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Abstract
New psychoactive substances (NPS) pose an increasing challenge for clinical and forensic toxicology due to the initial 
lack of analytical and metabolic data. This study evaluates the performance of four in silico prediction tools (GLORYx, 
BioTransformer 3.0, SyGMa, and MetaTrans) in predicting the metabolism of seven NPS from five major chemical fami-
lies (cathinones, synthetic cannabinoids, synthetic opioids, designer benzodiazepines, and dissociative anesthetics). The 
predicted metabolites were compared to those reported in the literature. The results revealed that SyGMa was the most 
exhaustive tool, predicting 437 metabolites, whereas MetaTrans predicted the fewest (61). GLORYx uniquely identified 
glutathione conjugation, while BioTransformer was particularly effective in predicting phase I reactions. However, no single 
tool provided complete predictions. Combining the four tools enabled the identification of several key biomarkers consistent 
with experimental data, such as m/z 238.1443 for eutylone and m/z 381.1926 for etonitazepipne. These findings highlight 
the need for integrated approaches to optimize metabolite prediction. Future advancements in artificial intelligence-based 
models could reduce false positives and enhance the accuracy of predictions, thus reinforcing the role of in silico tools in 
toxicological investigations.

Keywords New psychoactive substances (NPS) · In silico metabolism prediction · Biotransformation pathways · 
Toxicological biomarkers · Phase I and II metabolism · Prediction software comparison

Introduction

New psychoactive substances (NPS) comprise a diverse 
group of recreational drugs (including synthetic cannabi-
noids, arylcyclohexylamines, synthetic cathinones, new syn-
thetic opiates, and designer benzodiazepines) engineered to 
replicate the pharmacological effects of illicit drugs such 
as cannabis, amphetamine, cocaine, 3,4-methylenedioxym-
ethamphetamine, and lysergic acid diethylamide (UNODC 
2023). These substances pose a significant challenge in 

toxicology due to the initial absence of analytical identifica-
tion data regarding the parent molecule such as exact mass, 
MS/MS data and retention time. In addition, data on the 
metabolism of these substances is rarely available, although 
it is essential as it provides information on the metabolites 
that serve as consumption markers, particularly in cases 
where the parent molecule is no longer detected in biologi-
cal matrices (Gicquel et al. 2024).

The biotransformation reactions of xenobiotics are 
divided into four main stages: entry of the xenobiotic (phase 
0), functionalization reactions (phase I), conjugation reac-
tions (phase II), and exit of the xenobiotic (phase III). In this 
article, we study the main phase I and II metabolites using 
NPS metabolism prediction software. NPS metabolism can 
be explored using a variety of approaches. Among these, 
human biological samples are considered the gold stand-
ard in metabolic studies because they offer real-life insights 
into the fate of parent compounds and their metabolites. 
Additionally, analyzing different types of samples provides 
information on the distribution of compounds and their 
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metabolites in biological matrices. While blood and urine 
are the most commonly collected samples from living indi-
viduals, post-mortem samples can also be collected from 
bile, gastric contents, cardiac blood, or vitreous humor. The 
metabolites are known to accumulate particularly in urine 
and bile, though the limited availability of these samples 
poses a challenge to broader application (Bardal et al. 2011; 
Gicquel et al. 2024).

Metabolic studies in animals traditionally rely on rodent 
models to overcome limitations with human biological sam-
ples, but ethical considerations mandate the judicious use of 
animals (Pelletier et al. 2022a). Despite anatomical, physi-
ological, and biochemical similarities to humans, significant 
interspecies differences in drug metabolism complicate the 
extrapolation of rodent, porcine, or canine data to humans 
(Lin 1995, 1998; Guengerich 1997; Bogaards et al. 2000; 
Dalgaard 2015).

In vitro studies have corroborated in vivo findings, iden-
tifying metabolites also present in human transformation 
reactions. Liver models, particularly genotyped primary 
human hepatocytes, are preferred for studying metabolism 
due to their expression of relevant enzymes and transporters, 
making them the gold standard despite limitations like high 
cost and variable enzyme expression (Gerets et al. 2012; 
Goncalves et al. 2022). Alternative models such as pooled 
human liver microsomes, pooled human S9 fractions, and 
differentiated HepaRG cells offer similar results in identify-
ing major metabolites (Gicquel et al. 2024). Overall, several 
of these models have been employed in NPS metabolism 
studies using advanced analytical tools to reprocess data, 
particularly within non-targeted workflow and/or molecular 
networking (Allard et al. 2019; Pelletier et al. 2022b, 2023, 
2024).

To go further, advancements in the understanding of 
metabolic mechanisms have facilitated the development of 
in silico metabolism prediction algorithms, which serve as 
convenient, open-access, time-efficient, and cost-effective 
tools for expanding metabolite searches and validating 
in vivo or in vitro data (Kirchmair et al. 2015). Various 
methodologies are employed in metabolism studies to create 
in silico systems, including (i) quantitative structure–activity 
relationship (QSAR) models, which posit that structurally 
similar molecules exhibit similar metabolic properties, (ii) 
quantum mechanical calculations for predicting reactivity, 
and (iii) docking simulations of potential substrates into 
enzyme active sites (Du et al. 2008; Gertrudes et al. 2012; 
Kazmi et al. 2019; Tyzack and Kirchmair 2019; Di Trana 
et al. 2021).

To date, very little data exist on the comparison of in 
silico xenobiotic metabolism prediction software in gen-
eral (Boyce et  al. 2023), and particularly on NPS. The 
aim of this study is to compare the results of various in 

silico metabolism prediction tools on seven NPS candidates 
belonging to the five most relevant chemical families to 
compare these tools in the metabolism studies of these new 
substances.

Materials and methods

In silico metabolite prediction

We included seven NPS belonging to the five chemical fam-
ilies most frequently reported in the literature and whose 
metabolism is accurately described in the literature (Sal-
gueiro-Gonzalez et al. 2024; Santos et al. 2024): cathinones, 
dissociative anesthetics, synthetic cannabinoids, designer 
benzodiazepines, and new synthetic opiates (Table 1). The 
most relevant and up-to-date bibliographic reference was 
chosen for each NPS.

The NPS metabolites were predicted using their SMILES 
string obtained in PubChem with four open-access software 
tools GLORYx, BioTransformer 3.0, SyGMa (System-
atic Generation of potential Metabolites) and MetaTrans 
(Metabolite Translator). All programs predicting the bio-
transformation of xenobiotics uses reaction rules. They 
anticipate metabolic pathways and potential metabolites, 
including phase I and II reactions. However, they differ 
in their functionalities, which influences the results they 
deliver.

Among these tools, GLORYx is only available online 
(https:// dev- nerdd. univie. ac. at/ gloryx), and allow to export 
data on.sdf (Structure Data File). GLORYx combines site-
of-metabolism prediction via learning models with reaction 
rules sets to predict and classify potential metabolite struc-
tures formed through phase I and/or phase II metabolism (de 
Bruyn et al. 2021). The “Phase 1 and phase 2 metabolism” 
parameter was used for GLORYx software.

BioTransformer 3.0 is available online (https:// BioTr ansfo 
rmer. ca/ new) or as a downloadable, command-line only 
program. It is an open-access tool, enables rapid, accurate, 
and comprehensive prediction of small molecule metabo-
lism in both mammals and environmental microorganisms 
(Djoumbou-Feunang et al. 2019). This software combines 
QSAR models with reaction rules to predict metabolites 
while identifying the enzymes involved. This feature adds an 
important biological dimension, facilitating integration with 
other biological data. For the analysis parameters, we used 
the ‘AllHuman’ mode, BioTransformer cycle number = 1 and 
Biotransformer CYP450 prediction Mode = 3.

MetaTrans and SyGMa software packages need to be 
installed on a computer. In this study, we predicted metab-
olites with the installed version of software packages using 
a bash script called Prediction_Metabo.sh (available on 

https://dev-nerdd.univie.ac.at/gloryx
https://BioTransformer.ca/new
https://BioTransformer.ca/new
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https:// github. com/ alexi sbour dais/ MetaT ox/ tree/ origin). 
MetaTrans (Metabolites Translator) uses a deep learning 
architecture to anticipate metabolic reactions. Its approach 
relies on precise data, resulting in more targeted predic-
tions. SyGMa (Systematic Generation of potential Metab-
olites) is a software package that predicts metabolites and 
biotransformation reactions using a reaction rule-based 
approach (Ridder and Wagener 2008). It uses predictive 
models and structural data to estimate the potential metab-
olites of a chemical compound. SyGMa stands out for its 
ability to predict a large number of metabolites, covering 
both phase I and phase II reactions. The parameters used 

for the SyGMa software are as follows: SyGMa Phase 1 
cycle number = 1 and SyGMa Phase 2 cycle number = 1.

Comparison to literature data

A literature review was carried out on the PubMed, Google 
Scholar, and Web of Science databases to select studies 
presenting data on NPS metabolism. The following mol-
ecules were identified and selected for this study on the 
basis of their known metabolism in the literature: 2 syn-
thetic cathinones (eutylone and 4-Cl-PVP), 1 dissociative 
anesthetic (2F-DCK), 1 synthetic cannabinoid (ADB-Fubi-
naca), 1 semi-synthetic cannabinoid (HHC), 1 designer 

Table 1  NPS selected in this study and classified by chemical family

Family Name Canonical SMILES code Structures

Cathinones Eutylone CCC(C(= O)C1 = CC2 = C(C = C1)OCO2)NCC

4-Cl-PVP
(4-chloro-pyrrolidinovalérophénone)

CCCC(C(= O)C1 = CC = C(C = C1)Cl)
N2CCCC2

Arylcyclohexylamine 2F-DCK
(2-fluoro-deschloro-kétamine)

CNC1(CCCCC1 = O)C2 = CC = CC = C2F

NH

O

F

New synthetic opioids (benzi-
midazoles derivative)

Etonitazepipne
(N-Piperidinyl Etonitazene) 

CCOC1 = CC = C(C = C1)
CC2 = NC3 = C(N2CCN4CCCCC4)
C = CC(= C3)[N+](= O)[O−]

O

N

N

N

N+

O

O-

Designer Benzodiazepines Adinazolam CN(C)CC1 = NN = C2N1C3 = C(C = C(C = C3)
Cl)C(= NC2)C4 = CC = CC = C4

N

N
N

N
N

Cl

(Hemi)Synthetic Cannabinoid HHC
(Hexahydrocannabinol)

CCC CCC 
1 = CC(= C2C3CC(CCC3C(OC2 = C1)(C)
C)C)O

O

HO

ADB-Fubinaca CC(C)(C)C(C(= O)N)NC(= O)
C1 = NN(C2 = CC = CC = C21)
CC3 = CC = C(C = C3)F

O

NH2
NH

O

N
N

F

https://github.com/alexisbourdais/MetaTox/tree/origin
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benzodiazepine (adinazolam) and 1 new synthetic opiate 
(etonitazepipne). An overview of the methodology used in 
this study is shown in Fig. 1.

The lists of NPS metabolites presented in Tables 4, 5, 6, 
7, 8, 9 and 10 were compiled by integrating metabolites from 
two sources: experimentally confirmed metabolites reported 
in the literature, and theoretical metabolites predicted by in 
silico tools. The tables below, therefore, present only those 
molecules found by the software and already described in 
the literature from relevant references that have studied the 
metabolism of the molecule of interest, using human sam-
ples and/or, where appropriate, in vitro models.

Chemical structures drawing

All the molecules were drawn using Chemdraw 23.1.1 soft-
ware. To standardize the structures, we used the ACS mode 
of document 1996.

Results

In silico metabolism prediction overview

The metabolism of the seven NPS selected in this study was 
predicted using four in silico prediction software packages. 
Table 2 summarizes the total number of metabolites pre-
dicted by each software package, as well as the distribution 
between phase I and phase II metabolites. The results varied 
significantly across the different software tools. SyGMa pre-
dicted the highest number of metabolites (437), followed by 
GLORYx (191), BioTransformer (91), and MetaTrans (80).

Among the four software packages, MetaTrans predicted 
the fewest metabolites and did not predict any phase II 
metabolites. BioTransformer 3.0 predicted between 9 and 
18 metabolites per NPS but identified phase II metabolites 
for only three of the seven molecules, resulting in a total 
of 91 metabolites. GLORYx predicted between 5 and 38 
metabolites per NPS but included only eight phase II metab-
olites out of a total of 191 metabolites. SyGMa provided 
the broadest range of predicted metabolites, particularly due 
to its higher number of phase II metabolites. Specifically, 
SyGMa predicted more phase II metabolites (260) than 

Fig. 1  Overview methodology for in silico new psychoactive sub-
stances metabolism prediction used in this study. OH: hydroxylation; 
CYP: cytochrome P450; SULT: sulfotransferase; SW: software; UGT: 
UDP-glucuronosyltransferase

Table 2  Summary of predicted metabolites for each compound based 
on in silico metabolism prediction software

GX: GLORYx; BT: BioTransformer; SM: SyGMa; MT: MetaTrans

Parent com-
pound

Number of predicted metabolites
Total (phase I + Phase II)

GX BT MT SM

Eutylone 34 (34 + 0) 11 (11 + 0) 9 (9 + 0) 46 (23 + 23)
4-Cl-PVP 27 (26 + 1) 15 (15 + 0) 14 (14 + 0) 28 (11 + 17)
2-FDCK 5 (5 + 0) 10 (10 + 0) 10 (10 + 0) 40 (26 + 14)
Etonitaz-

epipne
38 (37 + 1) 18 (18 + 0) 12 (12 + 0) 132 (50 + 82)

Adinazolam 27 (24 + 3) 12 (11 + 1) 9 (9 + 0) 69 (22 + 47)
HHC 34 (31 + 3) 16 (14 + 2) 10 (10 + 0) 72 (29 + 43)
ADB-Fubinaca 26 (26 + 0) 9 (8 + 1) 16 (16 + 0) 50 (16 + 34)
Total 191 (183 + 8) 91 (87 + 4) 80 (80 + 0) 437 (177 + 260)
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Table 3  Biotransformation metabolism pathway predicted by each software package

Molecule BioTransformer MetaTrans Sygma GLORYx

Eutylone Phase I
Reduction
Hydroxylation
Oxidation
Dealkylation

Phase I
Dealkylation
Hydroxylation
Oxidation

Phase I
Dealkylation
Reduction
Hydroxylation Carboxylation
Phase II
Sulfation
Glucuronidation

Phase I
Dealkylation
Oxidation
Hydroxylation
Carboxylation
Reduction

4-Cl-PVP Phase I
Reduction
Hydroxylation
Oxidation
Dealkylation
Desaturation/reduction

Phase I
Hydroxylation
Dealkylation
Carboxylation

Phase I
Reduction
Hydroxylation
Oxidation
Carboxylation
Phase II
Glucuronidation
Sulfation

Phase I
Hydroxylation
Reduction
Dealkylation
Oxidation
Dehydrogenation/reduction
Carboxylation
Dechlorination
Phase II
Glutathione conjugation

2F-DCK Phase I
Hydroxylation
Dealkylation
Reduction

Phase I
Hydroxylation
Dealkylation
Reduction

Phase I
Demethylation
Reduction
Hydroxylation
Phase II
Glucuronidation
Sulfation Acetylation

Phase I
Hydroxylation
Dealkylation

Etonitazepipne Phase I
Reduction (nitroreduction)
Hydroxylation
Dealkylation
Oxidation
Iminium formation
Cycle opening

Phase I
Hydroxylation
Oxidation

Phase I
Hydroxylation
Dealkylation
Reduction
Phase II
Glucuronidation
Sulfation

Phase I
Hydroxylation
Dealkylation
Oxidation
Dehydration/ reduction
Dehydrogenation/reduction
Phase II
Glucuronidation

Adinazolam Phase I
Hydroxylation
Oxidation
Dealkylation
Phase II
Glucuronidation

Phase I
Demethylation
Dealkylation
Hydroxylation
Decarbonation

Phase I
Demethylation
Oxidation
Hydroxylation
Dealkylation
Dechlorination
Imine-Hydrolyse
Phase II
Glucuronidation
Sulfation

Phase I
Hydroxylation
Demethylation
Oxidation
Dealkylation
Dehydration
Dechlorination
Imine-Hydrolyse
Phase II
Glucuronidation
Glutathione conjugation

HHC Phase I
Hydroxylation
Desaturation/reduction
Phase II
Glucuronidation
Sulfation
Methylation

Phase I
Oxidation
Demethylation

Phase I
Hydroxylation
Phase II
Glucuronidation
Sulfation
Methylation Carboxylation

Phase I
Hydroxylation
Dehydrogenation
Oxidation
Phase II
Glucuronidation
Sulfation
Carboxylation
Methylation

ADB-Fubinaca Phase I
Hydroxylation
Phase II
Glucuronidation

Phase I
Hydroxylation
Dealkylation

Phase I
Hydrolysis
Hydroxylation
Dealkylation
Phase II
Glucuronidation
Sulfation

Phase I
Dealkylation
Oxidation
Hydroxylation
Hydrolysis
Phase II
Glucuronidation
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phase I metabolites (177) when aggregating the results for 
all molecules.

In terms of biotransformation reactions, phase I reactions 
such as hydroxylation/oxidation and dealkylation were pre-
dicted by all the software packages. However, BioTrans-
former was the only software that did not predict carboxyla-
tion. All software packages, except MetaTrans, were capable 
of predicting phase II metabolites (Table 3). Sulfation reac-
tions were predicted exclusively by SyGMa and GLORYx. 
Additionally, glutathione conjugates were predicted only 
by GLORYx for 4-Cl-PVP and Adinazolam. Overall, these 
results indicate that MetaTrans provides the least diversity 
in terms of biotransformation reactions.

Metabolism prediction compared with literature 
data

Eutylone

Pelletier et al. (2023) identified 16 metabolites of eutylone 
using samples from two human patients (blood and urine) 
who had consumed eutylone. Among these, the authors 
described a phase I metabolite (m/z 238.144) and 2 glucu-
ronoconjugated metabolites (m/z 400.160 and m/z 414.176) 
as reliable markers of eutylone consumption.

In comparison, the four in silico prediction software pack-
ages used in this study predicted 7 of the 16 metabolites 
identified by the reference study. Decarbonated metabolite 
(m/z 224.1286) and reduced metabolite (m/z 238.1443) were 
consistently identified by all four software packages. Nota-
bly, SyGMa was the only software capable of predicting the 
metabolite with m/z 250.1079, as well as phase II metabo-
lites, including those identified as markers of eutylone con-
sumption (m/z 400.1607 and m/z 414.1764) (Tables 4, 5, 6, 
7, 8, 9 and 10).

4‑Cl‑PVP

Pelletier et al. (2024) identified 15 metabolites of 4-Cl-PVP 
using human biological samples (blood and urine) from a 
case of 4-Cl-PVP poisoning, as well as in vitro studies on 
HepaRG cell line. Among these metabolites, M5 (a hydroxy 
derivative) and M8 (a dihydroxy derivative) were high-
lighted as reliable markers of 4-Cl-PVP consumption.

In our study, only 6 of the 15 metabolites described in 
the reference study were predicted by combining the four 
in silico prediction software packages. Metabolite M5 was 
identified by all four software tools, consistent with its prom-
inence in the reference study. However, BioTransformer and 
MetaTrans each predicted only one metabolite in common 
with the reference study (M5). GLORYx predicted three 
already described metabolites: M4, M5, and M7. Notably, 

SyGMa was the only software capable of predicting M8 and 
several other metabolites described in the reference study.

2F‑DCK

Gicquel et al. (2024) identified 20 metabolites of 2F-DCK 
using post-mortem human samples (blood, vitreous humor, 
bile, and urine) from a case of 2F-DCK poisoning, as well 
as in vitro studies on human liver microsomes (HLMs) 
and HepaRG cell line. Among these metabolites, nor-2F-
DCK (M09, m/z 208.1130) and dihydro-2F-DCK (M12, 
m/z 224.1443) were proposed as reliable metabolites to 
be recorded in HRMS libraries to improve detection of 
2F-DCK.

In our study, the four in silico prediction software pack-
ages were able to predict eight metabolites. These included 
six phase I metabolites (M01, M03, M19, M09, M12, and 
M15) and two phase II metabolites (M18 and M20). Nota-
bly, only the SyGMa software was able to predict phase II 
metabolites. Metabolite M09 was predicted by all four soft-
ware packages, whereas metabolite M12 was predicted by 
three of them.

Etonitazepipne

Berardinelli et al. (2024a, b) identified 23 metabolites of 
etonitazepipne using post-mortem urine samples from a case 
of etonitazepipne poisoning, as well as in vitro studies on 
HLMs. In the urine sample, the most abundant metabolites 
were M10 (O-dealkylation) and M20 (O-dealkylation and 
oxidation), while in the HLMs, the most abundant metabo-
lites were M10 (O-dealkylation) and M5 (O-dealkylation 
and oxidation).

Of the 23 metabolites described by Berardinelli et al. 
(2024a, b), the four software packages were able to predict 
14 metabolites, including phase I metabolites M10, M11, 
M13, M14, M16, M17, and M18 (demethylated and hydrox-
ylated derivatives). Metabolite M17 was predicted only by 
BioTransformer, corresponding to a carboxylation reaction. 
Phase II metabolites were predicted exclusively by SyGMa, 
corresponding to the glucuronoconjugate derivatives M14 
and M15. Of the most abundant metabolites described in the 
reference publication, metabolite M09 was predicted by all 
four software packages. Of the other metabolites predicted 
by the four software packages (M11, M13, M16, M18, and 
M21), only M13, M18, and M21 were detected in the urine 
of the intoxicated patient.

Adinazolam

Fraser et al. (1993) identified four adinazolam metabolites 
(N-desmethyladinazolam, α-OH-alprazolam, estazolam and 
N,N-didesmethyladinazolam) in the urine of six volunteers 



2959Archives of Toxicology (2025) 99:2953–2973 

Table 4  Eutylone metabolite prediction using in silico software compared with literature data (Pelletier et al. 2023) (– = not applicable; X = pre-
sent; Gluc = glucuronic acid; Sulf = sulfate)

Molecule 
Formula
[M +  H]+(m/z)

Mass shift Chemical structure
Biotransformation

GX BT MT SM In vivo 
(human 
blood)

Eutylone
C13H17NO3
236.1287

– – – – – –

C12H17NO3
224.1286

− 12.0000 X X X X X

C13H19NO3
238.1443

+ 2.0156 X X X X X

C13H19NO3
238.1443

+ 2.0156 X X X X X

C13H15NO4
250.1079

+ 13.9792 X X

C12H17NO6S
304.0854

+ 67.9567 X X

C13H19NO6S
318.1011

+ 81.9725 X X
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given single oral doses of 10, 30, and 50 mg adinazolam. 
Urine samples were collected from 0 to 36 h post-adminis-
tration (Fraser et al. 1993).

Among these metabolites, the four software packages 
were able to predict two common metabolites. There were 
two phase I metabolites, including N-desmethyladinazolam 
predicted by GLORYx, BioTransformer, SyGMa and 
MetaTrans, and hydroxyl-adinazolam predicted by GLORYx 
SyGMa and MetaTrans. No phase II metabolites were found 
in the publication by Fraser et al. (1993) unlike in silico 
predictions (Table 3).

Hexahydrocannabinol

Lindbom et al. (2024) identified 21 HHC metabolites in 16 
authentic patient urine samples. HHC was primarily metabo-
lized through monohydroxylation, followed by oxidation to 
a carboxylic acid metabolite.

Of these 21 metabolites, 11 were predicted in silico, eight 
of which were phase II metabolites. Most of these metabo-
lites were only predicted by SyGMa and only N10 metabo-
lite was predicted by all four software packages simultane-
ously. N1 corresponding to glucuronoconjugation of HHC, 
and N7 corresponding to hydroxylation were found by three 
software packages, simultaneously.

ADB‑Fubinaca

Carlier et  al. (2017) identified 23 metabolites of ADB-
Fubinaca after 1 and 3 h of incubation with pooled human 
hepatocytes. The main metabolic pathways included alkyl 

and indazole hydroxylation, terminal amide hydrolysis, 
subsequent glucuronide conjugations, and dehydrogena-
tion. Consequently, ADB–Fubinaca hydroxyalkyl (M16), 
hydroxydehydroalkyl (M15), and hydroxylindazole (M14) 
metabolites were proposed as potential markers for ADB-
Fubinaca intake.

Of these 23 ADB-Fubinaca metabolites, 7 were predicted 
in silico. Only 2 metabolites were predicted in the same way 
by all software packages, namely M14 and M16. Metabolite 
M3 (dealkylated) was also predicted by three software pack-
ages (all except BioTransformer).

Discussion

In this study, we aimed to compare the results of four in 
silico metabolism prediction software packages on 7 NPS 
candidates belonging to five different chemical families 
to better position these tools in the metabolism studies of 
these new substances. Indeed, in silico prediction software 
are useful tools to explore the metabolism of NPS (Pelle-
tier et al. 2022a, 2024). By combining biotransformation 
reaction modeling with databases and learning algorithms, 
these software packages offer innovative perspectives for 
describing potential metabolites, thus reducing the time 
and costs associated with in vitro and in vivo studies. Also 
these software packages are freely available and easy to use, 
despite their performance varies considerably depending on 
the software used.

GLORYx predicted a total of 191 metabolites, covering 
both phases I and II biotransformations. Interestingly, GLO-
RYx proposed less common predictions, such as glutathione 

Table 4  (continued)

Molecule 
Formula
[M +  H]+(m/z)

Mass shift Chemical structure
Biotransformation

GX BT MT SM In vivo 
(human 
blood)

C18H25NO9
400.1607

+ 164.032 X X

C19H27NO9
414.1764

+ 178.0477 X X
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Table 5  4-Cl-PVP metabolite prediction using in silico software compared with literature data from in vivo (human blood and urine) and in vitro 
studies (HepaRG cell line) (Pelletier et al. 2022b) (− = not applicable; X = present; gluc = glucuronic acid)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Chemical structure
Biotransformation

GX BT MT SM In vitro 
(HepaRG 
cells)

In vivo (human 
blood and 
urine)

4-Cl-PVP
C15H20ClNO 266.1312

NA – – – – – –

M4
C15H18ClNO2
280.1104

 + 13.9792 X X X X

M5
C15H20ClNO2
282.1260

 + 15.9948 X X X X X X

M7
C15H18ClNO3
296.1053

 + 29.9741 X X X X

M8
C15H20ClNO3
298.1209

 + 31.9897 X X X
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conjugation for Adinazolam and 4-Cl-PVP, demonstrating 
its potential for exploring complex metabolic pathways. 
Lastly, while GLORYx proposes ranks and scores to prior-
itize metabolic scenarios and support metabolite identifica-
tion performed in vitro or in vivo as already used in the lit-
erature (Di Trana et al. 2021; Berardinelli et al. 2022, 2024b; 
Pelletier et al. 2022b; Brunetti et al. 2023), we included in 
this study all the proposed metabolites to be able to compare 
the software packages with each other.

With 91 predicted metabolites, BioTransformer 3.0 posi-
tions itself as a balanced tool, predicting major reactions 
such as hydroxylation and dealkylation for most of the eval-
uated NPS. In particular, this advantage has been used in 
the literature to add the expected main metabolites to the 
inclusion lists during analysis by high-performance liquid 
chromatography–high-resolution mass spectrometry (Ver-
ougstraete et al. 2023). However, BioTransformer sometimes 
lacks precision in certain predictions. For instance, it failed 
to identify glucuroconjugated metabolites for eutylone and 
2F-DCK, even though these are often essential biomarkers 
in toxicological studies (Gicquel et al. 2021; Pelletier et al. 
2023).

MetaTrans predicted the fewest number of metabolites 
(n = 80), without including any phase II reactions for the 
evaluated substances. This limitation reduces its relevance 
for comprehensive exploration of NPS metabolism. Never-
theless, MetaTrans proved its value by predicting certain key 
metabolites, such as Nor-2F-DCK for 2F-DCK, a relevant 

biotransformation identified in the literature (Gicquel et al. 
2021). This demonstrates that even with a limited number 
of results, the quality of the predictions remains significant.

With 437 predicted metabolites for the seven NPS stud-
ied, SyGMa offers the broadest range, particularly for con-
jugation reactions such as glucuronidation and sulfation. 
However, this advantage can also be a drawback when the 
software predicts redundant or aberrant metabolites. In the 
2F-DCK example, SyGMa proposed 10 metabolites but only 
three unique biotransformations, complicating data analysis. 
Its exhaustiveness can thus result in additional work to filter 
relevant results.

In terms of overall coverage, SyGMa emerges as the most 
exhaustive tool, although this can result in superfluous pre-
dictions. MetaTrans and BioTransformer focus more on pre-
cise but limited predictions, which can be advantageous for 
targeted studies. GLORYx, with its balance between cover-
age and relevance, offers an interesting solution based on 
these results.

Our findings indicate that SyGMa is particularly effective 
in generating phase II metabolites for all tested molecules. 
However, combining multiple tools significantly enhanced 
the metabolite coverage. To predict reliable biomarkers in 
silico, the most robust approach involves integrating several 
software tools, as demonstrated in previous studies (Pelletier 
et al. 2022a, b, 2024). This integrative approach minimizes 
aberrant metabolites and streamlines the selection of rel-
evant candidates from extensive predictions. By addressing 

Table 5  (continued)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Chemical structure
Biotransformation

GX BT MT SM In vitro 
(HepaRG 
cells)

In vivo (human 
blood and 
urine)

M5-Gluc
C21H28ClNO8
458.1581

 + 192.0269 X X

M7-Gluc
C21H26ClNO9
472.1374

 + 206.0062 X X
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Table 6   2F-DCK metabolite prediction using in silico software compared with literature data from in vitro (Human Liver Microsomes (HLMs), 
HepaRG cell line) and post-mortem samples (Gicquel et al. 2021) (– = not applicable; X = present; gluc = glucuronic acid)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (HLMs/
HepaRG cells)

In vivo 
(post-mortem 
samples)

2F-DCK
C13H16FNO
222.1286

NA – – – – – –

Hydroxy-2F-DCK
M01 or M03 or M19
C13H16FNO2
238.1238

 + 15.9952 X X X X X/X X

Nor-2F-DCK
M09
C12H14FNO
208.1130

− 14.0156 X X X X X/X X

Dihydro-2F-DCK
M12 or M15
C13H18FNO
224.1442

 + 2.0156 X X X X/X X

Hydroxy-nor-2F-DCK glucuronide
M18
C18H22FNO8
400.1398

 + 178.0112 X X

Hydroxy-2F-DCK glucuronide
M20
C19H24FNO8
414.1558

 + 192.0272 X X
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Table 7  Etonitazepipne metabolite prediction using in silico software compared with literature data from post-mortem urine samples (Berar-
dinelli et al. 2024a) (−  = not applicable; X = present; gluc = glucuronic acid). HLMs = human liver microsomes

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (HLM) In vivo 
(post-mortem 
urines)

Etonitazepipne
C23H28N4O3
409.2239

– – – – – – –

M1
C23H30N4O
379.2497

− 29.9742 X X X X X

M3
C27H32N4O9
557.2247

 + 148.0008 X X

M4 or M8
C21H24N4O4
397.1876

− 12.0363 X X X
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Table 7  (continued)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (HLM) In vivo 
(post-mortem 
urines)

M10
C21H24N4O3
381.1926

− 28.0313 X X X X X X

M11 or M21
C23H28N4O4
425.2188

+ 15.9949 X X X X X X

M13 or M16 or M18
C23H28N4O4
425.2188

 + 15.9949 X X X X X X

M14
C29H36N4O10
601.2509

 + 192.0270 X X
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Table 7  (continued)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (HLM) In vivo 
(post-mortem 
urines)

M15
C24H27N3O10
518.1774

 + 108.9535 X X

M17
C23H28N4O5
441.2138

 + 31.9899 X X X

M23
C23H26N4O4
423.2032

 + 13.9793 X X X X



2967Archives of Toxicology (2025) 99:2953–2973 

individual inconsistencies, the combined use of the four soft-
ware tools identifies metabolites with the highest likelihood 
of occurring in vivo when consistently predicted across all 
tools (Gicquel et al. 2024).

As part of this study’s limitations, it is likely that cer-
tain metabolites identified in silico are indeed present in 
biological samples but were not detected in the studies. 

It would, therefore, be appropriate to carry out other 
in vitro or in vivo analyses using the in silico data gener-
ated here. Conversely, we show here that in silico soft-
ware cannot always suggest metabolites of interest. In the 
example of adinazolam, the software predicts between 9 
and 69 metabolites. In the literature (Fraser et al. 1993), 
four metabolites were identified as being of biomarker 

Table 8  Adinazolam metabolite 
prediction using in silico 
software compared with 
literature data from patient urine 
(Fraser et al. 1993) (– = not 
applicable; X = present)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vivo 
(human 
urines)

Adinazolam
C19H18ClN5
352.1329

NA - - - - -

N-desmethyladinazolam
C18H16ClN5
338.1172

− 14.0157 X X X X X

OH-alprazolam
C17H13ClN4O
325.0856

− 27.0473 X X X X
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Table 9  Hexahydrocannabinol metabolite prediction using in silico software compared with literature data from patient urine (Lindbom et al. 
2024) (– = not applicable; X = present; gluc = glucuronic acid)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (human 
hepatocytes)

In vivo 
(human 
urines)

HHC
C21H33O2
317.2481

– – – – – – –

N1
C27H40O8
493.2801

 + 176.0320 X X X X

N2
C27H40O9
509.2750

 + 192.0269 X X X

N3
C27H40O9
509.2750

 + 192.0269 X X X

N6
C27H38O10
523.2543

 + 206.0062 X X X
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interest, but only two of these were suggested by the soft-
ware, leaving 50% of the relevant metabolites unidentified. 
N,N-didesmethyladinazolam is not proposed, although it 
seems relevant that it should be found, given the chemi-
cal structure of this benzodiazepine. Among other drug 
classes, N,N-didesmethyl-derivatives are notably found 
with tramadol and venlafaxine.

With regard to synthetic cathinones (eutylone and 4-Cl-
PVP), some metabolites identified as potential consumption 
markers in the literature were predicted by the four software 
packages, such as m/z 238.1443 for eutylone and M5 for 
4-Cl-PVP. These results might suggest that the prediction 
of metabolites of other cathinones by these four software 
packages could lead to the proposal of relevant consumption 
markers to look for even before obtaining in vivo or in vitro 
samples. Similar results were obtained with three other mol-
ecules for which the metabolites predicted in common by the 
four software packages constitute proposed n markers, such 
as M09 for 2F-DCK, M10 for etonitazepipne and M14/M16 
for ADB-Fubinaca, in vitro or in vivo consumption.

Overall, although this work enables us to evaluate the per-
formance of four metabolic prediction software packages, we 
show that these tools cannot yet replace in vitro and in vivo 
experiments to identify relevant biomarkers. Looking ahead, 
the development of next-generation metabolic prediction tools 
with lower false-positive rates could further refine predictions, 
enhancing the identification of biomarkers in the absence 
of in vitro or in vivo studies. Promising examples include 
Metapredictor (Zhu et al. 2024) and Semeta (https:// optib rium. 
com/ produ cts/ semeta/) whose metabolite prediction should 

be studied in the light of the literature. Future advancements 
in machine learning and the integration of artificial intelli-
gence are thus expected to yield more accurate and specific 
predictions.

Conclusion

In silico prediction tools offer a valuable, cost-effective, 
and efficient approach to explore the metabolism of new 
psychoactive substances (NPS), particularly in the absence 
of biological samples. SyGMa demonstrated the most 
comprehensive coverage, especially in predicting phase 
II metabolites, while BioTransformer 3.0 and MetaTrans 
provided more targeted but narrower predictions. GLO-
RYx stood out for its innovative pathways, such as glu-
tathione conjugation, although these conjugates have not 
been identified in the literature. Combining multiple tools 
proved critical to overcoming individual limitations and 
enhancing prediction reliability, as demonstrated by the 
consistent identification of key metabolites such as m/z 
238.1443 for eutylone and m/z 381.1926 for etonitaz-
epipne. This integrative approach increases the likelihood 
of identifying reliable biomarkers of consumption. Look-
ing forward, the integration of artificial intelligence and 
machine learning into next-generation tools promises to 
improve accuracy, reduce false positives, and better pre-
dict complex metabolic pathways. By bridging the gaps in 
current methods, in silico tools are poised to play a pivotal 

Table 9  (continued)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (human 
hepatocytes)

In vivo 
(human 
urines)

N7
C21H30O4
347.2222

 + 29.9741 X X X X X

N10
C21H32O3
333.2429

 + 15.9948 X X X X X

https://optibrium.com/products/semeta/
https://optibrium.com/products/semeta/
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Table 10  ADB-Fubinaca metabolite prediction using in silico software compared with literature data from pooled human hepatocytes (Carlier 
et al. 2017) (– = not applicable; X = present; gluc = glucuronic acid)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (pooled 
human hepato-
cytes)

ADB-Fubinaca
Parent
C21H23FN4O2
383.1883

NA - - - - -

M14
C21H23N4O3F
399.1832

+ 15.9949 X X X X X

M16
C21H23N4O3F
399.1832

+ 15.9949 X X X X X

M3
C14H18N4O2
275.1509

− 108.0374 X X X X
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Table 10  (continued)

Molecule 
Formula
[M +  H]+ (m/z)

Mass shift Structure
Biotransformation

GX BT MT SM In vitro (pooled 
human hepato-
cytes)

M11
C21H23N4O4F
415.1791

+ 31.9898 X X

M10
C27H31N4O9F
575.2156

+ 192.0263 X X

M18
C27H30N3O9F
560.2044

+ 177.0161 X X X

M22
C21H22N3O3F
384.1726

+ 0.9843 X X X
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role in toxicological investigations, supporting early detec-
tion and characterization of emerging NPS.
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