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1  | INTRODUC TION

Predicting how individual species will respond to increased environ-
mental temperatures is key to understanding the wider ecological 
consequences of global change. Temperature influences the phys-
iological and behavioral responses of individuals (Sunday, Bates, & 

Dulvy, 2011), and as environmental temperatures move further from 
a species' optimal temperature, the ability of the individual to grow 
and reproduce is reduced (Pörtner & Farrell, 2008). This has direct 
consequences for the abundance and distributions of species in all 
environments (Day, Smith, Edgar, & Bates, 2018; Sunday et al., 2011; 
Waldock, Smith, Edgar, Bird, & Bates, 2019), and in marine systems, 
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Abstract
Predicting how species will respond to increased environmental temperatures is key 
to understanding the ecological consequences of global change. The physiological 
tolerances of a species define its thermal limits, while its thermal affinity is a sum-
mary of the environmental temperatures at the localities at which it actually occurs. 
Experimentally derived thermal limits are known to be related to observed latitudinal 
ranges in marine species, but accurate range maps from which to derive latitudinal 
ranges are lacking for many marine species. An alternative approach is to combine 
widely available data on global occurrences with gridded global temperature datasets 
to derive measures of species-level “thermal affinity”—that is, measures of the central 
tendency, variation, and upper and lower bounds of the environmental temperatures 
at the locations at which a species has been recorded to occur. Here, we test the 
extent to which such occupancy-derived measures of thermal affinity are related to 
the known thermal limits of marine species using data on 533 marine species from 
24 taxonomic classes and with experimentally derived critical upper temperatures 
spanning 2–44.5°C. We show that thermal affinity estimates are consistently and 
positively related to the physiological tolerances of marine species, despite gaps and 
biases in the source data. Our method allows thermal affinity measures to be rapidly 
and repeatably estimated for many thousands more marine species, substantially ex-
panding the potential to assess vulnerability of marine communities to warming seas.
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distributional shifts have tracked local changes in climate (Pinsky, 
Selden, & Kitchel,  2020; Pinsky, Worm, Fogarty, Sarmiento, & 
Levin, 2013). Documenting the thermal tolerances of a wide range of 
species is thus an important step toward forecasting future distribu-
tional shifts (Sunday, Bates, & Dulvy, 2012) and community changes.

Experimental derivations of thermal tolerance limits have long 
been the gold standard for understanding the thermal biology of 
species and include methods based on both lethal and critical lim-
its. For instance, estimating lethal temperatures (typically the tem-
perature lethal to 50% of a population) has a long history of use 
in studies of a wide range of taxa (e.g., Fry, 1967; Lutterschmidt & 
Hutchison, 2011). However, because this technique is logistically 
difficult and can be ethically problematic (Eme & Bennett,  2009), 
the critical thermal methodology was developed and adopted as the 
preferred method for experimental derivations of thermal tolerance 
(Lutterschmidt & Hutchison, 2011). Critical thermal tests, including 
both critical thermal minimum (CTmin) and critical thermal maximum 
(CTmax), are preferred because they use relatively fewer individuals 
and provide a rapid, nonlethal assessment by measuring the loss of 
key ecological functions rather than mortality. For example, critical 
temperatures can be marked by the thermal point at which locomo-
tion is lost or by the onset of muscular spasms (Beitinger, Bennett, & 
McCauley, 2000; Lutterschmidt & Hutchison, 2011). However, use 
of these physiological thermal traits to assess climatic vulnerability 
is limited (Pacifici et al., 2015), because experimental derivations of 
thermal tolerances remain hard to obtain, and those studies that do 
exist are not standardized with respect to heating rate and tempera-
ture acclimatization protocols (Comte & Olden, 2017; Lutterschmidt 
& Hutchison,  2011). Nonetheless, their importance is reflected in 
recent efforts to compile global databases of experimentally derived 
thermal limits for marine and freshwater fish (Comte & Olden, 2017) 
and for a wide range of species across all environments (Bennett 
et  al.,  2018a,b).While experimentally derived thermal tolerances 
have remained difficult to obtain, the literature on “realized ther-
mal niches” of species has expanded. The thermal tolerance limits 
derived experimentally represent the fundamental thermal niche 
of the species—the temperature range at which the species could 
survive, in the absence of predation, competition, or habitat hetero-
geneity. The realized thermal niche of a species represents the en-
vironmental temperatures at which individuals are actually observed 
to occur (Magnuson, Crowder, & Medvick, 1979). In marine species 
especially, there is a good correspondence between these two mea-
sures, with latitude and experienced temperature extremes proving 
a good predictor of thermal limits (Sunday et al., 2011, 2019). This 
has led to a decade of work using various estimates of thermal lim-
its and environmental temperature to predict how climate change 
will drive changes in marine species and communities (see Pinsky 
et al., 2020 for recent review). Indices based on the environmental 
temperatures at which species occur have also been developed. For 
instance, the Species Temperature Index of a species, calculated as 
the mid-point of the realized thermal niche (Devictor et al., 2012), 
has been shown to relate to the environmental temperature at which 
the maximum local abundance of a species is attained (Stuart-Smith, 

Edgar, Barrett, Kininmonth, & Bates, 2015). This has been extended 
to whole communities using the Community Temperature Index, 
the abundance-weighted average Species Thermal Index of all spe-
cies recorded within a community, to identify areas of vulnerability 
where environmental temperatures diverge from the typical thermal 
affinities of species occurring there (e.g., Day et  al.,  2018; Stuart-
Smith et al., 2015).

These metrics derived from species' realized thermal niches can 
predict both species- and community-level change in marine com-
munities (Day et al., 2018), which is encouraging because they can be 
derived from data that are much more widely available than experi-
mental data on thermal limits. Data on where marine species occur 
are available in large quantities from many sources (Edgar et al. 2016), 
with the Ocean Biogeographic Information System (OBIS,  2018) 
providing an open access global repository of >59M occurrence 
records of >120,000 marine species. Each of these occurrence re-
cords is located in space (latitude, longitude) and time (month, year), 
with many of them also including information on sampling depth. 
However, few occurrence records have in situ measures of environ-
mental temperature associated with them, meaning that alternative 
sources of sea temperature need to be used to match the occur-
rence to environmental temperature post hoc. At present, there is 
no standard protocol for doing this. In addition, global occurrence 
datasets such as OBIS are known to contain significant and system-
atic spatial, temporal, and taxonomic biases (e.g., Edgar et al., 2016; 
Menegotto & Rangel, 2018; Miloslavich et al., 2016), which remain 
despite recent efforts to automate quality control (e.g., Vandepitte 
et al., 2015). In particular, data are biased toward well-known spe-
cies in certain groups (e.g., chordates; Miloslavich et al., 2016), with 
most species represented by very few occurrence records. Data are 
also primarily available from shallow, coastal seas in regions such as 
the North Atlantic (Edgar et al., 2016), with major gaps in important 
ecosystems like the deep pelagic ocean (Webb, Vanden Berghe, & 
O'Dor, 2010). Given these biases and potential sources of error at 
every step of the process of generating species-level thermal affin-
ities, it remains uncertain whether matching raw OBIS occurrence 
records to globally aggregated sea temperature records will actually 
reflect the physiological temperature limits of marine species to any 
degree.

Here, we use two major compilations of experimentally de-
rived critical maximum temperatures (Bennett et  al.,  2018a,b; 
Comte & Olden, 2017) to extract upper thermal limits (based on 
various measures) for 533 marine species. We present a work-
flow to efficiently and repeatably estimate the realized thermal 
niche of these species by matching global occurrences extracted 
from OBIS to two complementary global sea temperature data-
bases. Specifically, we use a high-resolution global climatology 
of sea surface and sea bottom temperature (Assis et  al.,  2018; 
Tyberghein et al., 2012), allowing matching of occurrence records 
by latitude and longitude, and a depth-resolved monthly sea tem-
perature dataset allowing matching by latitude, longitude, sample 
depth, and sample date (Cheng et al., 2017; Cheng & Zhu, 2016). 
We calculate a range of measures of “thermal affinity,” including 
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measures of both central tendency and upper bounds of the tem-
peratures of a species' occurrence records. We divide species 
into broad functional groups, allowing us to select the most ap-
propriate sea temperature measure (e.g., surface versus bottom 
temperature) to use to calculate thermal affinity. This allows us 
to determine the extent to which these observational, occupan-
cy-derived thermal affinities, which can be rapidly and automati-
cally generated using openly available data, reflect experimentally 
derived thermal limits. We then use these to test whether the en-
vironmental temperature at which a species lives influences how 
close it is to its thermal limit, and specifically whether our data 
are able to detect the trend observed in more targeted studies for 
smaller thermal safety margins in warm-water species (e.g., Pinsky, 
Eikeset, McCauley, Payne, & Sunday,  2019; Sunday et  al.,  2011; 
Waldock et al., 2019). Furthermore, by developing this workflow 
using open data within the open source environment R (R Core 
Team, 2018) in RStudio (RStudio Team, 2016), we make generating 
robust estimates of the thermal affinities of very large numbers of 
marine species generally available to the community.

2  | METHODS

2.1 | Experimental temperature thresholds

We obtained experimentally derived thermal thresholds from two 
complementary published databases. First, we used Comte and 
Olden (2017)'s compilation of thermal limit data for ray-finned fish 
(hereafter Comte-Olden). This dataset includes thermal limits for 
adult fish derived from both CTmax and LT50 studies meeting cer-
tain quality-control criteria (e.g., including acclimation or collection 
temperatures; see Comte and Olden (2017) for full details). We used 
only the direct experimental measures of critical thermal maxima 
presented by Comte and Olden (2017) to avoid any circularity inher-
ent in using their imputed data, which incorporated environmental 
temperatures, to test our methods. We extracted data for the 158 
marine species from 17 Orders present in the Comte-Olden dataset. 
All species names were matched to the World Register of Marine 
Species (WoRMS, WoRMSEditorialBoard, 2018) standard using the 
worrms package (Chamberlain, 2018) in R (R Core Team, 2018) al-
lowing us to assign a valid WoRMS AphiaID to each name. We took 
the mean thermal limit for any species with >1 estimate. To give 
more weight to more precise estimates, we weighted this mean by 
the inverse of the standard deviation of each estimate (if provided). 
We used FishBase data (Froese & Pauly,  2018) accessed through 
the rfishbase package (Boettiger, Lang, & Wainwright, 2012) to 
classify species in the Comte-Olden dataset as benthopelagic, de-
mersal, bathydemersal, reef-associated, pelagic-neritic, or pelagic-
oceanic. Because of small numbers of species in some categories, we 
combined bathydemersal (n = 3) and demersal (n = 60) into a single 
demersal category, and pelagic-neritic (n = 10) and pelagic-oceanic 
(n  =  2) into a single pelagic category. These habitat classifications 
were used to determine which measure of sea temperature (surface 

or bottom) was most appropriate for deriving the environmental 
thermal affinity of each species (see below).

Our second source of marine species thermal limits was the 
GlobTherm database (Bennett et al., 2018a,b), which includes thermal 
tolerance metrics for adults of over 2,000 species across all habitats 
and major domains of multicellular life. Most species in GlobTherm 
have only a single upper thermal limit value (primarily CTmax, al-
though a range of measures are included), which we term Tmax. The 
exceptions are some algae where both LT0 and LT100 (i.e., the tem-
perature at which 0% and 100% of individuals are dead) are given. 
For these species, we selected LT100 as our value of Tmax. To identify 
marine species from the GlobTherm data, we matched all names to 
WoRMS using worrms (Chamberlain, 2018) and retained those for 
which we could find a WoRMS AphiaID linked to a valid marine spe-
cies. We further filtered the dataset to those species known to have 
occurrence records in the Ocean Biogeographic Information System 
(OBIS, 2018), using the checklist function in the robis package 
(Provoost & Bosch, 2019). This resulted in a dataset of 421 marine 
species from 3 Kingdoms, 11 Phyla, and 24 Classes. Species from 
the GlobTherm dataset were assigned to functional groups using 
WoRMS attributes data (WoRMSEditorialBoard, 2018) accessed via 
the worrms package (Chamberlain, 2018) supplemented with tax-
onomic information and additional information from SeaLifeBase 
(Palomares & Pauly, 2018) accessed through the rfishbase pack-
age (Boettiger et  al.,  2012). The functional groups were benthos, 
birds, fish, macroalgae, and mammals, which allowed us to decide 
on appropriate sea temperature measures (surface or bottom tem-
perature) for each group of species. In addition, we wanted to allow 
for different relationships between thermal limits and sea tempera-
ture-based thermal affinities for different kinds of species (e.g., en-
dotherms, species breeding on land). Fish were further categorized 
by habitat affinity as described for the Comte-Olden data. We do 
not further distinguish between species in either data source, be-
cause automation of finer distinctions based, for example, on habitat 
is not currently possible using the sources we rely on.

2.2 | Occupancy-derived thermal affinities

We developed a workflow to obtain global occurrence records for 
each species in the experimental data list, to match these occur-
rences to global sea temperature datasets, and to derive summary 
statistics describing the realized thermal affinity (i.e., the tempera-
tures of all the recorded global occurrences of a species). This work-
flow was implemented in R v3.5.1 (R Core Team,  2018) using the 
tidyverse v1.2.1 suite of packages (Wickham, 2017).

2.2.1 | Global occurrence records

We used the robis package v2.1.10 (Provoost & Bosch, 2019) to 
extract all global occurrence records from the Ocean Biogeographic 
Information System (OBIS,  2018) for all species in our dataset. 



     |  7053WEBB et al.

First, we used the checklist() function to identify those spe-
cies with records in OBIS. 157 of the 158 Comte-Olden species and 
421 GlobTherm species had at least one record in OBIS. For each 
of these in turn, we then used the occurrence() function to ex-
tract the latitude, longitude, depth, and date of all available records. 
Depth (in m) is typically recorded in OBIS as a positive value (i.e., 
0 = sea surface, 100 = 100 m deep) but is not available for all records 
and is recorded as negative (i.e., 0 = sea surface, −100 = 100 m deep) 
by some sources. Because negative values can also indicate inter-
tidal records or, in some data sources, missing values, we replaced 
all negative and missing depth values were with 0, effectively as-
suming that the species was sampled at the sea surface. Because 
our temperature matching process records both sea surface and sea 
bottom temperature, however, we are able to use the most appropri-
ate of these measures depending on species habitats or functional 
groups (see below). Dates were parsed into month and year values; 
missing dates were not replaced. Each occurrence of an individual 
species was then matched to the temperature datasets described 
below by latitude and longitude (Bio-ORACLE) or by latitude, longi-
tude, depth, and date (month-year; IAP gridded).

2.2.2 | Global temperature datasets

We used two complementary global sea temperature datasets. 
First, we used the sdmpredictors package v0.2.8 (Bosch, 2018) 
to access the Bio-ORACLE database (Assis et al., 2018; Tyberghein 
et  al.,  2012) as raster layers in R. We used two Bio-ORACLE lay-
ers, mean sea surface temperature (SST, ˚C, mean from monthly 
climatologies 2002–2009) and mean sea bottom temperature (SBT, 
˚C, mean from monthly climatologies 2002–2014 at mean bottom 
depth). Both layers cover the global oceans at 5 arcmin resolution. 
Hereafter, we refer to these datasets as the Bio-ORACLE temper-
ature data. Second, we used the Institute of Atmospheric Physics' 
(IAP) global gridded temperature dataset (see Cheng et  al.,  2017; 
Cheng & Zhu, 2016) which provides monthly mean temperature at 
depth from the surface to 2,000 m since 1940 at 1 degree resolu-
tion. The depth resolution uses the standard depth bands of the 
World Ocean Atlas (Boyer et al., 2013) to 2,000 m, with 10 m bands 
to 50 m, 25 m bands from 50 to 200 m, 50 m bands from 200 to 
300 m, 100 m bands from 300 to 1,500 m, and 250 m bands from 
1,500 to 2,000 m. Data are provided as monthly NetCDF files which 
we accessed via ftp using the ncdf4 package v1.16 (Pierce, 2017). 
We refer to this second temperature dataset as IAP-gridded.

2.2.3 | Taking the temperature of 
occurrence records

Occurrence records were matched to the Bio-ORACLE and IAP-
gridded temperature datasets using a set of functions that we 
developed, which are fully documented in the data archive avail-
able via GitHub (https://github.com/tomjw​ebb/occur​rence​-deriv​

ed-therm​al-affinity) and in Figshare via the University of Sheffield's 
Online Research Data repository (https://doi.org/10.15131​/shef.
data.12249686). These in turn use the packages sp v1.2.5, rgdal 
v1.2.11, and raster v2.9.5 (Bivand, Keitt, & Rowlingson, 2018; 
Bivand & Pebesma, 2005; Hijmans, 2017; Pebesma & Bivand, 2005). 
For Bio-ORACLE, temperature values were extracted from the SST 
and SBT rasters for each occurrence referenced by latitude and 
longitude. We also assigned a “best” temperature for each record, 
based on the species' habitat or functional group, taking SST for 
birds, mammals, and pelagic and reef-associated fish, and SBT for 
benthos, macroalgae, and demersal and benthopelagic fish. For IAP-
gridded, occurrence records from within the time period covered by 
the dataset (1940–2017) were matched by latitude, longitude, date 
(month-year), and depth. Three temperature values were extracted 
for each occurrence: SST, SBT (actually the temperature at the 
deepest available depth layer, equivalent to SBT in seas <2,000 m, 
temperature at 2,000 m otherwise; hereafter referred to simply as 
SBT), and temperature at sampling depth (i.e., the temperature at 
the depth recorded for the species occurrence). Given the relatively 
coarse spatial resolution of the IAP dataset, some occurrences were 
unable to be matched at all (e.g., if most of the 1-degree cell fell on 
land), and some sample depths were deeper than the mean depth 
over the 1-degree cell, meaning that T at depth was sometimes una-
vailable even though SST and SBT were. Occurrences for which we 
could not obtain a temperature match were excluded from calcula-
tions of thermal affinity.

2.2.4 | Species-level occupancy-
derived thermal affinity

The thermal affinity of a species was calculated on the basis of the 
temperature-matched occurrence records. For each species, we 
calculated the mean, minimum, maximum, median, standard devia-
tion, median absolute deviation, and 5th and 95th quantiles of each 
temperature measure, to capture different regions of the underlying 
thermal performance curve. These summary metrics were typically 
highly positively correlated with each other (see below), and so to 
simplify presentation of results, we focus on mean temperature of 
occurrences as our primary measure of a species' thermal affinity. 
We also recorded for each species the total number of occurrences 
and the number that we were able to match to each temperature 
dataset.

2.3 | Statistical analysis

For each species, we calculated two thermal affinity measures (mean 
and the 95th quantile of observed matched temperatures) derived 
from Bio-ORACLE (SST, SBT, and “best” Bio-ORACLE temperature) 
and from IAP temperature at depth. We calculated correlations 
between each of these measures across all species. We explored 
flexible smoothing methods (GAMs) for the relationships between 

https://github.com/tomjwebb/occurrence-derived-thermal-affinity
https://github.com/tomjwebb/occurrence-derived-thermal-affinity
https://doi.org/10.15131/shef.data.12249686
https://doi.org/10.15131/shef.data.12249686
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experimentally derived thermal maximum and occurrence-derived 
mean thermal affinity, but in all cases, the smoothed fits did not 
indicate relationships markedly more complex than simple linear or 
unimodal curves. For ease of interpretation, especially when includ-
ing interactions between continuous and categorical predictions, we 
therefore modeled experimentally derived thermal maximum as a 
second order polynomial function of occurrence-derived mean ther-
mal affinity, calculated using both “best” Bio-ORACLE temperature 
and IAP temperature at depth. For the Comte-Olden dataset, we in-
cluded fish habitat group as a fixed effect, and for the GlobTherm 
dataset, we included functional group, also as a fixed effect. We 
tested for an interaction of this grouping variable with thermal af-
finity and compared the overall fit of interactive and additive mod-
els as well as models excluding this variable. Finally, we pooled data 
across Comte-Olden and GlobTherm datasets and for each species 
calculated the difference between experimentally derived thermal 
maximum and mean thermal affinity derived from occurrence data 
(using IAP temperature at depth). We modeled this relationship as a 
second order polynomial function (experimentally derived thermal 
maximum ~ poly(occupancy-derived thermal affinity, 2)), separately 
for the major groups (benthos, macroalgae, pelagic, reef-associated 
and demersal fish) to test whether species occurring at low, high, 
or intermediate temperatures vary in how close they live to their 
thermal limits.

Processed datasets and code for analysis and visualization are 
available via GitHub (https://github.com/tomjw​ebb/occur​rence​
-deriv​ed-therm​al-affinity) and are also deposited in Figshare via the 

University of Sheffield's Online Research Data repository, https://
doi.org/10.15131​/shef.data.12249686.

3  | RESULTS

All but one of the 158 fish species in the Comte-Olden experimental 
dataset (63 demersal, 17 benthopelagic, 12 pelagic, 66 reef-associ-
ated) and all 421 species from GlobTherm dataset (85 benthos, 9 
birds, 82 fish, 235 macroalgae, 5 mammals, 5 nekton) are present in 
OBIS with a combined total of 495,795 and 1,821,183 occurrence 
records, respectively, meeting our quality requirements. Forty-five 
species are present in both datasets, taking these into account re-
sults in a total of 2,176,906 occurrence records across 533 valid ma-
rine species. These records span the years 1643–2017, 0-5,870 m 
depth, 81.1°S to 88.8°N, and 180°W to 180°E—although most re-
cords are from coastal North America, NW Europe, Southern Africa, 
and Australasia (Figure 1). The experimental maximum temperatures 
reported for the 44 species shared between the two datasets are 
highly positively correlated (r = .96) but not identical, and so we in-
clude these species in our analyses of both datasets.

Across both sets of species, most (>96%) of occurrences records 
were successfully matched to a Bio-ORACLE temperature (Table 1). 
Somewhat fewer were successfully matched to the IAP-gridded data 
(68.4%–83.7%; Table  1), primarily due to missing date information 
(95,320 records) or years out of the IAP range (17,596 records). 
However, a temperature affinity based on all temperature measures 

F I G U R E  1   The global distribution of the 2,176,906 occurrence records obtained from OBIS for 533 marine species with experimentally 
derived thermal maxima available from our two data sources (Bennett et al., 2018a,b; Comte & Olden, 2017), mapped on a 1° grid

https://github.com/tomjwebb/occurrence-derived-thermal-affinity
https://github.com/tomjwebb/occurrence-derived-thermal-affinity
https://doi.org/10.15131/shef.data.12249686
https://doi.org/10.15131/shef.data.12249686
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was available for almost all (>95%) species, regardless of data source 
(Table 1).

Temperature affinity calculated using different summary mea-
sures and different temperature data sources was typically highly 
positively correlated. Across all temperature data sources, the cor-
relations between the mean and 95% quantile temperature affini-
ties of species were almost always >0.90. Affinities based on SST 
from Bio-ORACLE versus IAP were very similar (r >  .9). Using SBT 
resulted in somewhat weaker correlations between data sources 
and between summary measures within data sources (0.75–0.80). 
Affinities calculated using temperature at depth from IAP and “best” 
Bio-ORACLE temperature (using SBT for benthopelagic, demersal, 
and bathydemersal fish and for benthos and macroalgae, and using 
SST for reef-associated, pelagic-neritic, and pelagic-oceanic fish and 
for birds and mammals) were very tightly correlated (r  >  .95 in all 
cases). We focus here on mean temperature affinities derived from 
the “best” Bio-ORACLE source (SST or SBT depending on group as 
described above) and temperature at sample depth from the IAP 
gridded dataset, but given the strong correlations between tem-
perature metrics our conclusions are not substantially affected by 
this choice. Hereafter, we refer to the “best” Bio-ORACLE sources 
simply as Bio-ORACLE, and IAP temperature at sample depth as IAP 
gridded.

Species-level thermal affinities derived from both Bio-ORACLE 
and the IAP gridded dataset are both strongly positively related to 
experimentally derived Tmax with relationships generally unimodal 
with a peak at intermediate to high temperature affinities (Figure 2). 
These relationships were also highly consistent across habitats and 
functional groups. For the Comte-Olden dataset, there was no evi-
dence of an interaction between Bio-ORACLE temperature and hab-
itat (df = 6, 145, F = 1.23, p = .2938, Figure 2a), and while refitting 
without the interaction reveals habitat to be significant (df = 3, 151, 
F = 3.057, p =  .0302), model multiple R2 increases only marginally 
(from 0.83 excluding habitat to 0.84 including it). There is some weak 
evidence for higher Tmax at a given thermal affinity in demersal (inter-
cept: 15.9°C, 95% CI: 14.2–17.5) and benthopelagic species (16.2°C, 
14.2–18.2) than in pelagic species (13.4°C, 11.1–15.7), with reef-as-
sociated species intermediate (14.4°C, 12.4–16.5); however, these 
differences are small. Using IAP temperature at depth to calculate 
thermal affinity (Figure 2b), again there is no evidence of an inter-
action between habitat and thermal affinity (df = 6, 142, F = 1.17, 

p = .328); in this case, there is no main effect of habitat either (df = 3, 
148, F  =  0.25, p  =  .861), and including habitat has minimal effect 
on the overall model R2 (R2 excluding habitat = 0.86, including hab-
itat = 0.87). For both thermal affinity measures, Tmax increases over 
the full range of estimated thermal affinities with the polynomial 
suggesting a maximum value of Tmax at a Bio-ORACLE thermal affin-
ity of 33.4°C and an IAP thermal affinity of 36.9°C.

Initial examination of the relationship between Tmax and thermal 
affinity for the species in the GlobTherm dataset revealed two ex-
treme outliers, the oribatid mite Halozetes belgicae (Michael, 1903) 
(WoRMS Aphia ID 508323), which has Tmax recorded in GlobTherm 
as 40.1°C but for which we estimate mean thermal affinities as 
−1.08°C (Bio-ORACLE) to −1.71°C (IAP), albeit on the basis of just 
2 OBIS records; and the red alga Devaleraea ramentacea (Linnaeus) 
Guiry, 1982 (WoRMS Aphia ID 145770), which has Tmax recorded in 
GlobTherm as 50°C but for which we estimate mean thermal affin-
ities as 6.4°C (Bio-ORACLE) to 11.4°C (IAP). Checking the original 
references cited in GlobTherm, we find that the critical maximum 
temperature of H. belgicae is as reported in Deere, Sinclair, Marshall, 
and Chown (2006), but these authors report this species as occur-
ring in the supra-littoral zone, so although it is reported as “marine” 
by WoRMS, air temperature is probably more appropriate than sea 
temperature for this species. This may be the case for other species 
in our dataset, however, so we retain H. belgicae in our analyses, but 
note that it has minimal impact on our statistical results or conclu-
sions. The original cited reference for D. ramentacea in GlobTherm 
(Bischoff & Wiencke, 1993) records the maximum survival tempera-
ture of this species as 19°C, and so we change its Tmax to 19°C for 
our analyses, although we note this decision too has no influence on 
our overall conclusions. We also exclude birds, mammals, and nekton 
from our discussion of GlobTherm species as there are few species 
(9, 5, and 5, respectively).

Using Bio-ORACLE thermal affinity, we find evidence of a sig-
nificant interaction between functional group and the second order 
polynomial term for thermal affinity (df = 8, 384, F = 2.20, p = .0271): 
the quadratic coefficients for benthos (−0.029, 95% CI: −0.042 to 
−0.015) and fish (−0.035, −0.054 to −0.015) are both significantly 
negative whereas that for macroalgae (−0.010, −0.028 to 0.009) 
does not differ significantly from 0. However, this model (R2 = .65) 
explains only marginally more variance than models excluding 
the interaction (R2 =  .63) or excluding functional group altogether 

TA B L E  1   Number and percentage of the 2,176,906 total OBIS records and 533 species which were successfully matched to each 
temperature measure using Bio-ORACLE and IAP-gridded temperature data, shown separately for the two thermal maxima databases

Temperature affinity measure

Comte olden data (N = 157 species) Globtherm data (N = 421 species)

Number (%) matched records Number (%) matched species
Number (%) 
matched records

Number (%) 
matched species

Bio-ORACLE SST 476,213 (96.1%) 157 (100%) 1,753,998 (96.3%) 420 (99.8%)

Bio-ORACLE SBT 476,217 (96.1%) 157 (100%) 1,733,619 (96.3%) 420 (99.8%)

IAP-gridded SST 365,627 (73.8%) 154 (98.1%) 1,523,531 (83.7%) 403 (95.7%)

IAP-gridded SBT 365,627 (73.8%) 154 (98.1%) 1,523,531 (83.7%) 403 (95.7%)

IAP-gridded T 338,883 (68.4%) 154 (98.1%) 1,362,461 (74.8%) 403 (95.7%)
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(R2 = .62), indicating that the statistically significant differences be-
tween functional groups in the relationship between thermal affinity 
and Tmax represent only a small amount of variation around the over-
all pattern across functional groups (Figure  2c). Similar results are 
found when using IAP thermal affinity, where there is a significant 
interaction between functional group and the second order poly-
nomial term for thermal affinity (df = 8, 367, F = 2.26, p =  .0231): 

the quadratic coefficients for benthos (−0.021, −0.034 to −0.019) 
and fish (−0.029, −0.047 to −0.010) are both significantly negative 
whereas that for macroalgae (−0.002, −0.019 to 0.014) does not dif-
fer significantly from 0. Again, including these interactions (R2 = .66) 
explains only marginally more variance than models excluding the 
interaction (R2  =  0.64) or excluding functional group altogether 
(R2 = 0.62) (Figure 2d).

F I G U R E  2   Experimentally derived critical thermal limits (Tmax) for 157 (a) and 154 (b) marine fish species taken from (Comte & 
Olden, 2017), and for 420 (c) and 403 (d) marine species taken from the GlobTherm (Bennett et al., 2018a,b), against occupancy-derived 
thermal affinity calculated from a combination of Bio-ORACLE sea surface temperature (SST) and sea bottom temperature (SBT) depending 
on fish habitat or functional group, at c. 9 km resolution (a, c), and date (month-year)-matched IAP gridded temperature at sample depth at 
1° resolution (b, d). Points are means, and error bars are min and max reported values for Tmax (where available) and standard deviations for 
temperature affinities. In each case, separate 2nd order polynomials are shown for each of the habitat associations (a, b) or functional groups 
(c, d) (colored lines), together with a single 2nd order polynomial fitted across all species (solid black line). The 1:1 relationship is shown as a 
dashed line
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The unimodal relationships illustrated in Figure 2 imply that spe-
cies with intermediate thermal affinities tend to live further from 
their Tmax. This is shown more clearly in Figure 3, where, combining 
data from both Comte-Olden and GlobTherm databases, the differ-
ence between experimentally derived Tmax and occupancy-derived 
thermal affinity clearly declines with increasing Taffinity in benthos, 
fish, and macroalgae, from around 14–17°C in species with a mean 
Taffinity of between 10 and 20°C, to around 9–12°C in species with a 

mean Taffinity > 20°C (Table 2). In benthos in particular, there is also 
a clear decline at low Taffinity (difference of around 12°C in species 
with a mean Taffinity of < 10°C; Table 2) indicating that species living in 
extremely cold and extremely warm water tend to be closer to their 
thermal maxima. Further statistical details are not given for the curves 
shown in Figure 3 as for benthos and macroalgae, they are simply the 
same curves as in Figure 2d offset by IAP T at depth, and for fish, they 
are very similar to the curves in Figure 2b offset by IAP T at depth.

F I G U R E  3   Difference between occupancy-derived temperature affinity and Tmax across benthos, fish, and macroalgae, as a function of 
IAP T at depth temperature affinity. These figures combine Tmax data from both the Comte-Olden and GlobTherm databases. Fish are further 
divided into demersal (khaki), benthopelagic (green), pelagic (light blue), and reef-associated (dark blue) species. Lines are fits from second 
order polynomial models

Functional group

Difference between Tmax and mean temperature affinity

Mean Taffinity ≤ 10°C
10°C < Mean 
Taffinity ≤ 20°C

Mean 
Taffinity > 20°C

Benthos 12.7 ± 7.21°C 16.6 ± 3.99°C 12.4 ± 2.26°C

Reef fish NA 16.5 ± 3.61°C 12.0 ± 3.05°C

Demersal fish 15.9 ± 2.40°C 16.1 ± 5.66°C 15.2 ± 2.79°C

Benthopelagic fish 16.6 ± 4.60°C 17.2 ± 4.70°C 9.46 ± 2.68°C

Pelagic fish 18.5 ± 5.90°C 14.8 ± 2.38°C 11.1 ± 2.34°C

Macroalgae 15.2 ± 3.39°C 14.0 ± 4.36°C 11.5 ± 5.00°C

TA B L E  2   Difference (mean ± SD) 
between Tmax and mean occupancy-
derived temperature affinity (IAP T at 
depth) across functional groups, for 
species with a cold (≤10°C), moderate 
(>10°C and ≤20°C), and warm (>20°C) 
temperature affinity
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4  | DISCUSSION

Our analyses show that across 533 marine species, measures 
of thermal affinity derived from matching global occurrence re-
cords obtained from the Ocean Biogeographic Information System 
(OBIS, 2018) to global sea temperature datasets (Assis et al., 2018; 
Cheng et al., 2017; Cheng & Zhu, 2016; Tyberghein et al., 2012) are 
highly significantly associated with independent, experimentally de-
rived thermal maxima (Tmax) (Figure  2). The species in our dataset 
represent 24 taxonomic classes occupying a wide range of benthic, 
pelagic, and coastal habitats throughout the global oceans (Figure 1), 
with Tmax spanning 2–44.5°C, suggesting a truly general relation-
ship. This is an important and encouraging result: The expense of 
experimental studies of thermal tolerance (e.g., Pacifici et al., 2015) 
means that the total number of marine species experimentally as-
sessed is unlikely to substantially exceed the 533 already compiled 
by (Comte & Olden, 2017) and in the GlobTherm database (Bennett 
et al., 2018a,b), whereas many more species have occurrences re-
corded in OBIS (currently >120,000 species; OBIS, 2018). This fur-
ther validates previous studies which have used occurrence-based 
temperature affinities of marine species to generate indices such as 
the Community Thermal Index to monitor climate-driven changes to 
marine communities (Bates et  al.,  2014; Stuart-Smith et  al.,  2015), 
and our simple workflow provides opportunities to address issues of 
limited taxonomic representation in studies of climate vulnerability 
(e.g., Pacifici et al., 2015) by deriving estimates of thermal affinity 
over whole assemblages even in the absence of systematic surveys 
(see Webb and Lines (2018) for an example application to >26,000 
European marine species, using a parallelized version of the work-
flow documented here).

The strength of the relationship between thermal affinity and 
Tmax is perhaps surprising given that our method of matching oc-
currence records to global gridded temperature products intro-
duces a number of potentially major sources of error. First, global 
temperature products derived from downscaling or interpolating 
from instrumental measurements may not accurately reflect the 
ambient temperatures actually experienced by organisms. On 
land, these errors can be on the order of several °C (Roberts, 
Wood, & Marshall, 2019), and although discrepancies are likely to 
be reduced in the sea due to greater spatial and temporal auto-
correlation in temperature (e.g., Steele, 1985; Sunday et al., 2011; 
Webb,  2012), and consequently less pronounced microclimates 
or potential for behavioral temperature regulation (Sunday 
et al., 2011, 2014), it is still likely that the grid-scale temperature 
value assigned to each occurrence record is an imprecise estimate 
of the temperature experienced by that organism—in particular 
for organisms occupying certain habitats, such as the intertidal 
zone, that our workflow does not currently discriminate. Such ef-
fects will differ between the two temperature datasets we used, 
which had contrasting strengths and weaknesses. They differ in 
their spatial resolution, and in whether they include depth and 
time, with the Bio-ORACLE data (Assis et  al.,  2018; Tyberghein 
et al., 2012) constituting a time-averaged climatology with values 

available only for sea surface and sea bottom temperature, al-
though at a higher spatial resolution (5 arcmin) than the gridded 
IAP data (Cheng et al., 2017; Cheng & Zhu, 2016), which includes 
temperature at depth as well as seasonal (monthly) and annual 
variation on a 1 degree grid.

Despite these contrasts in the structure of the temperature data, 
there were no major differences in the thermal affinities produced: 
Mean temperature affinities derived from “best” Bio-ORACLE tem-
perature (SST or SBT depending on species habits) and IAP tempera-
ture-at-sample-depth are both strongly correlated with species Tmax, 
with the IAP temperature affinity providing little more explanatory 
power (C-O: R2  =  .86–.87; GlobTherm: 0.62–0.66) than the “best” 
Bio-ORACLE temperature affinity measure (C-O: R2  =  .83–.85; 
GlobTherm: 0.62–0.65). Our results do not therefore appear to be 
particularly sensitive to small errors in environmental temperature 
estimates. This suggests that obtaining and matching occurrences 
to time- and depth-resolved temperature data may not be worth the 
additional computational time incurred. However, it is worth noting 
that sample depth information was missing for almost half of all the 
occurrence records (>1 M), for all of which we assumed depth = 0 m. 
Therefore, the lack of extra information provided by the IAP tem-
perature-at-sample depth could be a result of losing the extra dimen-
sion of variability in ocean temperature provided by depth. Equally, 
although occurrences in our dataset do span a wide range of depths, 
most were from shelf seas (Figure 1), and it is possible that tempera-
ture at depth would prove more useful in open ocean and deep-sea 
ecosystems.

Globally, trading off spatial and temporal resolution, as seen in 
Bio-ORACLE versus IAP gridded, seems inevitable. However, for 
some regions, datasets with both depth and high spatial resolution 
are available. For example, 1981–2015 hindcasts from the coupled 
NEMO-ERSEM physical oceanographic and biogeochemical mod-
els (Butenschon et  al.,  2016) provide depth-resolved temperature 
at high spatial (<10 km) and temporal (<monthly) resolutions for the 
North Western European Shelf and part of the North East Atlantic, 
enabling more precise matching of species occurrences to environ-
mental temperature. However, species occurrences from outside 
the modeled region cannot be included in estimates of species tem-
perature affinity, potentially limiting the generality of such meth-
ods. A detailed analysis of the costs and benefits of using different 
temperature datasets would be a valuable exercise; however, our 
results suggest that a computationally efficient way to obtain a ro-
bust estimate of temperature affinity for large numbers of species is 
to use a simple climatology such as Bio-ORACLE (Assis et al., 2018; 
Tyberghein et al., 2012).

The strength of the relationship between temperature affinity 
and Tmax is also surprising given the known biases in taxonomic, 
spatial and temporal coverage of OBIS (e.g., Edgar et  al.,  2016; 
Miloslavich et al., 2016; Webb et al., 2010), such that the occur-
rence records we use to calculate a species' temperature affinity 
will typically only constitute a small and nonrandom sample of the 
locations at which the species actually occurs. Although our data-
set comprised almost 2.2 million occurrence records in total, most 
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species are represented by relatively few occurrence records (me-
dian number of OBIS records = 360 for Comte-Olden species, 177 
for GlobTherm species), making the ability to relate temperature 
affinity based on such a small number of occurrences to Tmax even 
more encouraging. It is worth noting, however, that the species for 
which we have Tmax estimates are very likely better-studied, and 
more coastal or shallow-dwelling (Figure 1), than most marine spe-
cies. The similarity of relationships across diverse functional and 
taxonomic groups, though, gives us some confidence in applying 
our method to a much wider range of species, and the benefits of 
using a global, open access database such as OBIS should not be 
overlooked.

Finally, the database of experimentally derived thermal limits 
that we use includes data derived using a range of metrics and meth-
odologies, from species with different historical exposures to dif-
ferent temperature regimes and from experiments conducted often 
decades ago (i.e., when species were living in a different global ther-
mal environment), all of which can affect how thermal limits are per-
ceived to covary with environmental factors (Sunday et al., 2019). 
These methodological differences no doubt account for some of 
the residual variation observed in our analyses, but different mea-
sures of Tmax are likely to be highly correlated within species and 
our results suggest that environmentally derived thermal affinity 
correlates well with all of them.

Another important pattern to emerge from our analyses is that 
across functional groups, species living in warmer waters (higher 
Taffinity) are closer to their experimentally derived thermal maxi-
mum than those with intermediate thermal affinities (Figure 3). For 
fish and benthos, this is also true of species living in colder waters 
(Figure  3). Previous work has shown that the thermal tolerance 
breadth of marine species typically highest at midlatitudes (Sunday 
et  al.,  2011), and it appears to be a general pattern that tropical 
species live nearer to their upper thermal limits (i.e., have a smaller 
“thermal safety margin”; Pinsky et al., 2019; Waldock et al., 2019), 
perhaps because they are adapted to a less variable thermal regime 
than species in temperate systems (Sunday et al., 2019). The extent 
of the nonlinearity evident in our data is rather small, but does add 
to the evidence that warming is likely to have particularly severe ef-
fects for thermal specialists in the tropics (Bruno et al., 2018; Lough, 
Anderson, & Hughes, 2018; Pinsky et al., 2019; Rummer & Munday, 
2017; Tewksbury, Huey, & Deutsch, 2008).

In conclusion, our simple method of matching openly available 
marine species occurrence records to openly available global sea 
temperature products results in estimates of occupancy-derived 
species-level thermal affinity that correlate strongly with exper-
imentally derived critical thermal maxima and that reproduce pat-
terns (e.g., smaller thermal safety margins in warmer water species) 
previously documented in more targeted studies. The workflow we 
propose is replicable and easily extended to further discriminate 
between species groups, or to encompass alternative temperature 
products or additional environmental variables to derive estimates 
of species' affinities to salinity, dissolved oxygen, benthic habitats, 
etc. Our work highlights the value of openly available global datasets 

of species occurrences and environmental variables and builds on 
code developed within the open source community. Our method 
involves approximations using imperfect data at every stage, how-
ever, given the pace and magnitude of current climate change, mak-
ing best use of available data and incorporating as many species as 
possible into predictions of ecological responses to warming seas is 
imperative.
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