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Abstract

Strictures in Crohn's disease (CD) are a hallmark of long‐standing intestinal damage,

brought about by inflammatory and non‐inflammatory pathways. Understanding the

complex pathophysiology related to inflammatory infiltrates, extracellular matrix

deposition, as well as muscular hyperplasia is crucial to produce high‐quality scoring

indices for assessing CD strictures. In addition, cross‐sectional imaging modalities

are the primary tool for diagnosis and follow‐up of strictures, especially with the

initiation of anti‐fibrotic therapy clinical trials. This in turn requires such modalities

to both diagnose strictures with high accuracy, as well as be able to delineate the

impact of each histomorphologic component on the individual stricture. We discuss

the current knowledge on cross‐sectional imaging modalities used for stricturing

CD, with an emphasis on histomorphologic correlates, novel imaging parameters

which may improve segregation between inflammatory, muscular, and fibrotic

stricture components, as well as a future outlook on the role of artificial intelligence

in this field of gastroenterology.
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INTRODUCTION

Crohn's Disease (CD) is a variant of inflammatory bowel diseases

(IBD) leading to fistulizing and stricturing phenotypes. Medical

therapy approaches for fibrostenosis are short‐lived and inevitably

lead to endoscopic intervention or surgical resection. Stricturing is

most common in the small bowel and particularly in the terminal

ileum.1 The diagnosis of strictures in CD may or may not be triggered

by obstructive symptoms and utilizes diagnostic imaging or endos-

copy. Recent data suggests that early intensive medical therapies

may decrease the rate of stricturing complications.2,3 However, up to

21% of patients present with stricturing CD at diagnosis, and 10% of

patients without baseline findings of strictures may develop symp-

tomatic strictures over a 5‐year follow‐up.4 The etiology behind this

persistent disease progression may be due to either incomplete

control of mucosal inflammation or inflammation‐independent

mechanisms of intestinal damage.1

Given the transmural nature of CD, endoscopic biopsies are

insufficient to detect the composition of the intestinal wall within

strictures. This is relevant because strictures involve all bowel wall

layers, and comprise a mix of inflammation, muscular hyperplasia and

fibrosis.5 In response to these limitations, cross‐sectional imaging

modalities are being developed. The segregation of fibrostenotic‐
predominant from inflammatory‐predominant strictures may help

better determine which patients would most benefit from aggressive

anti‐inflammatory therapy and which would likely need surgical or

endoscopic intervention. Nowadays, such segregation may aid in

enrolling patients in contemporary clinical trials of anti‐fibrotic

agents for stricturing CD.

Herein, we review the imaging modalities used in the diagnosis

and management of stricturing CD, mainly intestinal ultrasound (IUS),

computed tomography (CT) and magnetic resonance imaging (MR),

while highlighting their clinical applicability, their shortcomings as

well as a future outlook into what is yet to come in this field of CD,

such as machine learning (ML) and radiomics.

HISTOMORPHOLOGIC CORRELATES OF STRICTURE
TYPES INVOLVED IN CROHN’S DISEASE

Traditionally, intestinal fibrosis is described as a progressive pathway

driven by chronic inflammation leading to mesenchymal cell activa-

tion, accumulation of extracellular matrix, scarring, and eventual

stricturing.1 This pathogenetic view, however, has recently been

challenged with evidence supporting inflammation‐independent

mechanisms of fibrosis.6 In addition, smooth muscle hyperplasia,

especially in the muscularis mucosa and the muscularis propria, is

increasingly believed to grossly contribute to luminal narrowing in

CD strictures. A semiquantitative analysis of 48 CD stricture surgical

specimens revealed that smooth muscle hyperplasia/hypertrophy

correlated with chronic inflammation independent of fibrosis, and

that some strictures may arise from nonfibrotic smooth muscle‐
mediated narrowing.7 Interestingly, purely inflammatory or

fibrostenotic strictures are exceedingly rare,8,9 and these elements

almost always co‐occur and even correlate in severity.5 Hence,

inflammation, muscular hyperplasia, and fibrosis must all be consid-

ered for histomorphologic evaluation. In approximately 85% of cases,

internal penetrating disease is accompanied by stricturing disease.10

Of importance, fibrosis and fibromuscular changes in strictures are

similar irrespective of the presence of penetrating disease. Inflam-

mation, however, is more severe in penetrating CD.11

Several stricture histopathologic scoring systems have been

created but they are hampered by significant heterogeneity, lack of

formal validity or reliability testing, and missing assessment of com-

ponents such as muscle hypertrophy/hyperplasia.12 As histopathol-

ogy scoring systems represent the gold standard for evaluation of

imaging techniques that will ultimately support stricture clinical tri-

als, they should reasonably assesses all key aspects of CD strictures.

The Stenosis Therapy and Anti‐Fibrotic Research (STAR) systematic

review and expert consensus has set in motion the standardization

and validation of a histopathological scoring system for small bowel

strictures in CD.12

RADIOLOGIC DEFINITIONS FOR CD STRICTURES

The advent of anti‐fibrotic trials in CD made it important to stan-

dardize definitions of image‐based stricture diagnosis. Criteria for CD

associated strictures were highly heterogenous, if not lacking at all.13

The CrOhN's disease anti‐fibrotic STRICTure therapies (CONSTRICT)

group of international IBD experts recently suggested standardized

radiological definitions for a small bowel stricture diagnosis.14 For

clinical purposes, at least 2 of 3 criteria are required: localized luminal

narrowing (>50% luminal narrowing compared to an adjacent healthy

bowel loop), bowel wall thickening (25% increase in wall thickness

relative to the adjacent non‐affected bowel) and pre‐stenotic dilation

(≥3 cm). Clinical trials necessitate all 3 features be present. Similarly,

the Society of Abdominal Radiology and the American Gastroentero-

logical Association defined strictures as persistent luminal narrowing

with ≥3 cm upstream bowel dilation, irrespective of imaging findings of

active inflammation.15

DIAGNOSIS OF CD STRICTURES

All cross‐sectional imaging modalities, IUS, MR and CT, are able to

detect strictures with high accuracy, irrespective of the stricture

definitions used (Table 1).13 The choice of imaging test depends on

local availability, cost‐effectiveness, radiation exposure concerns, pa-

tient comorbidities, phenotype, and preferences, among other factors.

CT enterography (CTE)/enteroclysis

CT enterography (CTE) has high sensitivity and specificity (up to

100%) for detecting small bowel strictures13,16 and the use of oral
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and intravenous (IV) contrast improves its detection rate (Figure 1).

The use of neutral or low‐density contrast, either orally (enter-

ography) or by nasoenteric tube (enteroclysis), allows for superior

small bowel wall identification and characterization compared with

standard high attenuation enteric CT contrast. Computed tomogra-

phy is almost universally available, has fast examination time, and

relatively low cost. In healthcare systems that apply a Beveridge

model (e.g., the United Kingdom, Spain, New Zealand, Veterans

Health Administration in the United States [U.S.], etc.) or a Bismarck

model (e.g., Germany, Belgium, Japan, some employer‐based health-

care plans in the U.S. etc.), CT is readily available. In contrast, long

waiting lists and delays in imaging might be expected in national

health insurance models (e.g., Canada, Taiwan, South Korea, Medi-

care in the U.S.). Further, CT is available to those who can afford it in

systems with out‐of‐pocket models such as those predominant in

less‐developed (e.g., India, China, Africa, South America), as well as

uninsured or underinsured populations in the U.S. Despite the U.S.

having elements of all of the above models, CT overall is highly

accessible and easily approved where pre‐certification from insur-

ance companies is required.17 Finally, the use of CT technology has to

be weighed against recurrent radiation exposure risks.13 Based on

theoretical epidemiological data, cumulative effective doses of as low

as 50 millisieverts (the equivalent of five CT abdomen and pelvis

scans) are presumed to cause potentially harmful radiation exposure

consequences such as solid tumor development. According to several

studies, about 5%–34.7% of CD patients receive such high doses of

radiation exposure, largely driven by CT imaging. The creation of IBD

radiation diaries has been proposed to improve physicians' recogni-

tion of patients' total radiation exposures.18 Nonetheless, when the

clinical presentation of the patient demands a rapid assessment, then

CT remains the most readily available and consistent means of

evaluation.

F I GUR E 1 Representative computed tomography (CT) enterography imaging of a Crohn's disease stricture. (a) Neo‐terminal ileum
(terminal ileum (TI)) Stricture. Axial, post contrast enhanced CT enterography of a neo‐TI stricture (arrow) demonstrates stratified mural
hyperenhancement, wall thickening and luminal narrowing. (b) Neo‐TI Stricture. Coronal, post contrast enhanced CT enterography of a neo‐TI

stricture (arrow) demonstrates stratified mural hyperenhancement, wall thickening and luminal narrowing. (c) Upstream Dilation Proximal to
Neo‐TI Stricture. Coronal, post contrast enhanced CT enterography proximal to neo‐TI stricture demonstrates upstream dilation to 4.1 cm
(arrowhead).
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MR enterography (MRE)

The sensitivity and specificity ranges of MR enterography (MRE) for

stricture detection are essentially equivalent to those of CTE, with

75%–100% and 91%–96%, respectively (Figure 2).13,19,20 In addition,

MR Exams include multiphasic acquisitions over 20–25 min of time;

this longer duration allows for assessing if the lumen stays consistently

narrow with consistent upstream dilation or stasis, thus adding

another layer of certainty that a stricture is present. Given its accuracy

and lack of ionizing radiation exposure, the CONSTRICT group rec-

ommended MRE as the ideal test for assessing and following‐up on CD

strictures.13 However, MRE is time‐consuming, expensive, not

F I GUR E 2 Representative magnetic resonance imaging (MR) enterography imaging of a Crohn's disease stricture. (a) Naïve terminal ileum
(TI) Stricture. Coronal half‐Fourier single‐shot turbo spin‐echo sequence of a naïve TI stricture (horizontal arrow) demonstrates wall

thickening and lumen narrowing. Ulcers are also present (vertical arrow). (b) Naïve TI Stricture. Axial half‐Fourier single‐shot turbo spin‐echo
sequence of a naïve TI stricture (arrow) demonstrates wall thickening and luminal narrowing. (c) Naïve TI Stricture. Axial, fat saturation, half‐
Fourier single‐shot turbo spin‐echo sequence of a naïve TI stricture (arrow) demonstrates wall thickening, luminal narrowing and increased
signal in the wall indicating edema from active inflammation. (d) Naïve TI Stricture. Axial volumetric interpolated breath‐hold examination

sequence of a naïve TI stricture (arrow) in the enteric phase post contrast enhancement demonstrates stratified mural hyperenhancement,
wall thickening and luminal narrowing. (e) Naïve TI Stricture. Coronal volumetric interpolated breath‐hold examination sequence of a naïve TI
stricture (arrow) in the enteric phase post contrast enhancement demonstrates a more uniform but still stratified mural hyperenhancement,

wall thickening and luminal narrowing. (f) Upstream Dilation Proximal to Naïve TI Stricture. Axial volumetric interpolated breath‐hold
examination sequence proximal to a naïve TI stricture in the enteric phase post contrast demonstrates upstream dilation to 3.4 cm
(arrowhead). (g) Naïve TI Stricture. Coronal volumetric interpolated breath‐hold examination sequence of a naïve TI stricture (arrow) in the

delayed phase (7 min) post contrast enhancement demonstrates a more uniform but still stratified mural hyperenhancement, wall thickening
and luminal narrowing. One investigation suggests that delayed phase enhancement indicates fibrosis predominance. (h) Naïve TI Stricture.
Axial high B value (B = 800 s/mm2) diffusion weighted sequence of a naïve TI stricture (arrow) demonstrates a high signal stratified pattern

indicating restricted diffusion from active inflammation.
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universally available and may cause significant discomfort to claus-

trophobic patients. Although a significant MR scanner density is

observed in economically developed countries such as in Europe, a

critical access limitation still exists in countries of Asia and Sub‐
Saharan Africa. Additionally, in the U.S., pre‐certification from insur-

ance companies remains more challenging.

Intestinal US (IUS)

IUS is the least expensive modality, and likely the most tolerated

procedure, and can safely be used within the same IBD clinic visit by a

trained gastroenterologist. For such reasons, IUS is becoming more

widespread for long‐term follow‐up, yet remains mostly used in

specialized academic centers as it requires significant expertise. The

sensitivity and specificity ranges of transabdominal IUS are 80%–

100% and 63%–75%, respectively.21,22 IV contrast enhancement

(CEUS) improves those to 88%–100% and 88%–100%, respectively

(Figure 3).13

CHARACTERIZATION OF CD STRICTURES ON
ROUTINE CROSS‐SECTIONAL IMAGING

Beyond the ability of diagnosing a stricture, several studies have

attempted to dissect inflammation, fibrosis and even muscularization

within a given stricture.23 Single or combined parameters within each

imaging modality are being explored, with more promise for MRE‐
multiparametric scores at demonstrating sufficient accuracy in

segregating histopathological stricture components. These studies

still need to be validated.23,24

CT enterography/enteroclysis

Two small studies used contrast‐enhanced CT to assess imaging

findings with comparison to surgical specimens. A series of 22 pa-

tients found that both histological inflammation and fibrosis were

greater in strictures radiologically identified as inflammatory

compared to those without active inflammation.8,13 In another series

of 44 patients, the sensitivity for both inflammation and fibrostenosis

identification was high, but the fibrostenosis score was based upon a

thick, nonenhancing wall, luminal stricturing and pre‐stenotic dila-

tion.9 Overall, CTE may not be accurate enough at distinguishing

inflammation from fibrosis.13

The diagnostic accuracy of 18F‐Fluorodeoxyglucose (18F‐FDG)

positron emission tomography (PET)/CT (and well as PET/MRE) in

CD strictures has been evaluated in small cohorts.25,26 Areas under

the curve (AUC) were reportedly higher for PET/MRE (0.77) than

PET/CT (0.51) for differentiating fibrotic from non‐fibrotic strictures,

yet the discrimination between inflammation and fibrosis remains

suboptimal, and the high radiation exposure of PET would limit the

routine clinical application of this technique.13,26 Studies that assess

multiparametric MRE with PET features should be reconsidered in

light of emerging novel indices for strictures on cross sectional im-

aging and histopathology.

MR enterography and novel MR‐based modalities

MRE‐defined stricture components have been studied in small co-

horts, where presence of inflammation was found to correlate with

mural thickness and T2‐weighted fat‐saturated intramural signal

intensity, while fibrosis was more commonly associated with layered

enhancement.27 However, these same parameters correlated with

both inflammation and fibrosis in similar studies.13 A devised acute

inflammation score (AIS)28 showed promising sensitivity and speci-

ficity for detection of inflammation and fibrosis. The cohort, how-

ever, mostly comprised active inflammation samples (AIS > 4.1 in

64/67) and only had 3 patients with exclusively inactive fibrotic

strictures. The role of muscular hypertrophy was not assessed.

Magnetic resonance imaging (MRI) scans performed 7 min after

contrast administration (delayed enhancement) can distinguish mild‐
to‐moderate from moderate‐to‐severe fibrosis, a finding that still

requires validation.29 Different MR techniques, diffusion‐weighted

imaging (DWI), magnetization transfer (MT) imaging, and MR with

dynamic contrast enhancement (DCE) were explored.30,31 DWI

values appear to inversely correlate with degrees of fibrosis,

F I GUR E 3 Representative fibrostenotic Disease on Intestinal Ultrasound using a naïve Crohn's disease stricture at terminal ileum (TI)
prior to resection. (a) Longitudinal view of stricture with thickened bowel wall measuring 7.3 mm, narrowed lumen along the entire length of

the stricture (arrow), and surrounding inflammatory fat. (b) Pre‐stenotic dilation measured at 3.9 cm with dysfunctional peristalsis.
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whereas magnetization transfer magnetic resonance (MT‐MR) sig-

nals parallels the extent of collagen deposition.32–34 These novel

parameters also showed fair inflammation/fibrostenosis segregation

in patients with prior ileocolic resection.35 Efforts are underway to

validate these findings. One such recent example involved using

multiparametric MRE‐based scores for histologic fibrosis and

inflammation assessment, and described a composite score of

magnetic resonance index of activity (MaRIA), apparent diffusion

coefficient, and measurement of delayed gain of enhancement to

predict histologic fibrosis (ROC = 0.91) while MaRIA alone was best

at predicting active histologic inflammation (ROC = 0.97). Contrary

to prior studies, a good correlation was not found between MT‐MR

and either inflammation or fibrosis.24

Dynamic contrast enhanced‐magnetic resonance imaging and

DWI were investigated for smooth muscle hypertrophy in relation to

inflammation and fibrosis, using histopathological specimens as the

gold standard.36 Factors such as decreased volume transfer coeffi-

cient (Ktrans), maximum enhancement (ME), initial slope of increase,

as well as increased mural thickening corelated well with moderate‐
to‐severe active inflammation. Initial slope of increase and mural

thickness were able to describe muscle hypertrophy in sections with

mild/absent inflammation, and a parameter that combined ME and

thickness was able to accurately describe muscular alterations with

active inflammation.36 The study also validated that wall thickness on

T2‐WI parallels muscular hypertrophy more so than fibrosis.37

A recent pilot study assessed the use of magnetic resonance

elastography for predicting fibrosis as well as the clinical course of

patients with CD.38 A high correlation between the stiffness value

measured on MR elastography and radiologist morphological analysis

using a visual analog scale was established. A bowel stiffness of

≥3.57 kPa predicted the occurrence of a clinical event (abdominal

surgery, hospitalization or emergency department consultation for

abdominal pain or bowel obstruction) with AUC 0.82.

However, most of these studies are either small,13 have only been

evaluated in animal models,33 or lack external validation for specific

parameters (such as MT ratio in MT‐MR for detecting fibrosis).34

IUS techniques

Elastography, namely strain (SE) and shear wave elastography (SWE),

are currently studied IUS techniques for stricture characterization.13

Whereas SE is the measure of bowel stiffness in response to the

application of an external compression, SWE interprets the speed of

acoustic emissions where stiffer tissues allow for faster propaga-

tion.39 Fibrosis of the bowel correlated with higher point SWE ve-

locity and strain ratio.40,41 More specifically, increasing SWE

measurements in stiffer bowels correlated with smooth muscle hy-

perplasia.42 The addition of microbubble IV‐CEUS was explored to

differentiate stricture types. However, standardization and repro-

ducibility of data ranges and thresholds are required to use this

technique confidently.43

A recent meta‐analysis assessed the diagnostic role of different

modes of IUS in distinguishing CD stricture types.44 Fibrostenotic

stricturing correlated with higher mean bowel wall thickness, harder

strain value and lower peak enhancement than inflammatory stric-

turing. However, included studies suffered from significant design

heterogeneity, limitations in gold standards, poorly pre‐specified

thresholds, as well as unclear blinding of histopathological stricture

assessment. Nonetheless, the systematic review showed potential

F I GUR E 4 Overall experimental workflow for developing Crohn's disease stricturing characterization model. First, an expert radiologist
identifies a region of stricturing disease. Quantitative radiomic features are then extracted on a per‐pixel basis withing the region of interest
(green). A subset of features that strongly discriminate between low and high fibrosis, inflammation, etc. are selected. Meanwhile, an expert

pathologist evaluates pathology sections taken from the same stricturing regions and provides scoring to characterize the disease based on
pre‐determined standardized criterion. Finally, radiomic and pathology features are correlated and used to train an artificial intelligence (AI)
model to predict extent of each pathology within the stricturing region.
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promise with combining multiple IUS parameters to assess fibrosis or

predict stricture‐related surgeries.45

Computational imaging approaches involving artificial
intelligence and radiomics

Radiomics involves computational extraction of appearance, intensity,

or shape descriptors from radiographic images, and can predict out-

comes of interest when integrated in ML algorithms. Radiomics has

gained notable traction in the field of oncology, for example, in-

vestigators trained and validated a radiomics‐driven ML model using

baseline T2‐Weighted MRI images of primary rectal cancers to predict

histopathologic response to neoadjuvant chemoradiation.46 Clinical

applications of radiomics have recently begun to be explored in CD.47

(Figure 4) These include semi‐automation of measuring bowel wall

thickness on MRE and CTE, evaluating intraluminal stricture areas

along the course of diseased segments, as well as assessing small

bowel structural damage; all of which have shown good consistency

with radiologist assessments.48,49 Currently, ML and radiomics' ac-

curacy in stratifying the severity of inflammation/fibrosis/smooth

muscle hyperplasia on cross‐sectional imaging is being studied. One

study used 212 resected bowel lesions from 167 CD patients to train

and test a CTE‐based radiomic model for characterizing intestinal

fibrosis (none‐to‐mild vs. moderate‐to‐severe) with good perfor-

mance (AUC 0.724–0.816 across 3 centers). This remained consistent

regardless of center‐specific CT‐scanners, stricture location, presence

of fistula or abscesses.50 While the model outperformed radiologist

F I GUR E 5 A experts' decision tree regarding the use of cross‐sectional imaging for diagnosing and following up fibrostenotic disease in
CD. The above algorithm reflects the opinion of the author team.
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assessment (AUCs<0.6), radiological definitions were not based on

CONSTRICT criteria, and anastomotic strictures were excluded.

Furthermore, inflammation severity was not assessed extensively, so

the impact of inflammation on the accuracy of detecting fibrosis was

not studied. From a radiomics perspective, there were concerns with

wide 95% confidence intervals for AUCs which may reflect unstable

diagnostic performance with small sample sizes.51 A later study sug-

gested that deep learning models (i.e. multi‐layer neural networks)

may be more efficient than radiomics while maintaining similar per-

formance characteristics, and still outperforming radiologist assess-

ments.52 Although an expert IBD pathologist scored the

histopathological samples in both studies, neither employed a vali-

dated scoring system, nor comprehensively evaluated all histo-

morphological components of a stricture.

FUTURE OUTLOOK

A deeper understanding is needed for the pathophysiological inter-

play between inflammation, fibrosis, and muscular hyperplasia on the

overall narrowing of the stricture. A validated histopathological index

score is critical to reliably validate cross‐sectional imaging modalities

which guide CD‐stricture medical and surgical care. Histomorpho-

logical heterogeneity within strictures, and the fact that most internal

penetrating disease coexists with strictures,11 also translates into

challenges within cross‐sectional imaging to detect these separate

elements. Addressing these challenges would critically help reshaping

the scope of CD care, especially with anti‐fibrotic therapies on the

horizon.

IUS, CTE and MRE have all shown excellent performance in

detecting strictures, though MR‐based modalities may offer prom-

ising new parameters to segregate fibrostenosis from inflammation.

Upcoming techniques such as the Type I Collagen‐Targeted MR

Imaging Probe, may offer even better abilities for staging fibrosis

in CD.53

Meanwhile, AI‐based technologies (such as deep learning and

radiomics) suggest significant promise for complementing radiologist

evaluations, and could help enable deeper interrogation of pheno-

types in stricturing CD while leveraging routine imaging sequences.

Ideally, future cross‐sectional imaging and AI‐based techniques

should target subtle radiological characteristics that precede

clinically‐significant stricturing and are difficult to visualize by an

experienced radiologist. For instance, CD imaging assessments largely

ignore the perienteric fat, which has a uniform appearance on imaging

yet is believed to exert pro‐stricture function in CD54; this may be

explored by AI‐based techniques. Combining these findings with clin-

ical metadata, such as identified risk factors of progression to stric-

turing disease from the TREAT registry, the pediatric RISK inception

cohort, and the ACCENT I trial,55,56 will be critical to set guidelines for

screening as well as targeting of early anti‐fibrotic therapy in CD.

While waiting for reliable biomarkers to predict and assess strictures

in CD,57 radiomics could also be an asset in identifying patients who

would benefit from closer follow‐up. For example, radiomics could be

used in to help predict patients at high‐risk of stricture recurrence and

need for earlier medical intervention.

The clinical dilemma of stricturing CD requires a multifaceted

approach to better understand its pathophysiology, to standardize

histomorphologic indices, and to explore cross‐sectional imaging

modalities with unique parameters that correlate with the different

components of a CD stricture. As we are enrolling patients in the

first anti‐fibrosis trials in stricturing CD, the need to standardize

histopathology and radiology definitions of strictures is pivotal.

Together with technical advances in artificial intelligence (AI), the

landscape of care for stricturing CD, from targeted medical therapy,

to timing of endoscopic and surgical intervention, and even early

detection of stricture, is bound to be impacted. A current view of the

management and follow up for stricturing CD is summarized in

Figure 5.
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