments of MRI techniques such as,
multi-band acquisition (Feinberg and Yacoub, 2012). However,
the current results also suggested some pitfalls of using short
TR data. The currently used HRF models and deconvolution
method may be not quite suitable for fast TR data, so that the PPI
method with deconvolution may fail in some cases in short TR
data. More work is still needed to validate and optimize models
on high speed fMRI data. Of course, high spatial resolution has
its own advantage on mapping small brain structures such as
the thalamus. So that the considerations of temporal and spatial
resolutions may also need to take into account the spatial scales
of the regions that are studied.

CONCLUSION

We demonstrated that the deconvolution and non-
deconvolution PPI methods generated similar results on a
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simple block-designed task. The deconvolution method may
be beneficial in terms of statistical power and reproducibility.
Taken together, deconvolution may be not necessary for PPI
analysis for block-designed fMRI data. When using a large
sample, group mean PPI effects are reproducible; however, inter-
subject reliabilities of the PPI effects are quite limited. Systematic
evaluations on scan length and reliability may be necessary before
studying inter-subject differences or group differences of PPI
effects.
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