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Introduction
Acute kidney injury (AKI), a serious kidney disease characterized by a sharp decline in 
renal function, is one of the common causes of death worldwide [1]. AKI can be induced 
by various etiologies and pathophysiological processes, and effective treatments are still 
lacking, particularly in critically ill patients [2]. AKI is not only associated with acute 
morbidity and mortality, but also with the long-term prognosis of the sufferers and the 
development of chronic kidney disease, nonrecovery of kidney function, and acceler-
ated progression to end-stage renal disease [3]. It has been reported that up to 50% of 
patients with AKI are admitted to intensive care units (ICUs) [4, 5]. AKI is associated 
with poor clinical outcomes, and the mortality rates rise with increasing AKI severity. 
Patients with serious AKI frequently have worse renal function at the time of hospital 
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discharge [4]. The common risk factors for AKI include sepsis, cardiogenic shock, acute 
heart failure, surgeries (i.e., cardiac, abdominal, and organ transplantation), trauma, 
nephrotoxic medications, contrast agents, and chronic kidney disease [6–10]. At pre-
sent, hemodynamic and fluid status optimization and avoidance of nephrotoxins are 
the principal therapeutic approaches [9]. However, specific pharmacologic therapies are 
hampered by late diagnosis, heterogeneous syndromes, variable clinical presentation, 
and complex pathophysiology, especially in high-risk situations [11]. As a result, there is 
an urgent need to identify potential therapeutic targets for AKI [12].

Coenzyme Q10 (CoQ10), a fat-soluble lipophilic molecule ubiquitously located at the 
hydrophobic domain of cell membranes, is an endogenous antioxidant that is partially 
involved in the process of energy metabolism and antioxidant protection [13, 14]. CoQ10 
serves as an electron and proton carrier of the mitochondrial respiratory chain, playing 
an essential role in ATP synthesis by enabling the process of oxidative phosphorylation 
[15, 16]. CoQ10 controls cell redox status and regulates reactive oxygen species (ROS) 
generation, exhibiting its effects on protecting the cell against free-radical-induced oxi-
dation [17]. In addition, CoQ10 also has anti-inflammatory action, with capability to 
inhibit inflammatory gene expression [18, 19]. Moreover, CoQ10 may play an important 
role in the immune system by regulating lysosomal and peroxisomal function during the 
immune response [20]. On the basis of these unique properties of CoQ10, both clinical 
trials and experimental studies described that CoQ10 supplementation had an outstand-
ing protective effect on acute organ injuries (i.e., cerebral, myocardial, lung, liver, and 
renal injury) in recent years [21–25].

Accumulating evidence demonstrates that CoQ10 plays a crucial role in protecting 
AKI, which might be attributed to the functions of CoQ10, including anti-inflammatory 
effects, gene expression regulation, enhancement of the activity of antioxidant enzymes, 
free-radical scavenging, and lipid bilayer membrane stabilization [13, 25, 26]. Currently, 
there are no narrative reviews addressing the roles of CoQ10 in AKI. We present a first 
attempt to summarize all the evidence on the proposed roles of CoQ10 against AKI via a 
comprehensive review. The objective of this study is to provide readers with an overview 
of the current status of this topic that may facilitate the clinical application of CoQ10 in 
treating AKI.

Overview of CoQ10

CoQ10, a fat-soluble organic molecule similar to a vitamin, is endogenously synthesized 
by human cells [27]. According to PubChem, it comprises a benzoquinone group and 
a poly-isoprenoid side chain of ten isoprenoid units in humans (https:// pubch em. ncbi. 
nlm. nih. gov/ compo und/ 52819 15). Its molecular formula is  C59H90O4 (molecular weight 
863.3 g/mol), also known as ubidecarenone, coenzyme Q10, and ubiquinone-10. CoQ10 
can be absorbed from the small intestine into the lymphatic system and then enter the 
blood circulation; bile is the main elimination route [28]. Higher amounts of CoQ10 are 
observed in tissues with high energy requirements or metabolic activity, e.g., heart, kid-
ney, liver, and muscle [29]. The following pharmacokinetic properties of CoQ10 have 
been reported: area under the curve of 11.51 μg h/ml and Cmax of 0.32 μg/ml at a time of 
7.9  h (https:// pubch em. ncbi. nlm. nih. gov/ compo und/ 52819 15, Section: 8.4 Absorption, 
Distribution and Excretion). The half-life of CoQ10 is reported to be 21.7  h (https:// 

https://pubchem.ncbi.nlm.nih.gov/compound/5281915
https://pubchem.ncbi.nlm.nih.gov/compound/5281915
https://pubchem.ncbi.nlm.nih.gov/compound/5281915
https://pubchem.ncbi.nlm.nih.gov/compound/5281915


Page 3 of 19Zhao et al. Cellular & Molecular Biology Letters           (2022) 27:57  

pubch em. ncbi. nlm. nih. gov/ compo und/ 52819 15, Section: 8.6 Biological Half-Life). 
CoQ10 can be metabolized in all tissues by phosphorylation in the cells and then trans-
portation to the kidneys. CoQ10 is frequently found in cell membranes, particularly in 
mitochondria [30]. CoQ10 exerts its biological effect largely on the basis of its lipophilic 
antioxidant capacity, scavenging free radicals by suppressing the initiation and devel-
opment of lipid peroxidation in cell membranes [31]. CoQ10 appears generally in two 
forms: reduced (ubiquinol) and oxidized (ubiquinone) [32]. Both coexist and regenerate 
each other via sequential redox reactions (Q cycle) [33]. Ubiquinol shows antioxidant 
behaviors in cell and organelle membranes, reducing oxidative stress and lipid peroxi-
dation and regenerating vitamins C and E back to their active form [29]. Meanwhile, 
ubiquinone commonly acts as an excellent electron carrier in the mitochondrial electron 
transport chain in most eukaryotes [34]. The levels of CoQ10 are high in human organs 
with high metabolic activity (e.g., liver, kidney, and heart) [35]. CoQ10 is involved in the 
production of adenosine triphosphate (ATP), regulating mitochondrial respiratory chain 
complexes. CoQ10 also participates in many human or rodent physiological processes, 
including sulfide oxidation, regulation of mitochondrial permeability transition pore, 
and translocation of protons and calcium ions across biological membranes [14, 36]. 
CoQ10 deficiencies have been found in patients with various diseases, including cancers, 
cardiovascular diseases (e.g., statin myopathy, congestive heart failure, and hyperten-
sion), diabetes mellitus, dementia, hepatitis, Parkinson’s disease, skin aging, and renal 
diseases [37–40].

Literature search

To maximally identify the eligible studies relevant to our topic of CoQ10 in treating or 
preventing AKI, we performed a systematic review of the most commonly used data-
bases, i.e., MEDLINE, Google Scholar, EMBASE, and Cochrane Library. The keyword 
search strategy in MEDLINE was: ((((((((((((((((“coenzyme Q10” [Supplementary Con-
cept]) OR (2,3-dimethoxy-5-methyl-6-decaprenylbenzoquinone)) OR (CoQ 10)) OR 
(co-enzyme Q10)) OR (ubidecarenone)) OR (ubiquinone 50)) OR (ubiquinone Q10)) OR 
(Bio-Quinone Q10)) OR (ubiquinone 10)) OR (CoQ10)) OR (ubisemiquinone radical)) 
OR (Q-ter)) OR (ubisemiquinone)) OR (coenzyme Q10, (Z,Z,Z,Z,Z,Z,E,E,E)-isomer)) 
OR (coenzyme Q10, ion (1-), (all-E)-isomer)) OR (Q10)) AND ((((Kidney Failure) OR 
(Renal Failure)) OR (Kidney injury)) OR (renal injury)). Figure 1 shows the search flow-
chart for screening the relevant studies. The inclusion criteria for study eligibility include 
the following: (1) clinical study reporting on the effects of CoQ10 in treating patients 
with AKI; (2) experimental research reporting on the roles of CoQ10 in AKI and its 
potential molecular mechanisms; (3) any clinical or experimental studies reporting on 
the effects of ubiquinol and ubiquinone in AKI. Twenty studies [25, 26, 41–58], either 
clinical or experimental, were finally included for further analysis and summary. A spe-
cific data collection table was used to extract the main data from each study, including 
article information (e.g., the first author’s name, publication year), research object (e.g., 
cell/animal model or patient), types of AKI, CoQ10 administration, associated genes/
pathways and agents, and the main findings of the study. Table 1 presents a summary of 
the relevant studies reporting CoQ10 against AKI.

https://pubchem.ncbi.nlm.nih.gov/compound/5281915
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Among the 20 included studies in Table 1, only 2 clinical trials were available and both 
of them suggested that administration of CoQ10 significantly improved renal func-
tion in patients with AKI. The AKI was either ESWL- or contrast-induced. In addition 
to one clinical study, there were two animal studies reporting renal protective effects 
against contrast-induced AKI, while only one clinical trial reported CoQ10 as prevent-
ing ESWL-associated AKI. Although three experimental studies reported the role of 
CoQ10 in renal ischemia–reperfusion injury, no relevant human trial is currently availa-
ble. Therefore, contrast-induced AKI might be the type of AKI most successfully treated 
with CoQ10.

Clinical implications of CoQ10 in AKI

Among the 20 included studies, two clinical trials reported on the clinical significance of 
CoQ10 in AKI. Carrasco et al. [42] conducted a prospective, randomized, double-blind, 
placebo-controlled clinical trial of 100 patients with AKI induced by extracorporeal 
shock wave lithotripsy (ESWL). These patients were divided randomly into two groups 
administered either CoQ10 (200  mg/day) or placebo (orally) during the week before 
ESWL and for 1 week after. The results showed that CoQ10 significantly increased glo-
merular filtration (P = 0.013) and decreased albumin/creatinine and β2-microglobulin 

Fig. 1 Search flowchart for identifying the relevant studies reporting use of CoQ10 to treat AKI
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levels (P = 0.02) compared with the placebo group. Furthermore, CoQ10 was also associ-
ated with an improvement in vasoactive hormone parameters (e.g., renin and aldoster-
one), vascular resistance index, and interleukin levels. Of note, CoQ10 administration 
did not significantly affect the parameters of oxidative stress (e.g., LPO, SOD, GPx, and 
GSH). Carrasco et  al.’s study revealed that CoQ10-treated peri-ESWL dramatically 
improved renal function of ESWL-induced AKI; meanwhile, it also strengthened the 
vasoactive and inflammation parameters. A more recent randomized, paralleled-arm, 
double-blind, controlled trial conducted by Chen et al. demonstrated that 21 (14.00%) of 
the 150 patients developed contrast-induced AKI undergoing elective cardiac catheteri-
zation. The authors found that patients administered 20 mg CoQ10 plus trimetazidine 
(TMZ) three times daily from 2 days before to 3 days after the procedure had a signifi-
cantly lower rate of contrast-induced AKI as compared with the placebo group (6.67% 
versus 21.3%, P = 0.01). On multiple logistic regression analysis, CoQ10 plus TMZ was 
an independent protective factor against contrast-induced AKI [odds ratio (OR) 0.252, 
95% confidence interval (CI) 0.082–0.774, P = 0.016]. This study further suggested that 
CoQ10 and TMZ significantly reduced the concentration of BUN and SCR, oxidation 
stress, and tubular pathological injuries. Taken together, the above two clinical studies 
revealed that CoQ10 might serve as a crucial protective drug in preventing AKI of either 
intrarenal (ESWL) or extrarenal cause (contrast-induced nephropathy).

Protective properties of CoQ10 in AKI reported in experimental studies
Roles of CoQ10 in drug‑ or substance‑induced AKI

Drug-induced nephrotoxicity is one of the most common causes of AKI, accounting for 
approximately 20% of all community- and hospital-acquired events [59]. In addition, 
drug-induced nephrotoxicity is the main reason for the failures of some phase III clinical 
trials [60]. A better understanding of the potential mechanisms underlying drug-induced 
AKI is gradually achieved. More importantly, there have been significant advances in 
AKI therapy in recent years. CoQ10 is among the most intensely investigated therapies 
in AKI treatment.

Figure 2 illustrates the potential molecular mechanisms of the renal protective effects 
of CoQ10 against AKI.

Ochratoxin A‑associated AKI

Ochratoxin A (OTA), one of the secondary metabolites of fungi (e.g., Aspergillus niger 
and Aspergillus ochraceus), seriously impairs human health through its cytotoxicity and 
embryotoxicity [61]. OTA exhibits nephrotoxic effects by inducing tubulointerstitial 
nephritis. The underlying mechanism of OTA nephrotoxicity may be associated with 
the repression of protein synthesis, genotoxic impacts, and oxidative damage. Yenilmez 
et al. [25] established an OTA-induced AKI rat model and found that 10 mg/kg CoQ10 
remarkably ameliorated OTA-induced renal oxidative injuries (e.g., ROS damage), 
accompanied by increasing glutathione and decreasing malondialdehyde levels in the 
plasma. This experimental study implies that CoQ10 might be a potential therapeutic 
measure for preventing OTA-induced AKI in clinical practice.
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Cisplatin‑induced AKI

Chemotherapy is a conventional mode of treatment for multiple cancers [62]. Cisplatin 
is one of the most commonly used chemotherapeutic agents for treating various solid 
tumors, including breast, ovarian, testicular, head, and neck cancers [63, 64]. Despite 
its antineoplastic efficacy, however, treatment with cisplatin frequently causes toxicity-
related symptoms, such as dose-related nephrotoxicity-induced AKI. It was reported 
that AKI commonly occurred after an initial dose of cisplatin [65]. Among multitu-
dinous mechanisms in the action of cisplatin-associated AKI, oxidative stress with 
increased generation of reactive oxygen species may be a key etiological factor. Several 
antioxidants have been confirmed to exert a protective effect against the nephrotoxic-
ity of cisplatin [66]. A previous study demonstrated that CoQ10 treatment (10 mg/kg/
day, intraperitoneally) dramatically ameliorated cisplatin-induced AKI in mice [41]. The 
molecular mechanisms underlying this potential were speculated to be the downregula-
tion of iNOS, NF-κB, caspase-3, and p53 in renal tissue, thus protecting against renal 
cell apoptosis. In line with this study, Fatima et al. [43] also found that CoQ10 (10 mg/
kg, intraperitoneally) played a crucial role in protecting cisplatin-induced AKI. In addi-
tion, the authors suggested that CoQ10 combined with epigallocatechin gallate (EGCG) 
was more effective at attenuating renal injury. CoQ10 exerts its protective effect by 

Fig. 2 Main molecular mechanisms of the renal protective effects developed by CoQ10 in different types 
of AKI. CoQ10 is an endogenous antioxidant. Under AKI treatment with CoQ10, multiple associated genes 
(e.g., iNOS, caspase-3, NF-κB, p53, and PON1) and a series of downstream signaling pathways (e.g., Nrf2/HO-1 
pathway) were regulated, resulting in antioxidant, anti-apoptotic, and anti-inflammatory effects. CoQ10 
coenzyme Q10, AKI acute kidney injury, ESWL extracorporeal shock wave lithotripsy, iNOS inducible nitric 
oxide synthase, PON1 paraoxonase 1, HO-1 heme oxygenase 1, ROS reactive oxygen species, Nrf2 nuclear 
factor erythroid 2-related factor 2
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decreasing BUN and serum creatinine levels. Besides, CoQ10 significantly attenuated 
cisplatin-induced alterations in the renal tissue concentration of Se, Zn, and Cu ions 
compared with the control group. Furthermore, another study by Fatima et al. revealed 
that 5 mg/kg CoQ10 combined with 15 mg/kg EGCG substantially alleviated cisplatin-
induced oxidative stress, nitrosative stress, and inflammatory and apoptotic parameters 
in a rat model. The above three studies highlight that CoQ10 might serve as a promis-
ing therapeutic option to protect against cisplatin-mediated AKI encountered in clinical 
practice.

Gentamicin‑induced AKI

Gentamicin is a well-known aminoglycoside antibiotic that is applied against the major-
ity of Gram-negative microorganism infections [67]. However, approximately 30% 
of patients under the treatment of aminoglycosides for over 7 days present with some 
symptoms of nephrotoxicity [68], which may be associated with the development of 
apoptosis and necrosis as well as the production of oxidative stress. Gentamicin-induced 
AKI or nephrotoxicity is commonly represented by a high level of urea and creatinine 
with tubular necrosis [69]. Paraoxonase 1 (PON1), an antioxidant enzyme, effectively 
protects LDL and HDL from oxidation and plays role in atherosclerosis prevention. 
Ahmadvand et  al. [26] reported that CoQ10 (15  mg/kg, intraperitoneally) markedly 
alleviated gentamicin-induced AKI by reducing the elevated serum lipid peroxidation 
and PON1 activity. Inconsistent with Ahmadvand et al.’s study, a subsequent experimen-
tal study showed that CoQ10 did not significantly alter the nephrotoxicity parameters 
[47]. However, the necrotic tubuli rate and hyalin accumulation in tubuli were decreased 
after CoQ10 treatment. The authors concluded that CoQ10 administration provided a 
protective effect on the kidney against gentamicin-induced AKI by the antioxidant and 
anti-inflammatory properties of CoQ10 [47]. Though widely used in clinical practice, 
gentamicin is a nephrotoxic antibiotic. However, as some specific pathogens are sensi-
tive to gentamicin, it is definitely not negligible. On the basis of the above in vivo studies, 
CoQ10 shows renal protective effects on gentamicin-induced AKI.

Nicotine‑induced AKI

High levels of nicotine, one of the main constituents of tobacco smoke, are observed 
in the kidneys of chronic smokers. Nicotine has been found to cause apoptosis in renal 
proximal tubule cells by elevating the production of reactive oxygen species [70]. It has 
been suggested that chronic nicotine exposure could also induce AKI [71]. An in vitro 
study conducted by Arany et al. [46] demonstrated that treatment with 10 µM CoQ10 
significantly repressed nicotine-mediated production of reactive oxygen species and 
consequent apoptosis in a nicotine-induced acute renal proximal tubule cell injury 
model. The renal protective properties of CoQ10 administration might be correlated 
with enhancement of p66shc promoter, phosphorylation of serine 36, and activation 
of Nrf2/MnSOD, thus counterbalancing ROS expression and anti-apoptosis. Clinically, 
if AKI is unequivocally caused by nicotine, CoQ10 provides a clinical benefit to these 
sufferers.
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L‑NAME hypertensive AKI

N-nitro-l-arginine methyl ester (L-NAME) is a nitric oxide synthase inhibitor. It is com-
monly used to establish hypertensive animal models by causing nitric oxide (NO) defi-
ciency and therefore increasing total peripheral resistance and blood pressure [72]. It 
is known that NO can be synthesized and released from endothelial cells, thus induc-
ing vasorelaxation. L-NAME causes hypertension by reducing NO. Also, L-NAME is 
confirmed to elevate oxidative stress in an animal model. Shamardl et al. [48] reported 
that CoQ10 (10  mg/kg, intraperitoneally) drastically decreased the systolic, diastolic, 
and mean arterial pressure, total cholesterol, LDL-C, creatinine, TNF-α, and malondi-
aldehyde levels. CoQ10 was also found to elevate the total antioxidant capacity in kid-
ney tissue. Belardinelli et al. [73] suggested that the protective effect of CoQ10 on the 
cardiovascular system might be correlated with its potent chain-breaking lipid-soluble 
antioxidant effects, counteracting vasoconstriction and preventing oxidative stress and 
inflammation by recoupling of nitric oxide synthase. Besides, CoQ10 exhibits the inhibi-
tory effects of lipoprotein α receptors and the dietary lipid absorption of cholesterol [74, 
75]. Shamardl et al. [48] suggested that the renal protective mechanisms of CoQ10 might 
be due to the effects of CoQ10 serving as an antioxidant, anticytokine, and blood pres-
sure conserver. Furthermore, the authors indicated that the combination of CoQ10 and 
vitamin D had further effects on all parameters.

NSAID‑induced AKI

Piroxicam is a common nonsteroidal anti-inflammatory drug (NSAID) that belongs to 
the oxicam class. Piroxicam is frequently prescribed for several painful and inflammatory 
events, e.g., postoperative, rheumatoid arthritis, and even cancer pain [76]. However, 
piroxicam can induce hepatorenal damage due to oxidative stress and disruption of cel-
lular redox homeostasis. Diclofenac metabolites can lead to the apoptosis of hepatocytes 
and cause mitochondrial malfunction, resulting in liver damage. Besides, diclofenac also 
has a detrimental effect on the kidneys by inhibiting prostaglandin. It was reported that 
diclofenac can mediate nephrotoxicity, causing elevation of urea, creatinine, and electro-
lytes (e.g., Na, K, and Cl) [77]. Abdeen et al. [54] showed that CoQ10 (10 mg/kg, orally) 
significantly attenuated piroxicam-inflicted deleterious oxidative harm and apoptosis in 
an AKI model, improving mitochondrial function and reducing ROS in kidney tissue. 
The renoprotective action of CoQ10 might be attributed to its free-radical scavenging 
activity.

Diclofenac is an NSAID commonly used in the field of veterinary medicine. Diclofenac 
has the function of alleviating pain and has anti-inflammatory and antipyretic effects 
[78]. However, diclofenac is also nephrotoxic, causing severe necrosis of cells lining renal 
tubules. Albadrany et al. [51] demonstrated that CoQ10 could not alleviate diclofenac-
induced renal injury, but worsened the impaired renal function in a broiler chicken 
model. Obviously, this study exhibits a quite opposite trend of the roles of CoQ10 in 
AKI. It was suggested that COQ10 co-administered with diclofenac might cause a syn-
ergistic detrimental effect on renal tissue [51]. Moreover, it was speculated that COQ10 
might inhibit prostaglandin synthesis in the kidney, similar to the biological effects of 
NSAIDs [51]. Moreover, CoQ10 could also repress the formation of NO, resulting 
in overcontraction of blood vessels [79]. On the basis of these theories, CoQ10 might 
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impair renal function. Unlike for the above types of AKI, CoQ10 is not recommended to 
prevent or treat NSAID-induced AKI, as CoQ10 can aggravate impaired renal function.

Khat‑induced AKI

Khat (Catha edulis, Forsk) is an evergreen shrub used for recreational purposes. Owing 
to its psychostimulant effects, the consumption of khat causes substance abuse in 
some countries. Several alkaloids, including cathinone, cathine, and norephedrine, are 
accountable for the effects of khat. Khat has a negative effect on the physiological and 
biochemical processes of the kidney, causing nephrotoxicity [80]. Since CoQ10 has 
been shown to have potent antioxidant and anti-inflammatory effects, Kennedy et  al. 
[52] investigated the exact roles of CoQ10 in khat-induced AKI and found that CoQ10 
(200 mg/kg, orally) significantly decreased creatinine levels and reduced tubular necro-
sis and tubular epithelium injury. The protective effect derived from CoQ10 might be 
associated with the reduction of oxidative stress and inflammation

Lead‑acetate‑induced AKI

Lead acetate (AcPb) is a raw material used in chemical industries. The hazardous effects 
of AcPb are commonly due to the presence of lead (Pb) [81]. Pb can induce oxidative 
stress and generation of reactive oxygen species in tissues. Exposure to Pb may induce Pb 
accumulation in the proximal tubules and thus result in renal injury and eventually kid-
ney failure [82]. Megrin et al. [53] discovered that CoQ10 (10 mg/kg, intraperitoneally) 
reduced the deleterious cellular side effects of AcPb exposure owing to its antioxidant, 
anti-inflammatory, and anti-apoptotic effects. CoQ10 significantly decreased the level of 
tumor necrosis factor-α, interleukin-1β, Bax, and caspase-3 in the kidney. The molecular 
mechanisms might be related to the upregulation of Nrf2 and HO-1 expression.

Sepsis‑associated AKI

Sepsis, a severe systemic inflammatory response related to various infections, remains 
one of the leading causes of morbidity and mortality in hospitals [83, 84]. Severe sep-
sis may induce multiorgan dysfunction. The kidney is an organ susceptible to sepsis, 
especially severe sepsis. Despite intensive treatment strategies, sepsis is life threatening. 
Ozer et al. revealed that CoQ10 (10 mg/kg, intraperitoneally) exerted protective effects 
on cecal ligation and puncture-induced sepsis-induced AKI via its anti-inflammatory 
and antioxidative effects. However, further clinical trials are warranted to confirm this 
in vivo finding.

Roles of CoQ10 in contrast‑induced AKI

Contrast-induced AKI is an iatrogenic AKI that has long been observed after intravas-
cular administration of contrast medium for angiography and percutaneous coronary 
interventions [85]. Contrast-induced nephropathy is the third-leading cause of acquired 
AKI in hospitals. Contrast medium exposure, either intra-arterially or intravenously, 
may result in AKI. The incidence of AKI after intravenous contrast medium administra-
tion has been reported at 5–6% [85]. Contrast-induced AKI may cause higher mortal-
ity, greater treatment costs, and prolonged hospitalization. It was reported that contrast 
medium could induce the apoptosis of renal tubular epithelial cells by abnormally 
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increasing the level of ROS [86]. Since CoQ10 is a strong antioxidant, it may play a cru-
cial role in contrast-induced AKI.

To investigate the effects of CoQ10 in contrast-induced AKI, Chen et al. [49] found 
that 20 mg/kg CoQ10 treatment dramatically reduced serum BUN and creatinine levels, 
as well as oxidation levels in kidney tissue. A combination of CoQ10 and trimetazidine 
significantly decreased the necrosis of tubular epithelial cells and the cast formation. In 
line with this finding, Alshogran et al. [57] demonstrated that pretreatment with CoQ10 
(20 mg/kg, orally) and atorvastatin (10 mg/kg, orally) exhibited regenerative effects on 
distal tubules with mild kidney histology alterations after contrast-induced AKI. Also, 
a recent experimental study conducted by Couto et al. suggested that CoQ10 (10 mg/
kg, intraperitoneally) significantly ameliorated renal function in an animal model of con-
trast-induced AKI. CoQ10 administration could prevent hemodynamic changes, neu-
tralize oxidative damage, and alleviate the progression of histologic damage compared 
with the contrast-induced AKI group. On the basis of the above three relevant studies, 
CoQ10 could serve as a promising strategy to prevent contrast-induced AKI in clinical 
practice.

Ischemia–reperfusion‑induced AKI

Renal ischemia–reperfusion injury (RIRI), characterized by restriction of blood supply to 
the kidney, can cause renal cell death and lead to renal failure [87]. It commonly occurs 
after organ transplantation, infarction, and sepsis. RIRI is one of the main causes of AKI. 
RIRI may activate and exacerbate multiple inflammatory responses, thus increasing the 
production of ROS, chemokines, leukocytes, and cytokines. CoQ10 is a potent antiox-
idant and free-radical scavenger, with mounting evidence demonstrating that it could 
protect the kidney from ischemia–reperfusion (I/R) injury.

Akbulut et al. [50] showed that CoQ10 (10 mg/kg, intraperitoneally) could significantly 
decrease the tissue oxidative stress levels and the scores of histopathology and apoptosis 
in a RIRI-induced AKI rat model. Consistent with Akbulut et al.’s findings, Liu et al. [55] 
also found that CoQ10 treatment substantially improved renal function by reducing oxi-
dative damage, inhibiting renal cell apoptosis, and attenuating inflammatory response. 
However, Liu et al. [56] applied an RIRI-induced AKI mouse model and used a CoQ10 
dose of of 50 mg/kg. In a subsequent study developed by Liu et al., the authors further 
found that mitochondria-targeted triphenylphosphine CoQ10 nanoparticles remark-
ably alleviated mtDNA damage, suppressed inflammatory and apoptotic responses, and 
improved renal function in the RIRI animal models. The way of CoQ10 administration 
was 50 mg/kg via tail vein injection. These studies indicated that CoQ10 effectively pro-
tected renal function of RIRI-induced AKI through its antiperoxidative, anti-apoptotic, 
and anti-inflammatory potential. In the future, CoQ10 may have broad clinical applica-
tion in the treatment of ischemia–reperfusion-induced AKI.

Roles of mitochondrial function in the action of CoQ10 against AKI

CoQ10 plays a key role in cellular energy supply through oxidative phosphorylation 
within mitochondria [88]. Mitochondrial dysfunction might cause oxidative stress, 
systemic inflammatory responses, and cell apoptosis, thus inducing renal damage. 
Yenilmez et  al. [25] demonstrated that CoQ10 ameliorated ochratoxin-A-induced 
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AKI partially by inhibiting ROS damage in mitochondria. Ozer et  al. [45] revealed 
that CoQ10 deficiency induced by sepsis could cause progressive mitochondrial fail-
ure and energy depletion. CoQ10 was found to prevent cell apoptosis by maintain-
ing the mitochondrial permeability transition pore [89]. A recent study showed that 
CoQ10 protected against lead-acetate-induced AKI in rats by preventing apoptosis 
[53]. The toxic effects of piroxicam might be associated with mitochondrial dys-
function and excess generation of ROS [90]. Abdeen et al. [54] reported that CoQ10 
improved mitochondrial function in piroxicam-inflicted AKI. Liu et al. [56] revealed 
that mitochondria-targeted T-NPCoQ10 nanoparticles were detected to play an impor-
tant protective role in renal I/R injury by dramatically reducing the oxidative levels 
and inflammatory responses in the tissues of AKI. On the basis of the above evidence, 
the protective effects elicited by CoQ10 on AKI might be attributed partially to the 
recovery of mitochondrial activity and the elevation of energy production in renal 
cells.

Directions for future experimental research

As shown in Table 1, most of the included in vivo studies suggest that CoQ10 might 
have a renal protective role in drug- or substance-induced AKI, although the molecu-
lar mechanisms of CoQ20 were multifaceted. The involved genes or pathways were 
inconsistent among different studies. Since CoQ10 exhibits antioxidant, anti-inflam-
matory, and anti-apoptotic effects, future experiments could be more concentrated 
on those associated genes or pathways that regulate the biological functions of 
CoQ10. For example, Nrf2 was found to be correlated with both antioxidant and anti-
apoptotic effects of CoQ10 in various organ injuries [53, 91–93]. In regard to the anti-
inflammatory properties of CoQ10, NF-ĸB expression was detected to be one of the 
key factors in the anti-inflammatory effect of CoQ10 in acute brain injury and other 
diseases [94, 95]. On the basis of the current evidence, the exact biological functions 
of Nrf2 and NF-ĸB in the actions of CoQ10 in treating AKI deserve further future 
investigation. After confirmation, CoQ10 combined with those drugs targeting Nrf2 
and NF-ĸB might exert an excellent renal protective effect on AKI.

Another point of concern is that CoQ10 supplementation may causes an increase 
in renal CoQ10 status. Since repeated biopsies cannot be undertaken, blood CoQ10 
analysis may be reliable for monitoring CoQ10 treatment, while urinary CoQ10 anal-
ysis can provide information about the quantity of CoQ reaching the target tissues, 
such as the kidney [96]. Several studies [97, 98] showed that CoQ10 and its binding 
proteins decreased in renal injury diseases. Therefore, the protective effect exerted by 
CoQ10 in AKI might be associated with the amelioration of CoQ10 deficiency in the 
kidneys. Following CoQ10 supplementation, the level of CoQ10 increases in renal tis-
sues, thus exerting antioxidant, anti-inflammatory, and anti-apoptotic effects. Among 
the 20 included studies, none of them reported CoQ10 status in blood, urinary, and 
renal tissue, before and after CoQ10 treatment. Thus, it is difficult to determine 
whether the protective effects elicited by CoQ10 supplementation in AKI are induced 
by the elevation of renal CoQ10 status. As a result, further clinical and experimental 
studies are warranted to better illustrate this phenomenon.
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Limitations and perspectives

To the best of our knowledge, this is the first collaborative review to summarize all the 
evidence of the protective properties of CoQ10 against AKI. CoQ10 is a commonly used 
compound and is well tolerated with few adverse effects, making it an attractive poten-
tial therapy for AKI. Nevertheless, some potential shortcomings deserve attention. First, 
only two clinical trials have reported the clinical implications of CoQ10 treatment in 
AKI; the remaining included studies were either in vivo or in vitro experiments. Thus, 
further clinical trials, and randomized, placebo-controlled double-blinded trials in par-
ticular, are still warranted to confirm the clinical significance of CoQ10 in AKI. Second, 
despite the use of various AKI animal models, the molecular mechanisms of CoQ10 in 
treating AKI have not been fully understood and should be investigated in future studies.

Conclusion
The current review highlights the protective effects of CoQ10 in treating multiple types 
of AKI, including but not limited to AKI induced by drugs, ESWL, sepsis, contrast 
media, and ischemia–reperfusion injury. The renal protective roles of CoQ10 in AKI 
might be mainly due to its potent antioxidant, anti-apoptosis, and anti-inflammation 
properties. The underlying mechanisms for CoQ10 might be attributed to the regula-
tion of multiple affected proteins (e.g., caspase-3, p53, and PON1) and signaling cascades 
(e.g., Nrf2/HO-1 pathway). Upon further confirmation of the renal protective effects by 
extensive in-depth studies, CoQ10 administration may be a potential strategy for the 
treatment of AKI in clinical practice.
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