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Qubit-mediated deterministic 
nonlinear gates for quantum 
oscillators
Kimin Park, Petr Marek & Radim Filip

Quantum nonlinear operations for harmonic oscillator systems play a key role in the development 
of analog quantum simulators and computers. Since strong highly nonlinear operations are often 
unavailable in the existing physical systems, it is a common practice to approximate them by using 
conditional measurement-induced methods. The conditional approach has several drawbacks, 
the most severe of which is the exponentially decreasing success rate of the strong and complex 
nonlinear operations. We show that by using a suitable two level system sequentially interacting with 
the oscillator, it is possible to resolve these issues and implement a nonlinear operation both nearly 
deterministically and nearly perfectly. We explicitly demonstrate the approach by constructing self-Kerr 
and cross-Kerr couplings in a realistic situation, which require a feasible dispersive coupling between the 
two-level system and the oscillator.

Quantum computers or quantum Turing machines1, 2 take advantage of their quantum mechanical architecture 
and are capable of solving tasks which are exponentially hard for their classical counterparts3–5. Their predeces-
sors are quantum simulators6–8, 9, which seek to emulate specific quantum dynamics of particular quantum sys-
tems in place of general processing. The fundamental principle of the simulations relies on mapping the complex 
quantum systems onto other more accessible and better controllable ones, such as trapped ions10–13, photons14, 15,  
atomic lattices16, 17 and superconducting circuit18, 19. The analog simulators are dedicated to continuous variables 
(CV) systems with infinite dimensional Hilbert space20. These systems allow for simulations of unexplored highly 
nonlinear open quantum dynamics21–27. Some CV nonlinear operations naturally appear in other physical sys-
tems, such as Bose-Einstein condensates28, cold ions29, or circuit quantum electrodynamics30. The spectrum of 
nonlinear operations is however limited and typically determined by the unique physics of specific experimental 
platforms.

A broader set of nonlinear operations for quantum harmonic oscillator can be elegantly realized by coupling 
them to suitable two-level systems (qubits)31–35. This realization is possible because the two-level systems are natu-
rally nonlinear due to their saturability and offer a wide variety of qubit-oscillator couplings. The nonlinear nature 
in turn leads to dynamics of the oscillator which can be used for deterministic generation of nonclassical states36 
or for conditional realization of nonlinear quantum potentials37, 38. The two level systems are also beneficial from 
a technical standpoint, allowing for a significantly larger number of individual interactions39 than what is allowed 
for purely optical ancillary single photon states40, 41. The conditional nature of these hybrid operations, however, 
limits them in their suitability for practical applications as well as quantum simulations, which ultimately leads to 
success rate exponentially decreasing with the number of operations involved.

In this report we propose a method for deterministic implementation of nonlinear unitary operations for 
quantum harmonic oscillators sequentially coupled to single qubits. This method relies on employing a sequence 
of available non-commuting qubit-oscillator interactions, similarly as in23, 42–44. The qubits act only as mediators 
rather than for control unlike the conceptually similar quantum Zeno gates45, starting and finishing the operation 
in a factorized state. The repeated gates incrementally create a Zeno-like nonlinear unitary dynamics determin-
istically and with a nearly unit fidelity. We illustrate the quality of the proposed method by explicitly analyzing 
realization of the self-Kerr and cross-Kerr nonlinearities done with help of a qubit sequentially coupled to the 
oscillator by dispersive interactions46–52 under photon losses.
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Short-time oscillator interaction transduced by a qubit
Let us start by considering a short time evolution of a quantum oscillator mediated by a single qubit. The unitary 
oscillator-qubit interaction that enables the desired dynamics is governed by Hamiltonians of the type  ˆ ˆˆ σ=H AA j , 
where σ̂j with j = x, y, z relates to the qubit system and stands for one of Pauli matrices, and Â is an operator acting 
on the oscillator. To achieve the desired gate on the oscillator, we can consider a pair of non-commuting unitary 
operators ˆ ˆ ˆU exp i A[ ]x xτσ=  and U i Bexp[ ]y yτσ=ˆ ˆ ˆ  where the oscillator operators Â and B̂ commute =A B[ , ] 0ˆ ˆ . As 
depicted in Fig. 1a, we can join them into a sequence ˆ ˆ ˆ ˆ ˆ† †

=U U U U Uxyxy x y x y  following the idea of geometric phase 
effect53. In a manner similar to23, 54, 55, this operator can be simplified to
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where the last line corresponds to a weak strength limit τ  156. The resulting oscillator dynamics is driven by the 
product of operators ˆ ˆAB and coupled to the qubit by σ̂z. The qubit degree of freedom can be straightforwardly 
eliminated by preparing and measuring the qubit system in one of the relevant eigenstates, such as |g〉. The meas-
urement then substitutes the discarding of qubit depicted in Fig. 1a. The whole sequence g U gxyxy

ˆ  then realizes 
a conditional operator

τ τ τ τ= = − +O g U g A B i A B1 2sin [ ]sin [ ] sin[2 ] sin[2 ]/2, (2)xyxy1
2 2ˆ ˆ ˆ ˆ ˆ ˆ

which approximates unitary operation

τ= − ˆ ˆˆ ˆU i ABexp[ 2 ] (3)AB
2

in the limit of small τ. The commutativity of Â and B̂ restricts the generality of the scheme, but still allows for 
many interesting cases. The base operators Â and B̂ can be compatible operators on a single oscillator (as in 
Fig. 1a), or different operations on two separate oscillators (illustrated in Fig. 1b). The most apparent scenarios in 
which the product of two operators is highly nontrivial and practically useful operation are the self-Kerr and 
cross-Kerr evolutions, which we will address in detail later.

Near-unitarity of short-time realistic interaction
The perfect operation (3) is realized only in the limit of short time τ → 0. However, we can increase the strength 
by repeating the individual operations. In each step, the ancillary qubit is initialized in the ground state, led to 
interact with the oscillator systems, and finally projected onto the ground state again. It does not matter whether 
a single physical qubit is used repetitively or if a number of different systems is employed. In any case, R repeti-
tions realize quantum operation O O( )R

R
1

ˆ ˆ=  which approximates the ideal operation O eT
iR AB2 2ˆ ˆ ˆ

≡ τ− . Interestingly 

Figure 1. Concept of deterministic gates with oscillators mediated by a qubit where the interactions H ≈ σx,yA, 
H ≈ σx,yA1 and H ≈ σx,yB2 between optical mode and ancillary mode are arranged to achieve a high-order 
nonlinearity: (a) scheme for single-mode optical interaction operator, and (b) scheme for a two-mode optical 
evolution operator. Each box with a written interaction Hamiltonian H represents the evolution exp[iH] for a 
unit of time, and the different colored boxes represent different operators acting on the ancillas. The ancillas 
prepared in a chosen state g  are discarded after each set of interactions. Repetition of these unit approximate 
operators represented by dashed boxes makes high-strength operators.
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enough, in the limit of sufficiently small τ the re-initialization of qubit is not needed, as the approximate operator 
can be also obtained as ˆ ˆO g U g( )R xyxy

R= .
For a specific test state ψ , the performance of the operation can be quantified by looking at its successful 

implementation probability ˆ ˆ†
P O Os R Rψ ψ=  and fidelity ψ ψ= | | |ˆ ˆ†

F O O P/T R s
2 . These metrics inherently 

depend on the chosen state ψ , but we can also directly analyze the sandwiched operators ˆ ˆ ˆ†
=Q O Of T R and 

Q O Os R R
ˆ ˆ ˆ†

= . In the ideal case of =O OR T
ˆ ˆ , both of these operators Qs

ˆ  and Q̂f  reduce to the identity operator 1. We 
can therefore discern the quality of the operation by looking at how far we are from this ideal scenario. This anal-
ysis is best accomplished by considering the joint eigenbasis of the commuting operators Â and B̂ consisting of 
states m  with the respective eigenvalues mA and mB. Note that the basis does not need to be discrete. We can 
write the diagonal elements of Q̂f  and Q̂s as

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †
= = = =m Q m m O O m m O O m m O m m O m m O O m m Q m , (4)f R T T R R R R R s

2

where the unitarity of the operator OT
ˆ  and the commutativity between OT

ˆ , ÔR and m m  is utilized. From (4), we 
may notice an interesting behavior: the fidelity and the success probability are not complementary and can 
approach unity simultaneously. This near-unitarity is the characteristic of schemes utilizing the qubit in the eigen-
state of the realized operator as in (1). In the limit of small τ, the probability of success derived from (2) is 
expanded up to the lowest order as

τ≈ − + .m Q m m m m m R1 4 ( ) (5)s A B A B
2 2 2 2 6ˆ

We can now use this expression to lower bound both the fidelity and the success probability for arbitrary 
quantum states. The operators Â and B̂ typically represent position, momentum, or number of quanta of the oscil-
lators whose statistical distribution are asymptotically vanishing outside a certain range, and therefore are reason-
ably bounded in realistic physical systems. Any state can be expressed as the superposition |ψ〉 = ∑mcm|m〉, and 
for a strictly bounded state, we can write ∑ == c 1m m

m
m, 0

2
A B
max  where mmax = max(|mA|, |mB|) is the dimension(s) of 

the Hilbert space(s). The bounds for success probability and fidelity can be found as
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where we used the fact that m Q ms
ˆ  is a decreasing function of m and the error bound is a function 

m R m R m T m T R( , , ) 8 4 / 1max max max max
6 6 6 4 6 3 2ε τ τ τ= = =  . Now as ε =→∞lim 0R  for any T and mmax, the error 

can be made arbitrarily small. For an arbitrarily chosen error bound ε and desired strength of the interaction T, a 
number of repetitions

R m T
(7)

max
6 3

ε
=

implements the desired operation with an error lower than ε.
Even for quantum states which are not sharply bounded, we can always find ′mmax  such that 

c 1m m
m

m, 0
2

2A B
max ε∑ = −=
′  for any ε2. With help of (6) we can now always lower bound the success probability and 

the fidelity by PS, F > 1 − ε − ε2, and we can again find R and ′mmax such that the joint error ε + ε2 is made arbitrar-
ily small. We emphasize that the obtained bound is derived from the worst case scenario, and its main purpose lies 
in proving conceptual viability. In practical scenarios in which the approached quantum states are not centered at 
the boundary of the Hilbert space, the number of required repetitions can be significantly smaller.

The prominent aspect of our scheme is that its success probability can approach one even for many repetitions, 
implying that the measurement can be removed from the setup. We therefore follow the deterministic scheme 
depicted in Fig. 1. Formally, a single step of the operation is no longer represented by an operator O1

ˆ , but by a trace 
preserving map which deterministically transforms any input state ρinˆ  into

ρ ρ ρ ρ= ⊗ = +U g g U O O O OTr [ { } ] , (8)q xyxy q xyxyout in 1 in 1 2 in 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

where ˆ ˆ ˆ ˆ ˆ ˆO g U g A B i A B1 2 sin [ ]sin [ ] sin[2 ] sin[2 ]/2xyxy1
2 2τ τ τ τ= = − +  is the successful operation and 

O e U g A B i A Bsin [ ] sin[2 ] sin[2 ]sin [ ]xyxy2
2 2τ τ τ τ= = − +ˆ ˆ ˆ ˆ ˆ ˆ  is the erroneous operation. When the individual 

operation is repeated R times, the final output state can be expressed as

ˆ ˆ ˆ ˆ ˆ
†

PO O P(1 ) , (9)s R R s
R

out in errorρ ρ ρ= + −

where Ps denotes the success probability of the probabilistic scheme with otherwise identical parameters and the 
density matrix ρ̂R

error groups together all the realizations which would be in the probabilistic scenario disqualified 
by measurements. For states from Hilbert space limited by mmax the fidelity is lower bounded by

ε≥ ≈ − .F PF 1 2 (10)s c
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This result shows that the performance of the deterministic scheme is comparable to the probabilistic regime. 
Considering the respective fidelities, the deterministic scheme achieves the performance of the probabilistic one 
when the number of repetitions R is increased by a factor of 2 .

Example of self-Kerr quantum interaction
Let us explicitly demonstrate the performance of the proposed gate by realizing some of the nonlinear gates prev-
alent in quantum information theory and quantum technology. The self-Kerr operation23, 57 is realized by a uni-
tary operator iTnexp( )2ˆ  and in our approach it can be straightforwardly achieved by setting A B nˆ ˆ ˆ= = . The 
implementation requires coupling with Hamiltonian σ∝ ˆ ˆH n j, where σj are Pauli matrices. Such operations can 
be obtained from the Jaynes-Cummings Hamiltonian by diagonalizing it into the dispersive form 

ˆ ˆ ˆ ˆn g nr z zω σ σ+ Ω′ + ′ 50 and eliminating the commuting local Hamiltonians by either by suitable strengths of the 
Hamiltonian constants ω′g  , g ′ Ω, or applying suitable local operations. In the dispersive limit of the 
Jaynes-Cummings model, only a form of nzσ̂ ˆ is available, but other operations can be achieved by performing 
suitable local rotations of the qubit: ˆ ˆ ˆ ˆ ˆ ˆe e e ei i n i i n/4 /4x z x y=πσ τσ πσ τσ−  and =πσ τσ πσ τσ− −ˆ ˆ ˆ ˆ ˆ ˆe e e ei i n i i n/4 /4y z y x . The realistic 
implementation in these systems therefore can be achieved by a qubit interacting with an oscillator in the disper-
sive regime, with intermittent qubit rotations in Bloch sphere and re-initialization back to ground state after each 
round. The operation can be also found in other physical systems: it can be obtained as a part of the dispersive 
interaction available between two-level systems and oscillators. The cavity field of a high finesse mirrors and the 
motional energy eigenstate of a thin dielectric membrane was used in the optomechanical setup49. The circular 
Rydberg states of Rb atoms and the Ramsey cavity field are coupled in this regime in cavity QED systems46, 47, and 
the cooper pair box qubit and the resonator field in 1D transmission line resonator are coupled in circuit QED 
systems48, 50.

In contrast to the approach of circuit QED58, which employs suitable time-dependent driving of the 
qubit-oscillator, our method employs a set of identical elementary gates, which can be repeated in order to obtain 
strong interaction. As a consequence, the whole operation is less demanding from the point of view of the ability 
to control the employed quantum systems. The performance of the gate can be generally estimated from the 
parameters and from the available dimension given by mmax. However, such a bound may be too loose, and actual 
performance depends on the specific choice of the states. Let us apply the self-Kerr operation to a sample coherent 
state a aexp[ ] 0ˆ ˆ† ⁎β β β= −  with β = 1. The self-Kerr operation is non-classical and non-Gaussian operation, 
and produces a non-classical and non-Gaussian state when applied to a coherent state59. Such states are necessary 
for advanced application of quantum information processing such as quantum computation60, and can be recog-
nized by negative regions of their Wigner functions61, 62. In relation to the self-Kerr effect a larger Kerr interaction 
strength T produces more complex structures of negative Wigner function63, 64.

In Fig. 2, we display the negative regions of Wigner function of self-Kerr transformed coherent states with 
various coupling parameters T = 0.2, 0.4, 0.6, 0.8. Apparently, a birth of highly nonclassical quantum interference 
in phase space can be observed. It is manifested by three separated regions of negativity. The figures show practi-
cally no difference between the ideal operation (above) and the deterministic approximate realization with 
τ = 0.02 (middle). This observation is reinforced by a near unit fidelity F = 1–0.8 × 10−4 for T = 0.8. Interestingly, 
based on (10) and the parameters of the operation, the maximal Fock number corresponding to such a high 
bound of fidelity should be as small as nmax = 2.06, while only around 73% of the photons in the coherent state 
β = 1  live in the subspace under 2. This again shows that the actual fidelity for general states can be higher than 
the bound given in (10). Coherent states β  have an average photon number β=n̂ 2 with an unclear maximum 
photon number. The fidelity for these states scales as ˆF T R T n T1 9 / 1 36 1 363 10 2 10 4 5 4β β τ τ≈ − = − = −  
for the lowest order expansion. Therefore we notice that these states have a smaller error in fidelity than the bound 
of errors scaling as nmax

6 .
In realistic scenarios, the operation will have to endure the effects of imperfections, mainly the loss as the 

dominant decoherence model for quantum oscillators. The loss can be modeled by passively coupling the evolv-
ing system to a set of zero temperature oscillators. In our model, we consider a sequence of discrete couplings, one 
after each cycle of the elementary sequence (1). Each of these couplings transforms annihilation operator of the 
system as ˆ ˆ ˆη η→ + −a a a1 bath, where âbath is annihilation operator of the auxiliary zero temperature oscil-
lator which is immediately discarded. The single step transmittance parameter η strongly impacts the perfor-
mance of the method. In order to see how large loss can the system actually tolerate, we have simulated the 
imperfect operation for η = 1–5.6 × 10−4, which corresponds to η/2τ2 = 0.3. The loss counteracts the effects of the 
nonlinear operation. As time of the interaction increases, the state is continuously becoming more and more 
non-classical, which is witnessed by the appearance of negative areas in its Wigner function. This is actually as 
high as the resilience of the setup goes, because when the loss is larger, the negativities in Wigner function are not 
observed. However, even in this case the loss is accumulated with time and at some point so much of the energy 
is lost that the non-classical features vanish. This can be seen in the bottom row of Fig. 2. We can see that while the 
loss of 13% of the energy for T = 0.2 did not severely affect the non-classicality, 40% loss for T = 0.8 removed one 
area of negativity. We therefore conclude that proposed method is not critically sensitive to basic decoherence 
caused by a loss in the oscillator.

Example of cross-Kerr quantum interaction
Another example of quantum nonlinear interactions is the cross-Kerr coupling between two harmonic oscillators. 
This gate is a key component in building important two-qubit single photon gates in linear optical quantum com-
putation such as controlled NOT gates and Fredkin gates65–67, and nondestructive photon detection68, 69. It also 
enables direct photon-photon interaction used for many quantum information processing such as a one-way 
computation70. The cross-Kerr interaction, represented by a unitary operator ˆ ˆexp iTn n[ ]1 2 , can be engineered from 
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the same fundamental component as the self-Kerr operation: the dispersive coupling between an oscillator and a 
qubit, only this time the qubit is coupled to two separate oscillators (as in Fig. 1b) so A n1=ˆ ˆ  and ˆ ˆ=B n2. The two 
dispersive interactions ˆτσ±i nexp[ ]x 1  and τσ±i nexp[ ]y 2ˆ  should be applied alternatingly being turned on and off by 
drive laser beams47, 50.

An elementary application is altering phase of a single photon based on the presence or absence of another, 
which is the basis for many discrete computation gates65–67, 71. In an example of the control-Z gate71, a separable 
state of two oscillators 00 01 10 11+ + +  is changed to entangled state + + −00 01 10 11  by the 
cross-Kerr gate with a strength T = π. Within our approach, the deterministic cross-Kerr gate with fidelity 
F = 1–10−5 can be achieved from R = 1000 instances of the basic block. This scenario suits the approximation well 
due to a limited number of photons in the systems.

However, there are other applications in which larger photon numbers are significant68, 69. To test for this sce-
nario, we consider the cross-Kerr coupling between two coherent states with amplitudes α = β = 1. Considering 
again interaction strength T = π, the operation can be implemented with fidelity F = 0.989 for R = 1000 and 
F = 1–5 × 10−4 with R = 2500 repetitions. A higher number of individual operations is demanded by the larger 
Hilbert space of the states for a fidelity comparable with the previous example. We can also analyze the operation 
from the point of view of entanglement it generates. There are several measures of entanglement72, and here we 
adopt the negativity due to the ease of its evaluation73. The negativity of a bipartite state given by a density opera-
tor ρ can be obtained as ρ =

ρ −N[ ] Tr[ ] 1
2

PT
 as the measure of entanglement, where ρPT is the partial transposed 

density matrix and Tr[| · |] is the trace norm. The analysis should also clearly show that the cross-Kerr gate is 
non-Gaussian and the created entanglement should therefore be of the non-Gaussian nature. To that end we also 

look at the Gaussian negativity ρ =
ρ




−

N [ ]G

Tr 1

2
G
PT

, where ρG is the density matrix of a Gaussian state which has 
all first and second moments of quadrature operators identical with ρ74, 75. Both the Gaussian and the 
non-Gaussian entanglement of the state generated by the cross-Kerr gate are plotted in Fig. 3 for various values of 

Figure 2. Negative regions of Wigner functions for coherent state β = 1  subjected to self-Kerr interaction 
with total strengths T = 0.2 (first column), T = 0.4 (second column), T = 0.6 (third column), and T = 0.8 (fourth 
column). The top row shows the ideal realization of the operation, the middle row shows simulations with single 
step strength of τ = 0.02, and the bottom row shows realistic lossy simulation with repeated single step 
transmittance η = 1–5.6 × 10−4. Insets show fidelities of the states with the ideal versions. We can see that the 
simulations faithfully recreate the ideal Wigner functions, even under the effects of moderate loss.
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the interaction strength T. The interaction strength of dispersive interactions was chosen as τ = 0.05. We can see 
that the entanglement created for larger values of T is practically completely non-Gaussian, as expected, and that 
the simulated process closely follows the ideal scenario.

To assess an impact of the decoherence on the cross Kerr interaction, we introduce an equal loss in the both 
oscillators. Simulations with a realistic loss with η = 1–3.5 × 10−3, corresponding to the same level of noise as in a 
previous section, show results conceptually similar to the self-Kerr case. Again, the loss limits the achievable 
number of elementary gates and the corresponding total interaction strength. State with dominantly 
non-Gaussian entanglement can be still achieved, but the maximal difference between non-Gaussian and 
Gaussian entanglement is limited. For our simulation, this difference N Nmax { [ ] [ ]}Gρ ρ−ρ  was 0.31 at the energy 
loss of about 40% for a single arm. There is, however, another interesting effect. In addition to reducing the overall 
correlations, the loss also drives the quantum state towards Gaussianity. As a consequence, there is less of entan-
glement, but higher portion of it is Gaussian. In fact, for certain values of parameters the lossy scenario produces 
more Gaussian entanglement than the ideal one, while non-Gaussian nature is still accessible. It supports previous 
statements about a sufficient robustness of the method to the loss in oscillator.

Applications and outlook
In summary, using a single qubit as a recyclable mediator allows for synthesis of high order nonlinear operations 
on quantum oscillators. These operations can be realized at an arbitrary strength with both fidelity and probability 
of success approaching one. The only cost is represented by the required number of repetitions of the basic build-
ing block, which may be mitigated by using an optimized architecture. Operations which can be implemented 
depend on the available qubit-oscillator couplings. With the feasible dispersive coupling46–52, 76 it is possible to 
realize self-Kerr and cross-Kerr operations, which play a significant role in quantum information processing, 
with high quality under a moderate level of environmental effects. The extension of the scheme ranges from engi-
neering high order quadrature nonlinear operators, such as cubic-phase gate operator by Rabi interactions77–81, 
to hybrid interaction operator such as principally nonlinear optomechanical interactions82–93 by combination of 
the dispersive and Rabi interactions. The higher-order versions of both dispersive and Rabi interactions open a 
broad class of CV nonlinear interactions. The involved harmonic oscillators can be physically varied (optical, 
mechanical, electrical, collective spins), and therefore this method can potentially provide wide class of nonlinear 
gates between these platforms. All of these potential applications open up a possibility of deterministic quantum 
simulators.
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