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Abstract: Rapid and precise diagnostic methods are required to control emerging infectious diseases
effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets
because they reflect the clinical statuses of patients and most of them can be obtained with minimally
invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and
viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to
discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography–
mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one
of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each
body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications
of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019
[COVID-19]), are summarized and discussed.

Keywords: bodily fluid; biomarker discovery; COVID-19; infectious disease; mass spectrometry;
pathogen; proteomics

1. Introduction

Infectious diseases are major threats to global health, as evidenced by the current
coronavirus disease of 2019 (COVID-19) pandemic. Even though many treatments for
infectious diseases are available, they remain one of the leading causes of death in the
world [1–4]. Therefore, it is crucial to better understand the physiology of pathogens
(bacteria, viruses, fungi, and parasites) at the molecular level [5]. The first step when
studying bacterial pathogens involves identifying molecular features that contribute to
pathogenicity. These features can be potential therapeutic targets, and their inhibition can
eradicate or counteract bacterial infections.

Proteomics is a useful tool for studying infectious diseases because it can provide
large-scale protein information involved in the pathogenesis, infection mechanisms, and
pathological symptoms of hosts. Modern proteomic methods have evolved from gel-based
techniques to gel-free mass spectrometry (MS) approaches known as “shotgun” proteomics.
Shotgun proteomics utilizes nano-high precision liquid chromatography (HPLC) systems
coupled to high-resolution mass spectrometers; it has revolutionized the proteomic research
field by allowing large-scale protein characterization with high throughput [6]. For the
discovery of biomarker candidates or pathogen detection in the infected host, MS-based
proteomics have several advantages. MS-based proteomics have high performance re-
garding its detection limits (<1 nM), repeatability, and reproducibility, in comparison to
immunoassays. The advantage of this technology is that it can be conducted in a mul-
tiplexed manner, without the use of antibodies or comparable binders [7]. In addition,
MS-based analyses are now generally integrated into many hospital laboratories for the
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routine identification of bacterial pathogens in clinical samples, as well as for antibiotic
resistance testing. Proteomic studies related to infectious diseases can be categorized into
three groups according to target samples as follows: (1) pure-cultured pathogen, (2) infected
host proteome, and (3) pathogens in the infected host.

(1) Pure-cultured pathogens: the proteomic analysis of pathogens grown under pure
culture conditions has several advantages regarding the characterization of pathogens.
First, this approach provides accurate translational information of each gene at
the genome-wide level. Second, it is easy to control the cell culture conditions of
pathogens and acquire their proteomic responses. However, the pure-culture condi-
tions of pathogens are different from real infection conditions. In general, host systems
infected with pathogens provide more severe and diverse culture conditions. Addi-
tionally, many pathogens related to human diseases cannot be cultured in laboratory
environments [8].

(2) Infected host proteome: the host proteome infected with pathogens is another impor-
tant target for proteomic analysis. This approach can provide valuable information on
host–pathogen interactions, the infection mechanisms of pathogens (pathogenic bacte-
ria or viruses), and the pathological symptoms of hosts. The study of the interactions
between microbial pathogens and their hosts is called “infectomics”; it constitutes a
growing area of interest in proteomics. Infection sites within a host are also diverse,
including the respiratory system, digestive system, nerve systems, skin, and body
fluid. Therefore, many clinical samples are available. However, though host-derived
biomarkers are useful for monitoring disease status, they are limited for discerning
between similar diseases [9].

(3) Pathogens in the infected host: detecting pathogens (pathogenic bacteria or viruses)
from an infected host is the most direct method for the diagnosis, prognosis, treatment,
and clinical characterization of infectious diseases. Body fluids can be useful samples
for this analysis.

Thus, MS-based proteomics are expected to be used in the future as a tool to rapidly
identify pathogens from human biological specimens. Figure 1 shows an overview of
LC-MS based proteomics to discover biomarkers for infectious diseases. However, to date,
the direct detection of pathogens from the host is still difficult to routinely implement, owing
to several technical hurdles. At this point, this review is about the detection of pathogens
in the body fluids of an infected host. At first, it covers the characteristics of each body
fluid as samples for clinical proteomics, in Section 2 (Figure 1A). It also briefly introduces
current proteomics approaches (data-dependent acquisition/data-independent acquisition
(DDA/DIA), and targeted proteomics) that have been applied to identify the pathogen in
the infected host, in addition to reviewing a coronavirus disease-19 (COVID-19) case to
showcase the most up-to-date technology applied, in Section 3 (Figure 1B). Afterwards,
future challenges are discussed in Section 4 (Figure 1C).
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Figure 1. Schematic depictions of liquid chromatography-mass spectrometry (LC-MS) to discover
biomarkers for infectious diseases. These workflows are designed to discover pathogen-originated
biomarkers. (A) Body fluid collection and protein preparation. Body fluids are useful for diagnosing
infectious diseases. The body fluids of patients with infectious diseases are screened using polymerase
chain reaction (PCR) or culture tests and then collected. Proteins are extracted from body fluids
and enzymatically digested into tryptic peptides. The resulting peptides are applied to LC/MS
for separation and ionization. (B) The steps of biomarker discovery using various acquisition
methods. Protein identification, quantification, and statistical analysis methods are used to identify
useful biomarkers. Mass spectroscopy (MS) analysis is categorized by discovery proteomics (data-
dependent acquisition [DDA] and data-independent acquisition [DIA]) and targeted proteomics
(parallel reaction monitoring [PRM] and multiple reaction monitoring [MRM]). The principles of
each mass technology are described in detail in Section 2.2. The advantages and disadvantages of
each approach are summarized in Table 3. Acquired fragmented spectra are translated into peptide
sequences and then inferred to identify proteins using proteomics software such as MaxQuant or
Skyline. The intensities or peak areas of the acquired peptides are used for comparative analysis of
the corresponding proteins between clinical samples. As a next step, various statistical analyses of
MS data can help to discover potential biomarkers indicative of specific infectious diseases. (C) Data
collection in public repositories for further applications. Many MS data produced by previous studies
can be deposited in public repositories. These data should be further curated to be housed in an open
database, which can be used for discovery or validation studies.

2. Using Body Fluids for the Proteomic Analysis of Infectious Diseases
2.1. Body Fluids as Valuable Clinical Samples for Proteomic Analysis

As described in the introduction, proteomic targets for infectious diseases can be
categorized into three groups. Among them, two targets (host-infected with pathogens and
pathogens in the infected host) are important for screening clinically available biomarkers
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for diagnosis or treatment [10]. Body fluids can be used as the main source of these
targets [5,11]. Body fluids are defined as “liquids within the human body”; they can be
classified as being either systematic or proximal (Figure 1A). Systematic fluids represent the
host’s overall physiological state. However, proximal fluids are limited to specific tissue,
but represent the status of adjacent tissue.

The advantages of body fluids include the fact that they are easier to collect with less
invasive methods, with less demanding sample preparation methods than those with the
tissue before proteomic analysis [12]. Several body fluids can be analyzed, but we chose
five commonly studied body fluids. The characteristics of the representative body fluids
are summarized in Table 1.

Table 1. Characteristics of body fluids.

Characteristics
Sample Type

Blood BALF a CSF b Urine Saliva Ref.

Non-invasive collection Moderate Moderate No Yes Yes [13]

Expert required Moderate Yes
(local anesthesia)

Yes
(local anesthesia) No No [14]

Protein concentration
(mg/mL) 60–80 0.05–0.2 0.2–0.8 0.08 c 0.5–2 [14–17]

Complexity Highest High High Moderate High [18]
Proposed * SOPs for collection Yes Yes Yes Yes Yes [14,19–22]

* SOPs, standard operating procedures; BALF a, bronchoalveolar lavage fluid; CSF b, cerebrospinal fluid; c variable
depends on hydration.

Blood is the most popular body fluid for host proteomic analysis because it represents
the proteome of the whole organism, as it contacts every tissue in the body. It also contains
many hidden or unknown proteins, such as cytokines, hormones, and antibodies, thus
providing insights on the clinical or physiological conditions of the host [23]. Both these
characteristics are valuable aspects that other body fluids do not have. Therefore, blood is a
useful clinical sample to guide the treatment of various diseases. Serum or plasma is the
blood fraction used for this purpose. However, fewer than 15 of the most abundant but least
informative proteins account for more than 90% of the total protein components of these
fractions. The high complexity of protein contents and additional modifications make the
analysis more complicated [24]. Strategies for removing these abundant proteins without
losing informative low-copy proteins are essential to ensure the effective screening of most
indicative biomarkers. There are still technical challenges in identifying low-abundance
proteins in the blood.

Bronchoalveolar lavage fluid (BALF) is a biofluid obtained using fiber-optic bron-
choscopy. This fluid reflects the protein composition of the pulmonary airway. Therefore,
proteomic analysis of the BALF can provide information on airway diseases. BALF can be
a more sensitive clinical sample than nasal swabs regarding respiratory molecular diagnos-
tics, but its sampling method is ineffective and invasive and requires considerable time and
costs. The BALF proteome is dominated by plasma-derived proteins such as albumin and
immunoglobulins (65–80%), which makes its analysis difficult [25]. However, BALF can be
a valuable clinical sample for the screening of lung-specific disease biomarkers [14].

Cerebrospinal fluid (CSF) is a body fluid that surrounds the ventricular system of
the central nervous system, spinal cord, and brain. CSF transports waste products and
nutrients, mediating molecular exchange with blood plasma. As it connects with the blood
system, most of its protein contents are similar, but the protein concentration is lower than
that of plasma [15,26]. CSF also acts as a mechanical support for the spinal cord and brain.
It is considered to be an ideal clinical sample for the detection of neurological disorders
or diseases, such as multiple sclerosis, meningitis, and spinal cord injuries. However, the
disadvantage of CSF is its associated invasive sample collection method, which requires
lumbar puncture. Blood contamination and the presence of blood plasma proteins in the
CSF are further disadvantages regarding the identification of biomarkers by CSF proteomic
analysis [15].
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Urine is a liquid secreted by the kidneys; it is the result of glomerular filtration of the
plasma to eliminate waste products, such as urea and metabolites. It also includes proteins
secreted from the urinary tract and renal tubular epithelial cells. Therefore, urine covers
related diseases of the blood, kidneys, bladder, and urinary tract. One advantage of using
urine as a clinical sample is that it can be collected in large quantities in a non-invasive
manner. It is also possible to collect urine samples repeatedly, which aids in time-resolved
studies. Furthermore, urine has a 1000-fold lower proteome complexity (0.08 mg·mL−1)
than serum or plasma [27]. Finally, proteins or peptides in urine are stable because the
urine proteome remains in the bladder for a considerable time before excretion, after the
proteolytic process mediated by endogenous proteases. These characteristics make urine a
convenient source for discovering biomarkers. To date, the major targets in urine proteomics
have involved the screening of biomarkers of renal and urogenital dysfunctions [28],
but it has also been applied to other infectious diseases described later [29–33]. Saliva
is a fluid secreted by the salivary glands and gingival crevice [34]. It contains more
than 1000 proteins that originate from glands and plasma [16]. Cystatins, α-amylase,
mucin, albumin, globulins, and serotransferrin are the major proteins [35]. As the protein
complexity of saliva is relatively low, it is preferred for biomarker screening by proteomic
analysis. Like urine, saliva has the advantage of easy and non-invasive sample collection.
Periodontal diseases, such as periodontitis, oral cancer, autoimmune disease, and diabetes
mellitus, are popular targets of saliva proteomics [34–36].

The standard operating procedures (SOPs) of authorized institutions should be consid-
ered to obtain reproducible results (Table 1). This will be helpful to minimize pre-analytical
variables while ensuring quality and uniformity among samples. There are some excellent
reviews summarizing detailed information on SOPs [14,19–22]. Although each body fluid
has unique characteristics, several steps for obtaining high-quality results are similar. The
commonly considered factors related to protein sample preparation are summarized in
Table 2.

Table 2. Considered factors for protein sample preparation.

Factors Description Ref.

Immunodepletion Immunodepletion is generally applied to remove high-abundance proteins and enrich
low-abundance proteins. [37–40]

Solubility of target proteins MS-grade detergent can be applied to target low-abundance and hydrophobic proteins,
such as membrane proteins. [41]

Efficiency of protein preparation The applicability of automation of protein isolation methods or extraction efficiency is
critical to large-scale projects. [42–44]

Peptide prefractionation or enrichment Enrichment methods based on affinity binding require large starting protein amounts. [18,45,46]

For example, sample fractionation or depletion is commonly required before tandem
mass spectroscopy (MS/MS) analysis regardless of the type of body fluids because of the
proteome complexity or the presence of high abundance proteins in body fluids [12,27].
In the case of blood, the dynamic ranges differ by a factor of 1010 between serum albu-
min (35–50 mg/mL in normal conditions), the most abundant protein, and cytokines (low
pg/mL range). Unfortunately, this needs to be considered because immunodepletion
can also co-deplete low-abundance proteins. Several studies have shown limited suc-
cess in depleting high-abundance proteins and enriching low-abundance proteins [37–40].
Alternative methods to simplify sample complexity, such as fractionation, have been ap-
plied optionally, which increases the number of LC-MS/MS runs. The advantages and
disadvantages of each fractionation method have been described well previously [18,45,47].

The solubility of target proteins needs to be considered because avoiding sample loss
owing to precipitation or aggregation and efficient digestion into peptides by proteases are
prerequisites for MS-based bottom-up analysis [48]. Several MS-compatible reagents are
commercially available to enhance the solubility of proteins or enzymatic digestions. Waas
and colleagues evaluated the efficiency of eight commercially available reagents based
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on the number of peptides and proteins identified, total protein sequence coverage, and
digestion specificity in various conditions [41].

The digestion methods are the major bottle necks for large-scale projects. They are
also the source of experimental variability and need to be performed as consistently as
possible. To develop an optimal process, an extensive set of protocols have been developed
which are divided into two categories: in-solution process and cleanup methods [49]. In-
solution processing methods include in-solution digestion [50] and integrated StageTip
workflow [51]. Those have simple protocols and can be adapted to high-throughput pro-
cesses, but the presence of reagents can hinder downstream processes. Cleanup methods
include in-gel methods, filter-aided sample preparation [52], suspension trapping [53],
single-pot, solid-phase-enhance sample-preparation (SP3) [49], precipitation, and other
affinity-based methods. Those methods provide high-quality results but require time con-
suming and laborious processes. Recently, Müller and colleagues proposed fully automated
high-throughput and streamlined workflows for clinical samples using SP3 methods, which
can deal with 96 samples in 3.5 h [44]. A detailed comparison of these methods is beyond
the scope of this paper. However, several studies have described the differences among
such methods [18,42,43,46,49,53].

Over 500,000 peptides can be derived from body fluid proteins per sample. The hun-
dreds of co-eluting peptides were ionized and analyzed together. The high dynamic range
and difference in ionization efficiency of the co-eluting peptides can affect MS/MS analy-
sis [54]. Peptide prefractionation or enrichment is one way to solve this problem. Those
procedures are usually achieved by chromatographic and electrophoretic fractionation
to reduce the number of co-eluents. Strong-cation exchange coupled with reverse phase
(RP), high-pH RP coupled with RP, or hydrophilic interaction and RP chromatography are
commonly applied for peptide prefractionation [18,46]. An interesting reference paper by
Wasinger and colleagues provides more detail of the separation of peptides using various
one- or multidimensional methods for LC-MS analysis [45].

2.2. Increase in Applications of Body Fluids for Proteomics of Infectious Diseases

With the spread of COVID-19, scientists and clinicians are now paying more attention
to the rapid and effective diagnosis of infectious diseases than ever before. Body fluid
proteomics has been considered an emerging technology to identify novel biomarkers.
For this review of body fluid proteomics, more than 630 research papers related to body
fluid proteomics were identified in PubMed using the following words: ((Biomarker) AND
(Proteomics)) AND (Infectious disease OR Emerging disease) AND ((Plasm*) OR (Seru*)
OR (bloo*) OR (Urin*) OR (Cerebro*) OR (Bronchoalveolar*) OR (Body fluid) OR (Liquid
biopsy)) NOT (Cancer). Additionally, 422 deposited datasets related to infectious diseases
were also found in the data repository proteomeXchange, which is a data repository for
proteomics studies [55,56]. Continuous increases in research papers and deposited datasets
related to body fluid proteomics for infectious diseases can thus be seen (Figure 2A). The
deposited datasets were manually curated according to the type of body fluid and the type
of targets in Figure 2B. Unexpectedly, only a few studies were discovered that targeted
pathogen-derived proteins, which are major interests of this review. Most proteomic studies
have focused on infected human or host proteomics.
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Figure 2. Current statistics of studies on body fluid proteomics for infectious diseases. (A) Gradual
increases in research papers and deposited datasets on body fluid proteomics for infectious diseases.
These results were based on PubMed and ProteomeXchage searches conducted in 2020 for the past
20 years (2002–2020). (B) Utilization of various body fluids for diagnosing infectious diseases divided
based on the targets. These results were based on ProteomeXchage searches. The statistics showed that
body fluid proteomics is an emerging proteomics field for pathogen-originated biomarker discovery.

3. Application of LC-MS Proteomic Analysis for Identification of Pathogens Using
Body Fluids Associated with Infectious Diseases

MS analysis can be divided into three methods according to the acquisition method:
DDA, DIA, and targeted-mass spectrometry (parallel reaction monitoring [PRM] and
multiple reaction monitoring [MRM]). The characteristics of the acquisition methods are
summarized in Table 3. Figure 1B also shows the fundamental concepts that each acquisition
method. In this section, the characteristics of each method are briefly described, focusing
on body fluid proteomics studies of infectious diseases that apply these MS methods for
biomarker discovery, as summarized in Table 4.

Table 3. Characteristics of LC-MS acquisition method.

Characteristics
Acquisition Methods

DDA a MRM/PRM b DIA c Ref.

Requirement for high-quality instruments High Moderate/High Highest [57]
Accuracy of protein quantification Low Highest High [58,59]
Reproducibility between replicates Low Highest High [59,60]

Depth of protein identification Highest Low High [58,59]
Ease of data analysis Easy Moderate Hard [61–64]

DDA a, data-dependent acquisition; MRM b, multiple reaction monitoring; PRM, parallel reaction monitoring;
DIA c, data-independent acquisition.
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Table 4. Summary of body fluid proteomics for targeting pathogen-derived proteins.

Body Fluid Study Groups Sample Size Target Pathogen Major Findings Method Instrument Ref.

Urine
Active

pulmonary
tuberculosis (TB)

9, 21 Mycobacterium
tuberculosis

Four mycobacterial proteins
were identified from the

urine of nine patients. One
of the candidate proteins
was reconfirmed in urine
from 21 clinical samples.

DDA LCQ [29,30]

Urine
Active TB vs.
latent TB vs.

non-TB
21 vs. 24 vs. 18 Mycobacterium

tuberculosis

Ten mycobacterial proteins
of active TB and six

mycobacterial proteins of
latent TB were identified.

DDA LTQ-Orbitrap
Velos Pro [31]

CSF, Urine,
Serum, and

Saliva

Sleeping sickness
early-stage vs.
late-stage vs.
uninfected

3 vs. 4 vs. 3 Trypanosoma
brucei gambiense

Parasite proteins were
identified but not further

analyzed because of a lack of
validity.

DDA Q Exactive [65]

Urine Syphilis patient
vs. Healthy 54 vs. 6 Treponema

pallidum

The 26 unique peptides
derived from 4 unique

T. pallidum proteins were
identified. These proteins

have low sequence similarity
to the human protein.

DDA, DIA Synapt MS [32]

Blood Malaria patient 7 Plasmodium vivax
Five parasite-derived

proteins of P. vivax were
identified in 80% of patients.

DDA 6550 iFunnel
Q-TOF [66]

Urine
Urinary tract

infection (UTI)
patient

27 15 bacterial
species a

Eighty-two peptides were
selected using machine

learning classification and
used for finding

predominant pathogens
from UTI patients.

DIA, PRM Orbitrap Fusion,
Q Exactive HF-X [33]

Serum

pulmonary TB
vs.

extrapulmonary
TB vs. latent TB

vs. non-TB

31 vs. 10 vs. 9 vs.
9, 40

Mycobacterium
tuberculosis

Twenty mycobacterial
proteins were identified in
the serum exosome of TB
patients. The MRM assay
can detect targets in the

range of attomolar to
femtomolar combined with

isotope labeling.

MRM
Xevo TQ-S,

LTQ-Orbitrap
Velos

[67–69]

Nasopharyngeal
and nasal swab

Respiratory tract
infections
patients

218

4 respiratory
tract infection
(RTI)-related

bacterial
species b

Top 16–18 peptide
biomarker candidates were
selected for each of the four

pathogens and verified
using clinical samples.

PRM Q Exactive, Q
Exactive HF [70,71]

BALF Pneumonia
patients 1

5 RTI-related
bacterial
species c

Five unique peptides for
each pathogen were selected
according to abundance and
applied for direct detection

of pathogens.

MRM Q-Exactive, Xevo
TQ-S [72]

endotracheal
aspirate VAP patients 37

6 RTI-related
bacterial
species d

Ninety-seven
species-specific peptides of
the six pathogens, selected
based on the proteotypicity
and high ionization yield,

were monitored and verified
in clinical samples. The

targeted proteomics assay
showed 76% sensitivity and

100% specificity.

MRM TripleTOF®5600
MS [73]

nasopharyngeal
swab

COVID-19
patient 9 SARS-CoV-2

To develop an assay,
nasopharyngeal swabs with
different quantities of viral

material were used. The two
peptides of N protein were

selected. They can be
obtained within 3 min of

elution.

DDA Q Exactive HF [74,75]

nasopharyngeal
swab

COVID-19
patient 103 SARS-CoV-2

The two peptides of the S
protein were selected and
monitored. The targeted

assay showed 90.5%
sensitivity and 100%
specificity in a 2-min

gradient run.

MRM TripleTOF 6600 [76]
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Table 4. Cont.

Body Fluid Study Groups Sample Size Target Pathogen Major Findings Method Instrument Ref.

nasopharyngeal
swab

COVID-19
patient 985 SARS-CoV-2

Fully automated sample
preparation (SP3) and

sample-cleanup methods
(turbulent flow) were

applied. The two peptides of
the N protein were validated
in a qualitative (Tier 3) and

quantitative (Tier 1) manner.
The targeted assay showed

84% sensitivity and 97%
specificity in a 2.5-min

gradient run.

PRM Q Exactive HF-X [77]

nasopharyngeal
swab

COVID-19
patient vs.
Healthy

88 vs. 88 SARS-CoV-2

Automated
immunoaffinity-based

sampling was applied. The
two peptides of the N

protein were selected for the
targeted assay. The targeted

assay was qualified using
the ensemble method and

showed 98% sensitivity and
100% specificity in a 5-min

gradient run.

PRM Orbitrap
Exploris 480 [78]

a Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Streptococcus agalactiae, Staphylococcus aureus, Staphy-
lococcus epidermidis, Staphylococcus haemolyticus, Streptococcus mitis, and Staphylococcus saprophyticus, b S. aureus;
Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae; c Acinetobacter baumannii, M. catarrhalis,
P. aeruginosa, Stenotrophomonas maltophilia, and K. pneumoniae; d A. baumannii, E. coli, H. influenzae, P. aeruginosa,
S. aureus, and S. pneumoniae.

3.1. Application of DDA for Proteomics of Infectious Diseases

LC-MS-based proteomics has evolved into two analytical methods: (1) discovery
proteomics and (2) targeted proteomics [79]. The DDA, so-called “shotgun proteomics”, is
a suitable method for discovery studies because it allows the comprehensive identification
of bacterial proteins. In traditional DDA, protein samples are tryptic digested, following
which the peptide mixtures are fractionated and analyzed by LC-MS/MS. The most abun-
dant precursor ions in a given spectrum are then selected and fragmented into MS/MS
for further analysis (Figure 1B) [80]. Various protein identification programs have been
developed [64,81]. The most common approach for protein identification is the sequence
database matching algorithm, in which real spectra obtained from MS/MS analysis are
comparatively analyzed with in silico spectra derived from peptide sequences from a
reference database. Therefore, using the correct high-quality searching algorithms and
reference databases is essential for determining the quality of search results when using
DDA. The high accessibility and wide coverage of DDA have made it the most widely
used method (Table 3). However, stochastic sampling is the main limitation of DDA; it
complicates the identification of low-abundance proteins in complex samples and, in some
cases, low-abundance proteins are frequently ignored [82]. Owing to this problem, data are
plagued with numerous missing values, therefore requiring imputation and resulting in
the loss of statistical power when the sample size is increased. The depletion of abundant
proteins or the fractionation of protein mixtures has commonly been applied to overcome
this technical limitation [83]. Label-based protein quantification methods, such as tandem
mass tags and isobaric tags for relative and absolute quantitation, are also routinely applied
to the comparative quantitative analysis of the infected host proteome [84,85]. Optimizing
MS/MS measurement conditions in LC/MS is also considered to be an important factor in
expanding the usefulness of DDA [86,87].

There have been several important studies regarding the discovery of proteins of
pathogen origin from clinical samples of infectious diseases. Kashino and colleagues
applied the DDA approach to urine proteomics in patients with pulmonary tuberculosis
(TB) [29]. The urine samples were prepared by filtration through a 5 kDa molecular weight
cut-off (MWCO) filter. They found four proteins (MT_1721, MT_1694, MT_3444, and
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MT_2462) of Mycobacterium tuberculosis (Mtb) from nine patients with culture-confirmed
pulmonary TB. Further validation of these proteins was performed by western blotting
using anti-sera from patients with TB. Pollock and colleagues selected one candidate protein
(MT_1721 or Rv1681) for further study [30]. This protein was confirmed by LC-MS analysis,
and the full length of the target protein was validated using immunoaffinity precipitation
MS analysis [30]. However, because of the low sensitivity of the DDA approach used
in this study, the detection rate of the target protein (MT_1721) in the group of patients
was not significantly high (less than 20%). The antibody of the target protein (MT_1721)
was subjected to an enzyme-linked immunosorbent assay (ELISA) using approximately
100 clinical samples. ELISAs for the target proteins showed a detection rate of <50%.
However, the authors confirmed the complete absence of urine reactivity in the negative
controls. Young and colleagues also performed urine proteomics to discover TB-specific
biomarkers using clinical samples obtained from patients with TB (n = 63) [31]. TB patients
were categorized as having definite TB (n = 21), presumed latent TB (n = 24), or presumed
non-TB (n = 18). The clinical samples were pretreated by filtration (50 kDa MWCO filter) and
concentration (3 kDa MWCO filter) to deplete highly abundant proteins before proteomic
analysis. Using the DDA approach, the authors discovered 16 proteins originating from
Mtb. Additionally, 27 human proteins were selectively identified in patients with active
pulmonary TB.

However, although the previously described body fluid proteomics studies succeeded
in identifying bacterial-derived markers, in many cases researchers failed to identify bac-
terial proteins because of intrinsic limitations, low quantity target proteins relative to the
host proteins, and/or the absence of target proteins in existing databases, as mentioned
above [65]. Spectral library searching is an alternative method for overcoming sensitivity-
related limitations [81]. This is described in more detail in the next section. In brief, this
technique is typically more sensitive and faster than the sequence database searching
approach because it directly matches the spectra of peptide ions to spectra contained in
libraries [88,89]. Hentschker and colleagues reported improved and faster results based
on the proteome and phosphoproteome of pneumococci [90]. They applied a spectral
library instead of a sequence database to identify more unidentified bacterial proteins. The
spectral library was derived from MS/MS analysis of the culture cells; it was validated
using synthetic peptides. They identified 76% of the theoretical proteome and 128 phos-
phorylated proteins in Streptococcus pneumoniae. This method is expected to be useful for
body fluid proteomics.

3.2. Application of DIA for Proteomics of Infectious Diseases

Following its introduction in 2004, DIA has become a new strategy for systemically
analyzing complex protein mixtures [91]. Unlike DDA, in DIA all ions present in a certain
range of the m/z window are co-fragmented and collectively analyzed (Figure 1B). The DIA
approach makes it possible to expand the profiles of proteomes and accurately quantify
targeted proteins. This method can result in better experimental reproducibility than DDA
methods [60,92–94]. DIA has the merits of both DDA and targeted approaches (selected
reaction monitoring [SRM]/MRM and PRM). Therefore, it has become a popular technology
in proteomics research [95]. However, it is still unable to overcome the depth of proteome
coverage in DDA and the accuracy of MRM or PRM in measuring very low-abundance
proteins (Table 3). High-resolution MS/MS acquisition at fast scan speeds is required
for DIA-MS experiments. The most widely used hybrid instruments, QExactive and QE
plus, are believed to have sufficient performance for DIA analysis. Although DIA is an
extremely powerful method, it is more complex than DDA because of the difficulties of
MS/MS spectral data analysis. Previously used peptide identification algorithms are not
appropriate for DIA because of the complexity of the MS/MS spectrum of DIA [58,81]. In
order to deconvolute complex spectra, spectral libraries are essential as reference databases.
In general, spectral libraries contain intensity and peak information of non-canonical
fragment ions generated by multiple DDA analyses of target samples [59]. Unfortunately,
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standardized pipelines have not yet been established [58,64]. The contents necessary
for the practical application of DIA have been described in more detail in recent review
papers [94,96].

Roux-Dalvai and colleagues conducted urine proteomics using DIA analysis and
machine learning to identify pathogens in the urinary tract. In the first step, spectral
libraries containing 31,096 peptides from 15 pathogen colonies were obtained. Then, the
authors prepared 12 artificial urine sample replicates spiked with 15 bacterial species to
verify the spectral library. As a result, 4319 peptides were obtained as detected spectra. To
select informative features among them, machine learning was used to identify peptide
signatures; 82 peptides were selected. Further validation of the selected peptides was
conducted using PRM. They successfully predicted the predominant bacteria in clinical
samples (n = 27) [33]. DIA has been applied for the proteome analysis of infectious diseases
by targeting host proteins; it has also been applied for the rapid diagnosis of identified
pathogens [97].

3.3. Application of Targeted-MS for Proteomics of Infectious Diseases

DDA has been routinely used to discover biomarkers from clinical samples, with
further validation being achieved through rigorous statistical methods. This validation pro-
cess requires accurate, reproducible, and highly robust methods for quantifying candidate
biomarkers. However, the abovementioned major limitations of DDA, related to irrepro-
ducibility and imprecision, result from stochastic problems. Targeted proteomics, mean-
while, have been devised for the precise quantitative analysis of specific proteins or protein
complexes. Representative targeted proteomics include SRM, MRM, and PRM [98,99].
SRM/MRM technology eliminates most non-targeted detection methods, which can reduce
the noise signal and improve the detection sensitivity. In general, a triple quadrupole instru-
ment is used for these technologies. Monitoring specific transition windows (a small range
of m/z values of precursor/fragment ion pairs; Figure 1B) results in increased selectivity
and sensitivity compared to those with DDA and DIA approaches. It is known that tar-
geted methods are at least 5–10 times more sensitive than DDA when analyzing whole-cell
lysates [92,100] (Table 3). However, the bottleneck in the development of SRM/MRM-based
assays is the complicated procedure of the optimization process [101–104]. For example, it is
important to choose the prototypic peptides, which are the unique peptides that empirically
have a high chance of being observed.

PRM technology has been optimized based on quadrupole-orbitrap instruments to
deliver an improved version of targeted proteomics. Unlike SRM/MRM, PRM involves the
acquisition of full MS/MS scans of product ions in orbitrap, rather than selected fragment
ions from predefined precursor ions. Therefore, this technology is more convenient because
it does not require the selection and optimization of fragment ions. It can also be used
for qualitative purposes, as in DDA approaches, to avoid false positives. In summary,
this technique provides simplified and robust workflows but requires time-consuming
optimization steps. Therefore, it is not suitable for discovery-based applications but is
very useful for validation applications targeting low-abundance proteins present in body
fluids [105]. Targeted-MS based diagnosis has inherent strength compared to immunoas-
says in that it can perform the analysis in a multiplexed manner with high selectivity and
sensitivity, without an antibody, at a low cost if the lab has appropriate instruments and
has developed the assay [7,106].

Several studies have successfully employed targeted proteomics to quantify biomark-
ers exposed in body fluids for infectious diseases. Kruh-Garcia and colleagues first devel-
oped an MRM assay for the antigen 85 complex (Ag85) mycobacterial proteins that are
potential diagnostic biomarkers for TB. They compared the amount of the Ag85 complex
(represented by Ag85A, Ag85B, and Ag85C proteins), in the secretome of various clades
of Mtb, revealing precise discrimination among those highly homologous proteins [67].
In a further study, they expanded their proteomic results in the secretome to include
TB patient serum [68]. They identified 250 targeted peptides using DDA proteomics of
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Mtb-infected macrophages and a mouse model. After a thorough optimization process
aided by in silico analysis, they selected 76 peptides as target peptides, representing
33 mycobacterial proteins (including Ag85). Then, they performed an MRM assay, using
serum exosomes from TB patients as clinical samples. As a result, for the first time, they
suggested 20 mycobacterial proteins present in the serum exosomes of TB patients as po-
tential biomarkers (n = 41). The same research team developed refined MRM assays using
isotope-labeled peptide standards [69]; these assays can detect mycobacterial proteins in
serum exosomes in the attomolar to femtomolar range.

Karlsson and colleagues successfully selected species-unique peptides of the Mitis
group of the genus Streptococcus, using proteogenomic analysis. They characterized and
identified more than 200 unique peptides from cell lysates of cultured cells using DDA
proteomics [70]. They then expanded their platform to discover peptide biomarkers of
representative respiratory tract pathogens, including S. pneumoniae, Haemophilus influenzae,
Moraxella catarrhalis, and Staphylococcus aureus. For the discovery phase, representative
genetic variations were preselected as MS-inclusion lists and validated in bacterial culture
proteomics. Finally, the targeted peptides of each of the four pathogens were confirmed in
218 clinical samples [71].

Wang and colleagues used a similar approach to identify five gram-negative pathogens
in the BALF, including Acinetobacter baumannii, M. catarrhalis, Pseudomonas aeruginosa,
Stenotrophomonas maltophilia, and Klebsiella pneumoniae [72]. Bardet and colleagues, mean-
while, developed an SRM-based method to rapidly and reliably identify pathogens using
endotracheal aspirate samples of ventilator-associated pneumonia (VAP) [73]. Based on the
high ionization yields of the unique peptides confirmed in DDA experiments, 97 species-
specific peptides from the six most frequent bacterial species (A. baumannii, Escherichia coli,
H. influenzae, Pseudomonas aeruginosa, S. aureus, and S. pneumoniae) responsible for VAP
were selected and monitored using the developed SRM assay.

3.4. Application of LC-MS/MS for COVID-19 Diagnosis

The current COVID-19 pandemic, which is caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has justified the need for the development of diagnostic
technology for infectious diseases. Molecular diagnostics such as polymerase chain reac-
tion (PCR) have to date been used as the gold standard for the detection of SARS-CoV-2.
However, novel alternative approaches have been introduced. Proteomics researchers have
introduced novel LC-MS/MS-based diagnostic approaches for COVID-19 (Table 4).

Gouviea and colleagues first reported 101 tryptic peptides derived from six viral
proteins identified from SARS-CoV-2-infected Vero E6 cells, using DDA analysis [74].
Through further curation, 14 peptides from nucleocapsid phosphoprotein (N protein), spike
protein (S protein), and membrane glycoprotein (M protein) of the virus were recommended
for further targeted MS. In a subsequent study, they proposed a time-efficient diagnostic
method for COVID-19 clinical samples using LC-MS/MS as alternative methodologies
to PCR or immunodiagnostic assays. They applied artificial nasopharyngeal swabs to
evaluate 14 peptides. Among these 14 peptides, two peptides of the N protein were selected
as attractive candidates [75]. Interestingly, the same target peptides were confirmed by
independent groups using the PRM method [107,108]. However, neither approach could
overcome the problems of the low detection rate (approximately 20% of the PCR assay) and
low throughput analysis (20 min per sample). Thus, further investigations should aim to
improve practical usage. Singh and colleagues also reported MRM assays using two other
peptides derived from the S protein and replicase polyprotein, achieving significant results
of 100% specificity and 90.5% sensitivity in a 2 min gradient run (n = 103) [76]. However,
MRM measurements are limited by their low resolution, which makes it impossible to
verify the peptide spectrum itself.

Cazares and colleagues reported a PRM assay for the detection of viral proteins in
virus-spiked mucus samples and found that the limit of detection (LOD) and limit of
quantitation (LOQ) were approximately 200 and 390 attomoles, respectively [109]. These
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values indicated that the assay could detect approximately 2 × 105 viral particles/mL in a
sample, showing comparable performance to the RT-PCR method.

Fully automated sample preparation and sample-cleanup methods with high-resolution
MS seem to overcome these problems. Cardozo and colleagues developed a fully auto-
mated magnetic-based sample preparation method for nasopharyngeal and oropharyngeal
swabs that could be completed within 4 h using a robotic liquid handler. Turbulent flow
chromatography coupled with tandem mass spectrometry (TFC-MS/MS) can provide an
efficient online sample cleanup method. This workflow can analyze four samples in a row
within 10 min (in other words, more than 500 samples per day). The authors evaluated
the target peptides of the SARS-CoV2 N protein qualitatively and quantitatively using
PRM methods. The LOD and LOQ were reported to be 2–3 and 4–6 ng/mL, respectively.
Compared to an RT-PCR-validated cohort, this workflow could detect up to 84% of the pos-
itive cases with a specificity of up to 97% (n = 985) [77]. Renuse and colleagues introduced
automated immunoaffinity-based sampling combined with targeted high field asymmetric
waveform ion mobility spectrometry (FAIMS) [78]. Acquired PRM data were used to
model an “ensemble” machine learning-based classification method. This method obtained
high-quality results, delivering 98% (86/88) sensitivity and 100% (88/88) specificity [78].

Rajczewski and colleagues thoroughly evaluated 636 viral peptides identified in
datasets using Galaxy-based workflows [110]. Galaxy is a web-based platform that provides
reproducible computational research and numerous bioinformatics tools. Using in vitro
and clinical source datasets deposited in the public repository proteomeXchange, they
selected four peptides derived from N and M proteins. These peptides were consistently
detected across all datasets used in the study and were proposed as potential diagnostic
biomarkers.

Additional studies from nasopharyngeal swabs, gargle solutions, or other human
samples have also been published [109,111–114]. However, the results are limited, except for
those of nasopharyngeal swabs, compared with the results of a PCR-based study [115,116].
During the initial phase, Ihling and colleagues reported PRM-based identification of N
protein from patient gargle solutions [114]. Recently, Kipping and colleagues proposed an
improved sample preparation protocol and developed MRM methods using a synthetic
peptide library to target the N protein from gargle solutions and saliva [117]. Based on
these results, LC-MS-based diagnostics seem to be in the beginning stage, except for the
use of nasopharyngeal swabs. The SARS-CoV2 peptides that have been introduced as
potential biomarkers in recent studies have been summarized in two previous review
papers [118,119].

4. Concluding Remarks and Future Outlook

This review summarizes LC-MS-based proteomics for discovering biomarkers of
infectious diseases, using various body fluids. Body fluid proteomics is an attractive
method for monitoring patient status. The direct detection of pathogen-derived proteins or
peptides from body fluids could also prove to be an optimal tool for identifying infectious
diseases. However, studies into infectious diseases focusing on body fluid proteomics
have not been actively performed due to technical difficulties. The first part of this review
introduces the characteristics of the representative body fluids. Recent improvements in
sample preparation methods have increased the coverage of proteome discovery. The
second part describes the characteristics of representative MS acquisition methods such
as DDA, DIA, MRM, and PRM. The application of body fluid proteomics to infectious
diseases is also introduced here. Given the importance of the COVID-19 pandemic, recent
results of COVID-19 studies using body fluids are also summarized here. Researchers
have applied cutting-edge sample preparation methods and proteomic technologies to
discover biomarkers and have reported improved results. For example, compared to the
MRM assay developed by Kruh-Garcia in 2014 [68], which can process one sample per day,
the automatic workflow developed by Cardozo in 2020 can handle 500 samples per day
without laborious work [77]. In these studies, micro-flow LC with a short separation time
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was applied. This is contrary to the mainstream method of using nano-flow LC with a long
separation time to obtain very high sensitivity. This method was introduced to increase the
sample processing throughput using micro-flow LC [120–123]. As a result, a moderate loss
of sensitivity, which was the key reason for using nano-flow LC, can result in improved
robustness, throughput, and reproducibility. Recently, the same research groups proved
the robustness of micro-flow LC and the potential for high-throughput clinical applications
based on more than 38,000 proteomic samples collected over the past 2 years [124].

Despite the remarkable results of LC-MS-based diagnosis, further innovations in
instruments and informatics are required for practical applications. The following sec-
tion, therefore, focuses on informatics, which should be improved for future proteomics
applications.

4.1. Data Deposition and Sharing Using Public Repositories

Data management has become important because of the rapid accumulation of MS data
worldwide, produced by high-throughput MS (Figure 1C). However, enormous amounts
of raw MS data can be useless if they are not quality controlled and well-organized using
predefined terms, clinical metadata, and parameters used for analysis. Data repositories
such as ProteomeXchange, Panorama, PeptideAtlas [125–127], and PRoteomics IDEntifi-
cations database (PRIDE) [128–130] are playing important roles in proteomics. The main
characteristics or functionalities of each repository have been summarized in a recent
paper [131]. Recently, most leading journals have mandated the deposition of raw data and
analysis results in these public repositories [130]. Deposited data should be processed in
a standard format that can be reused for further analysis. Accumulated datasets should
be easily accessible and should be capable of being reanalyzed; this could be achieved by
using an improved pipeline or other processes in a high-performance cloud computing en-
vironment [110]. These databases should also support other independent research results or
benchmarking for new algorithms [110,132,133]. The integration of proteomic datasets with
other omics datasets would expand the scope of our understanding of infectious diseases.

4.2. Expanding Community-Level Spectral Libraries

Similar to that with next-generation sequencing, it remains challenging to identify
differentially abundant proteins, especially in the cases of proteins that occur at low abun-
dance levels. Moreover, the larger the number of samples, the greater the number of
missing values in the proteomics results, which will inhibit downstream analysis. To
deal with this problem, missing values are currently replaced with reasonable values us-
ing various imputation methods, and statistical methods of transcriptomics are adopted.
However, this can result in over-confident predictions [132,134–136]. Recently, intensity-
dependent probabilistic modeling without imputation has been proposed to overcome this
limitation [137].

However, the best answer for low-abundance proteins would be to increase proteome
coverage to a reliable level. For this purpose, from an informatics perspective, spectral
library approaches or hybrid searches could be applied to increase the proteomics depth;
these approaches have been successfully used in DDA experiments [33,89,138–141]. Recent
results have shown that search strategies can be critical for reproducibility, regardless of
the acquisition method (DDA or DIA). This shows the importance of the spectral library
approach [88,142]. However, the quality of spectral libraries from individual experiments is
questionable, and the lack of publicly available libraries makes it difficult to apply spectral
library search strategies to common proteomic data analysis [81,88,89,143–146]. For this
reason, several synthetic peptide libraries, library-free approaches, or spectral prediction
approaches have been developed as alternatives [147–152]. Although further improvements
on deep learning-based methods have been achieved, these in silico approaches cannot
completely replace experimentally derived libraries [150,153]. In addition, one of the major
hindrances of this approach is that the series of library generation workflows is rather
complicated, making it difficult for researchers to use. MaxDIA has recently enabled
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library-based and library-free DIA proteomics in the MaxQuant environment, making
these approaches more intuitive for researchers to use [62]. Therefore, improving and
accumulating public spectral libraries will aid in the development of the next generation
of proteomics.
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