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Abstract: Bacteria employ numerous resistance mechanisms against structurally distinct drugs by
the process of multidrug resistance. A study was planned to discover the antibacterial potential
of a graphene oxide nanosheet (GO), a graphene oxide–zinc oxide nanocomposite (GO/ZnO), a
graphene oxide-chitosan nanocomposite (GO–CS), a zinc oxide decorated graphene oxide–chitosan
nanocomposite (GO–CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with an-
tibiotics against a PS-2 isolate of Pseudomonas aeruginosa. These nanocomposites reduced the MIC
of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate. Efflux
pumps were interfered, as evident by an ethidium bromide synergy study with nanocomposites, as
well as inhibiting biofilm synthesis. These nanoparticles/nanocomposites also decreased the mutant
prevention concentration (MPC) of TET. To the best of our knowledge, this is the first report on
nanomaterials as a synergistic agent via inhibition of efflux and biofilm synthesis.

Keywords: nanoparticle; nanocomposite; drug resistance reversal; MIC; graphene oxide–chitosan

1. Introduction

Disease is a condition of comprehensive physical abnormality and physiological
disorder (WHO). Diseases can be categorized as infectious or non-infectious based on the
mode of transmission. Communicable diseases are the major causes of illness and death
worldwide [1]. Antibiotics are treated as the marvel of drugs to fight against microbes, but
the rampant and unaware use of drugs with limited knowledge of targets, lack of novel
antibiotics and vaccines have increased the level of resistance in bacterial pathogens [2–4].
The continuous burden of antibiotics on microbes helps in the evolvement of single drug-
resistant, multidrug-resistant, and total drug-resistant bacteria [4–6].

Bacterial infections refer to the proliferation of a harmful strain on the surface or inside
of the host body. They can infect any part of the body. Some Gram-positive and Gram-
negative bacteria cause many of the deadliest diseases. The Enterobacteriaceae family,
Pseudomonas, Acinetobacter, Mycobacterium, Helicobacter, and Treponema spp., are reported
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as life-threatening disease-causing bacteria [4,7,8]. Some of the common diseases caused
by these bacteria are urinary tract infections, gastroenteritis, sepsis, food poisoning, lung
infections, cystic fibrosis, wound infections, plague, and tuberculosis [4,8–11].

In a 2017 report, WHO identified a list of a dozen antibiotic-resistant bacteria (Dirty
dozen) based on the severity of infection, treatment cost, and need for novel antibiotics [5,8].
These dozen bacteria were further placed under critical, high, and medium priority groups.
Pseudomonas aeruginosa, Acenetobacter baumannii, and Enterobacteriaceae members were cate-
gorized into critical groups [7,12]. To date, antibiotics are the only major treatment option to
control critical pathogens [2,3,13]. The onset of antibiotic resistance enhances the loss of the
antibiotic ability to inhibit these bacterial pathogens, and these resistant bacteria multiply
in the presence of antibiotics [7,14]. By certain mechanisms, the bacteria are developing
resistance against antibacterial drugs. Biofilm matrices are the three-dimensional cumula-
tive collection of microbes in which cells frequently stick to the surface and attach within
a meshwork of extracellular polymeric substances (EPSs), mainly consisting of polysac-
charides, some proteins, and extracellular nucleic acids. Bacterial biofilm is a survival
mechanism that delivers the capability to resist environmental strain and drugs/antibiotics,
plus the least metabolic action [15]. Efflux pump is a biological pump that expels the
antimicrobial compounds from the cell to the outside; alongside this, the downregulation of
porin channels prevents the entry of drugs to the cells, which ultimately develops bacterial
drug resistance [16–18]. The β-lactamase enzyme is responsible for the breakdown of
the β-lactam ring in a β-lactam group of antibiotics. Biofilm, efflux pump, porins, and
β-lactamase are four major mechanisms responsible for multidrug resistance (MDR) in
bacteria [17–19]. Insufficient antibiotics/drugs choice exists to treat these pathogens, and
several agents (polymyxins/aminoglycosides/tigecycline) are reported with noteworthy
toxicities. Few antibiotics are now used in combination, such as ceftolozen/tazobactam, cef-
tazidime/avibactam, and meropenem/vaborbactam [20,21]. Nanoparticles (1–100 nm) are
supposed to be one of the emerging warheads to counter bacterial drug resistance [22,23].

Because of the above problem posed by the critical superbug P. aeruginosa, the absence
of proper therapy, and past ventures on the reversal of drug resistance and antibacterial
activity, the current study assesses nanomaterials as a novel treatment system against MDR
P. aeruginosa. Initially, the antibacterial activity was evaluated, and efforts were also made to
investigate the mechanism of action of nanomaterials against MDR P. aeruginosa. The overall
experimentation in this study involved: design and synthesis of nanomaterials, mechanism
of drug resistance in critical superbug P. aeruginosa, evaluation of the nanocomposites
as an anti-pseudomonal agent, evaluation of nanomaterials as a drug-resistant reversal
agent, study of the mode of action of nanomaterials, and study of the “druggability” of
nanomaterials.

2. Materials and Methods

Potassium hydroxide, zinc acetate dihydrate, sodium nitrate, sulphuric acid, hy-
drochloric acid, methyl alcohol, and ethyl alcohol were obtained from Merk India Ltd.
(grade AR). High molecular weight deacetylated chitin (Chitosan powder (CS)), N-(3-
Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride), and
NHS (N-hydroxysuccinimide) were purchased from Sisco Research Laboratories Pvt Ltd.
(Mumbai, India) Graphene oxide nanosheet was purchased from Reinste Nano Ventures
(Noida, India). Potassium dihydrogen phosphate (KH2PO4) and other chemicals used
during the synthesis were obtained from Merck Ltd., SRL Pvt. Ltd. (Mumbai, India).
Double distilled water was used during the synthesis process.

The synthesized nanomaterials were investigated by X-ray diffractometer (XRD) and
Scanning Electron Microscope (SEM) for structural properties and Fourier Transform
Infrared Spectroscopy (FTIR) to examine the surface of functional groups. The FTIR
analysis was performed on FTIR spectroscopy (Perkin Elmer FTIR Spectrum, BX-II, USA).
The XRD analysis was performed on X-ray diffractometer (Rigaku D/max 2200 PC, Japan)
using Cu Kα radiation between 10–80◦ intervals. The surface morphology was investigated
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by field emission scanning electron microscopy (MIRA II LMH from TESCAN, with a
resolution of 1.5 nm at 30 kV, Czech Republic).

2.1. Protocol for Synthesis of Graphene Oxide and Zinc Oxide Nanocomposite (GO/ZnO)

The synthesis protocol of graphene oxide and zinc oxide nanocomposite was as per
Chowdhuri et al., with minor modifications [23]. Solution X was prepared by adding 0.20 g
of graphene oxide suspension in 20 mL water (double distilled water). Solution X was
sonicated and kept 20 min for uniform mixing. At same time, solution Y was prepared
by adding 1.4 g of zinc acetate dihydrate in 60 mL methyl alcohol. Gradually, solution
X was mixed into solution Y, then the final reaction mixture was sonicated to agitate the
particles and kept 25 min for uniform mixing. After that, the reaction mixture was shifted
into a 250 mL Erlenmeyer flask. The prepared potassium hydroxide solution was added
steadily into the reaction mixture of solution X and Y in a 250 mL Erlenmeyer flask, and
the reaction was continued to 8 h at 60 ◦C. The KOH solution was ready by mixing 0.6 g
of KOH in 20 mL of methyl alcohol. The precipitates were collected by centrifugation at
10,000 rpm for 15 min and washed four times by a mixture of methyl alcohol–water to
eliminate contamination.

2.2. Protocol for Synthesis of Graphene Oxide and Chitosan (GO-CS)

The synthesis protocol of the graphene oxide and chitosan nanocomposite was as per
Chowdhuri et al., with minor modifications [23]. First, the chitosan solution was prepared
by adding 0.25 g of chitosan (CS) in 250 mL 1% acetic acid solution and kept reaction
mixture for uniform mixing until 1.5 h. In the second step, the graphene oxide reaction
mixture was prepared by adding 0.375 g of GO nanosheet in 50 mL water (double distilled
water). After that, a total of 0.375g, N-(3-dimethylaminopropyl-N-ethylcarbodiimide)
hydrochloride (EDC) was added. HCl and 0.25 g of NHS were added into the prepared GO
suspension and kept the reaction mixture for uniform mixing until 3.5 h. In the final step of
the synthesis of the GO–CS nanocomposite, the GO reaction mixture was added into the
chitosan solution very gently and kept them for uniform mixing until for 10 h. The final
product was collected by centrifugation at 10,000 rpm for 15 min and dried at 40 ◦C under
a vacuum oven.

2.3. Protocol for Synthesis of Graphene Oxide, Chitosan, and Zinc Oxide Nanocomposite
(GO–CS/ZnO)

For the synthesis of GO–CS/ZnO nanocomposite, solution X was prepared by adding
already prepared 0.2 g GO–CS in 20 mL water (double distilled water). Solution X was
sonicated to agitate the particles and kept 15 min for uniform mixing. At the same time,
solution Y was prepared by adding 1.4 g of zinc acetate dehydrate in 60 mL methyl alcohol.
Solution X was added gently to solution Y, sonicated, and stirred for 20 min. After that,
the reaction mixture was shifted in 100 mL Erlenmeyer flask. The prepared potassium
hydroxide solution was added steadily in reaction mixture of solution X and Y in 100 mL
Erlenmeyer flask, and the reaction was continued to 10 h at 60 ◦C. The KOH solution was
made by mixing 0.6 g of KOH in 20 mL of methyl alcohol. The final product was collected
by centrifugation at 10,000 rpm for 15 min and washed four times by a mixture of methyl
alcohol–water to eliminate contamination and dried at 40 ◦C under a vacuum oven.

2.4. Protocol for Synthesis of ZnO Nanoparticles

The synthesis protocol of zinc oxide nanoparticles was as per Singh et al., with minor
modifications [24]. Zinc oxide nanoparticles were prepared by adding 1.4 g of zinc acetate
dihydrate, which was mixed in 60 mL methyl alcohol. The prepared potassium hydroxide
solution was added steadily into to the above solution and the reaction mixture was kept
for uniform mixing until 10 h at 50 ◦C. KOH solution was made by mixing 0.6 g of KOH
in 20 mL of methyl alcohol. The final product as a white precipitate was collected by



Nanomaterials 2022, 12, 117 4 of 14

centrifugation at 10,000 rpm for 10 min and washed four times by a mixture of methyl
alcohol–water to eliminate contamination and dried at 60 ◦C under a vacuum oven.

2.5. Procurement of Clinical Bacterial Isolates

MDR clinical isolates, namely PS-2, PS-3, and PS-11, were procured from the Regional
Medical Research Centre, Bhubaneswar, repository.

2.6. Disc Diffusion Assay (DDA)/Kirby-Bauer Antibiotic Test

This study was conducted as per the agar diffusion test (modified Kirby–Bauer an-
tibiotic testing), a test used for the antibiotic sensitivity of bacteria [25]. The sensitivity
profiling of the graphene oxide nanosheet (GO), graphene oxide–zinc oxide nanocompos-
ite (GO/ZnO), graphene oxide–chitosan nanocomposite (GO–CS), zinc oxide decorated
graphene oxide–chitosan nanocomposite (GO–CS/ZnO), and zinc oxide nanoparticles
(ZnO) was carried out by impregnating antibiotic discs on Muller–Hinton Agar (MHA)
plates. Overnight grown cultures were diluted up to 0.5 McFarland units and a lawn culture
was prepared. The incubation of plates was performed at 37 ◦C for 24 h and the zone of
inhibition was measured (in mm).

2.7. Broth Dilution Assay

In the Mueller–Hinton broth (MHB), the minimum inhibitory concentrations (MICs)
were determined by using 96-well microtiter plates following the Clinical and Labora-
tory Standards Institute guidelines for broth microdilution [26]. In this test, the desired
concentration of antibiotic (10 µg/µL), by making a dilution from a stock solution and
taking a 96-well plate, was performed, and the labeling was conducted. A total of 150 µL
of MHB broth was added to each well. After being properly mixed, the serial dilution
process was continued up to the 10th well (1600 to 1.56 mg/L). The 24 h grown bacterial
culture was diluted to find out the appropriate inoculum size for the standard equivalent to
0.5 McFarland standards. An inoculum of 10 µL of 0.5 McFarland standards was dispensed
in each well except in the negative control. The plate was incubated at 37 ◦C for 24 h. After
the reading was taken, the result was interpreted as per CLSI guidelines.

2.8. Synergy Studies with Imipenem/Ethylene Diamine Tetraacetic Acid (EDTA)

For the metallo-β-lactamase (MBL) test, a 24 h fresh bacterial culture was used. For
this, a 0.5% McFarland standard was maintained. A sterile swab was soaked inside the
bacterial culture tube. Then, the bacterial culture was spread on the Muller–Hinton Agar
(MHA) plate. Sterile imipenem with or without Ethylene Diamine Tetraacetic Acid (EDTA)
strip was placed on the plate and incubated for 24 h for observation. The synergistic
effect of GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO with imipenem was studied along
with EDTA added to imipenem as a positive control and imipenem only as a negative
control [27]. A lawn culture of 0.5 McFarland unit was prepared by swabbing the overnight
grown culture onto MHA plates and 10 µL of nanoparticle was added onto an impregnated
imipenem disc.

2.9. Biofilm Formation/Inhibition Assay

This was conducted as per the prescribed protocol, which includes biofilm formation
and the impact of inhibitors on biofilm synthesis [28,29]. A 1/100 dilution was performed
for a 24 h grown culture. In 96-well plates, the addition of diluted bacterial culture in
96-well plates was carried out except in the negative control (only with 100 µL broth). GO,
GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO were added, and the plate was incubated for
48 h. Washing was conducted twice using saline water 0.7% saline (NaCl by inverting
the plate). Incubation was conducted for 3 h, then crystal violet was added and again
incubated for 20 min. Twice washing was again carried out by normal saline and acetic
acid was added. Next, it was transferred into a new 96-well plate and scanned under an
ELISA reader.
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2.10. Ethidium Bromide–Agar Cartwheel Method

This method was adapted for the presumptive identification of multidrug-resistant
bacterial isolates that overexpress efflux pump systems [6]. Different plates containing
different concentrations of ethidium bromide were made. After solidification, a fresh
bacterial culture was swabbed on the plate. The plates were subjected to incubation for
24 h. Then, they were observed under UV-transilluminator to check whether they flourish.

2.11. Combination Assay/Broth Checkerboard Method

This study was led using a broth checkerboard assay [30]. Pipetting of 150 µL of pH
adjusted MHB was conducted to adjust the dilutions, such that each well had diverse
concentrations of tetracycline (TET) and nanomaterials. The concentration of TET was
varied between 12.5–1600 mg/L and for 3.25 to 200 mg/L for GO, GO/ZnO, GO–CS,
GO–CS/ZnO, and ZnO. Documented results were given in terms of a) type of interaction,
b) fold reduction, and c) fractional inhibitory concentration index (FICI). The FICI index
depicts results in terms of the antagonism (>4.0) no interaction (0.5–4.0) and synergism
(<0.5) [31].

2.12. Biofilm Inhibition Assay

For the biofilm inhibition assay, we made a 1/100 dilution of the 24 h culture. Then
a 96-well plate was taken, and it was filled with the bacterial culture except for negative
control. In the negative control, only 150 µL MHB broth was taken. Then, the addition of
different inhibitors (GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO) as per the calculation
was performed. After adding the inhibitors, we incubated the plate for 48 h. Next, plate
was washed simply by inverting it. Then, we washed the plate with 0.7% saline (NaCl)
twice and washed it by inverting the plate. Then, the plate was incubated for 3 h. Then,
1% crystal violet was added and incubated for 20 min. Then, the plate was washed with
normal saline twice. Then, we added acetic acid. Next, we transferred this into a new
96-well plate and scanned it under an ELISA reader.

2.13. Efflux Pump Inhibition Assay

Resistance in EtBr is considered a marker of MDR mediated by efflux pump. The MIC
test of EtBr was carried out by a broth dilution assay and the combination study was also
performed by the method described above [30].

2.14. Drug Ability Study of Nanomaterials by Mutation Prevention Concentration Method (MPC)

MPC of TET was conducted using P. aeruginosa MTCC 741 as per the procedure of
Heisig and Tschorny [32]. MPC of TET was performed individually or in the company
of GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO at diverse concentrations (2× MIC,
4×MIC, 8×MIC, and 16×MIC). Outcomes were attained by dividing the total number
of colonies after 48 h of incubation at 37 ◦C on the antibiotic-containing plate by the total
number of colony-forming units plated.

3. Results
3.1. Chemistry
3.1.1. FTIR (Fourier Transforms Infrared Spectroscopy) Study

The presence of zinc oxide (ZnO), chitosan (CS), and graphene oxide (GO) separately
in the synthesized nanocomposite GO–CS/ZnO was verified by using FTIR technique. The
sharp peak at 454 cm−1 for zinc oxide (ZnO) stretching frequency verified that ZnO is
efficiently binding both GO and GO–CS. The peculiar feature of GO in the FTIR spectra
exemplifies absorption bands at 1723 cm−1 due to the C=O [33] stretch of the carboxylic
group (COOH), at 1621 cm−1 for a stretch of C=C groups, at 1224 cm−1 for a stretch of
C–OH [33], at 1043 cm−1 for a stretch of alkoxy C–O groups [33], and a very wide strong
peak at 3415 cm−1 for O–H stretching frequencies. The appearance of peaks at 1094 cm−1

and 1394 cm−1 also shows the characteristic peaks for the stretching vibration frequency of
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the C–O–C and C–OH bond of GO [34]. The distinctive peaks of chitosan (CS) are at 3447,
2850, 1645, 1566, 1161, 1056 cm−1 [35]. The peak at the range of 2850 cm−1 indicates the
effective formation of chitosan over the surface of GO. The appearance of peak at 459 cm−1

verified that ZnO was incorporated on GO and GO–CS, as shown in Figure 1.
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3.1.2. X-ray Diffraction (XRD) Analysis

The presence of ZnO nanoparticles in the GO layer was verified by the XRD analysis
shown in Figure 2. The characteristics peaks observed in order at 2θ = 31.87◦, 34.55◦,
36.42◦, 47.66◦, 56.64◦, 62.92◦, 68.01◦, 69.20◦ are matched with the standard (JCPDS card
no: 80-0074) and are in good agreement with the crystalline planes of ZnO nanoparticles
(corresponding to (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (1 1 2), and (2 0 1)). When the
ZnO nanoparticles were anchored on the surface of graphene oxide (GO), the characteristic
peak of graphene oxide at 2θ = 110◦ vanished. The XRD pattern of the GO–Cs/ZnO
nanocomposite showed a peak at 2θ = 14.540, 59.30, and a wide peak above 19.5◦, which
verified the presence of the amorphous state of chitosan.
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3.1.3. Surface Morphology Study

The surface morphology of GO–CS/ZnO was explored by scanning electron mi-
croscopy (SEM), shown in supplementary data (Figure S1). The micrograph of GO–CS/ZnO
at 158.43 magnification highlighted the presence of the graphene oxide nanosheet and
chitosan, and ZnO nanoparticles over and around the layers of the graphene sheet. The
figure also showed the almost uniform decoration of ZnO nanoparticles over the surface of
the graphene nanosheet with nearly spherical morphology.

3.2. Biological Evaluation

Initially, three clinical isolates of P. aeruginosa (PS-2, PS-3, and PS-11) were used, based
on sensitivity/resistance profiling, Imipenem-EDTA synergy, biofilm synthesis, and agar
cartwheel; PS-2 isolate was most resistant. PS-2 was resistant against ampicillin, tetracycline,
cephalosporin, gentamycin, ciprofloxacin, chloramphenicol, and piperacillin. This confirms
that the bacterial isolates were resistant against different types of structurally unrelated
antibiotics (Table S1). Due to luxuriant growth on the high concentration of ethidium
bromide, the synthesis of biofilm and production of metallo-β-lactamase make PS-2 more
recalcitrant towards different antibiotics. It was also observed that clinical isolates were
resistant to structurally and functionally different antibiotics. Among all clinical isolates,
PS-2 isolate of P. aeruginosa was selected for further studies due to the high-level resistance
towards different antibiotics, luxuriant growth on a high concentration of ethidium bromide,
the highest production of biofilm, and production of metallo-β-lactamase.

3.2.1. Antibacterial Potential of Nanomaterials

The antibacterial potential of nanomaterials was evaluated by a broth dilution assay.
The MIC of the GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO ranges from 400–800 mg/L,
which is shown in Table 1. Based on MIC, GO–CS/ZnO was found comparatively potent
(MIC 400 mg/L), while nanomaterials (GO, GO/ZnO, GO–CS, and ZnO) were less effective
(MIC 800 mg/L). Based on stringent activity criteria, these nanomaterials did not fall in the
category of antibacterial agents.

3.2.2. Antibacterial Potential of Nanomaterials in Combination with Antibiotic Tetracycline

In a combination study, tetracycline was used as a partner drug. The MIC of tetracy-
cline was reduced from 16–64 folds in the presence of nanomaterials. Based on FICI, the
nanomaterials interaction with tetracycline was synergistically shown in Table 1.

Table 1. Interaction study of nanomaterials with tetracycline against PS-2.

TET + Nano-
materials

MIC (mg/L)
Alone Combination
Nanomaterials/TET)

FICI + SD Interaction

Fold
Dilution in
the MIC of

Tetracycline

TET 800 - - - -
GO 800 25/12.5 0.0468 ± 0.03 Synergy 64

GO/ZnO 800 25/12.5 0.0468 ± 0.03 Synergy 64
GO–CS 800 25/50 0.0937 ± 0.05 Synergy 16

GO–CS/ZnO 400 25/50 0.125 ± 0.02 Synergy 16
ZnO 800 25/12.5 0.0468 ± 0.04 Synergy 64

To understand the drug resistance reversal potential of nanomaterials (GO, GO/ZnO,
GO–CS, GO–CS/ZnO, and ZnO), different modes of action studies were performed.

3.2.3. MBL Inhibitory Study of Nanomaterials with Imipenem

To study the MBL inhibition property of nanomaterials, an imipenem-EDTA synergy
study was performed. In this study, GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO did
not inhibit the MBL as it is evident in a net zone of inhibition. However, imipenem plus
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EDTA showed a clear net zone of inhibition, while there was no zone of inhibition in either
imipenem or imipenem and the nanomaterials, as shown in Figure 3.
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Figure 3. Interaction study of nanomaterials: imipenem and imipenem-EDTA (in mm).

In Figure 3, it can be seen that the imipenem disc was the negative control as we
know that PS-2 is resistant to imipenem and imipenem with EDTA was the positive control
as EDTA acts as a chelating agent of the metallo-β-lactamase enzyme. It was concluded
that these nanoparticles/nanocomposites were not able to inhibit the metallo-β-lactamases
enzyme produced by the PS-2, as it did not show any zone of inhibition with imipenem.

3.2.4. Biofilm Inhibitory Potentials of Nanomaterials

In this study, all the nanomaterials inhibited the biofilm synthesis as the OD is com-
paratively very low in the presence of nanomaterials, which is shown in Figure 4.
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3.2.5. Ethidium Bromide Synergy Potential of Nanomaterials

Alone the MIC of ethidium bromide is 1600 mg/L, which was reduced up to 16 fold
in the presence of nanomaterials, as shown in Table 2.
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Table 2. Interaction study of nanomaterials (GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO) with
ethidium bromide against PS-2.

EtBr + Nano-
materials

MIC (mg/L)
Alone Combination
Nanomaterials/EtBr

FICI + SD Interaction Fold
Dilution

EtBr 1600 - - - -

GO 800 25/800 0.531 ± 0.05 Additive 2 fold

GO/ZnO 800 25/800 0.531 ± 0.04 Additive 2 fold

GO–CS 800 25/200 0.156 ± 0.02 synergy 8 fold

GO–CS/ZnO 400 25/200 0.187 ± 0.03 Synergy 8 fold

ZnO 800 25/100 0.093 ± 0.01 Synergy 16 fold

3.2.6. Mutant Prevention Concentration (MPC) of Nanomaterials

All the nanomaterials reduced the MPC of TET, which increases the relevance of these
as the right agent for therapeutic purposes, as shown in Table 3.

Table 3. Drug ability study of nanomaterials (GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO).

Concentration of
TET

(mg/L)

Concentration of
Nanomaterials

(mg/L)
Cfu/mL + SD

Tetracycline

100 - 9.6 × 1010 ± 0.1
200 - 7.6 × 1010 ± 0.1
400 - 3.5 × 1010 ± 0.05
800 - No growth

Tetracycline + GO

100 25 No growth
200 25 No growth
400 25 No growth
800 25 No growth

Tetracycline +
GO/ZnO

100 25 No growth
200 25 No growth
400 25 No growth
800 25 No growth

Tetracycline+ GO-CS

100 25 No growth
200 25 No growth
400 25 No growth
800 25 No growth

Tetracycline +
GO-CS/ZnO

100 25 No growth
200 25 No growth
400 25 No growth
800 25 No growth

Tetracycline + ZnO

100 25 No growth
200 25 No growth
400 25 No growth
800 25 No growth

4. Discussion

After the inception of the antibiotic’s penicillin and streptomycin, chemotherapy was
revitalized [3,14]. Antibiotics renovated the chemotherapy industry and in the 1980s conta-
gious diseases were considered diseases of the past with a high life expectancy [13,36–38].
The unrestrained applications of antibiotics have created several bacteria, including P. aerug-
inosa, to gain resistance to multiple drugs [39–41]. The discovery of the novel antibiotic
teixobactin offered efficacy against many drug-resistant bacteria, but there is no new an-
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tibiotic against many MDR bacteria [42,43]. The efforts of the FDA, the Infectious Diseases
Society of America (IDSA), and the European Medicines Agency will start to recognize
new antibiotics in the upcoming future [44]. Based on all findings, it may be concluded
that these nanoparticles boost the hope to explore these as drug resistance reversal agents.

The carbapenem group of antibiotics (meropenem and imipenem) were reported as
the last option against Gram-negative pathogens [12,20,38,42,45,46]. The clinical isolates
of P. aeruginosa (PS-2, PS-3, and PS-11) were the producer of MBL, which hydrolyze the
carbapenem group of antibiotics. There are several reports according to which MBL
enzymes are the key mechanism of resistance towards the above antibiotics [12,15,20,45,46].
Biofilms are the extracellular matrix that is responsible for the protection of cells from
different stresses, including antibiotic stress [15,29,39,44]. Biofilm-producing microbes have
also been known for their resistance to a range of antimicrobial agents, including clinically
relevant antibiotics [15,29,39,44,47]. Overexpressed efflux pump mechanism is evident
from the luxuriant growth on the high concentration of Et-Br, which is evident by a higher
level of fluorescence under the UV-transilluminator. Efflux pumps are supposed to be the
key component that plays a crucial role in resistance [15,29,47]. However, in this study, the
clinical isolate PS-2 was found to be highly resistant due to the coordination of MBL, efflux
pump, and biofilm. PS-2 was more resistant to tetracycline and other antibiotics, so this
isolate was taken for further study. For any isolate which shows luxuriant growth on the
higher concentration of Et-Br, it is supposed that their resistance mechanism is mediated
by an efflux pump and production of metallo-β-lactamase makes them be considered as
superbugs [5,14,17,39–41,48–50]. The critical superbug P. aeruginosa exploits efflux pump,
biofilm, and MBL to achieve a high degree of resistance [5,14,45,47,50–52].

Nanomaterials are supposed to be effective warheads to overcome multiple drug
resistance [53–56]. Some of the nanomaterials directly possess antibacterial activity them-
selves [54,55,57]. However, some of the nanomaterials enhance the antibacterial activity
of partner drugs. In this study nanomaterials, GO, GO/ZnO, and other nanomaterials
(GO–CS, GO–CS/ZnO, and ZnO) were not efficient antibacterial agents as their MIC was
higher; however, in combination, these were able to enhance the activity of ethidium
bromide and tetracycline. The reduction in MIC of ethidium bromide and tetracycline
indicated that the used nanomaterials were able to inhibit the membrane components of
the bacterial cell. Several reports indicated that earlier many nanomaterials were able to
potentiate partner drugs many times by inhibiting the transporter proteins [22–24,53–60].
In this study, all the used nanomaterials (GO, GO/ZnO, GO–CS, GO–CS/ZnO, and ZnO)
were also able to inhibit the biofilm formation. Several reports indicated that nanomaterials
were reported to inhibit biofilm formation [47,56,60–63]. Resistance towards ethidium
bromide (Et-Br) is considered a marker of MDR mediated by over expression of efflux
pumps [6,48–51,61,62,64,65]. According to the two newest reports, gold nanorods enhance
the activity of ciprofloxacin by inhibiting the biofilms and a silver nanocomposite was
found as a resistance reversal agent [66,67]. In this study, nanomaterials were found to
synergize the partner drugs by inhibiting the biofilm synthesis/transporter proteins. This
will be helpful for the development of nanomaterial-coated antibiotics to overcome the
resistance.

5. Conclusions

The used nanomaterials may be the powerful weapon the managing the MDR P.
aeruginosa by (i) reduction of the antibiotic dose; (ii) low concentration of antibiotics may
reduce frequency of drug resistance; and (iii) enhancing the effectiveness of antibiotics in
combination. These results give an insight into the ways to synthesize novel anti-bacterial
agents from nanomaterials.
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