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A B S T R A C T   

Purpose: Segmentation of involved lymph nodes on head and neck computed tomography (HN-CT) scans is necessary for the radiotherapy planning of early-stage 
human papilloma virus (HPV) associated oropharynx cancers (OPC). We aimed to train a deep learning convolutional neural network (DL-CNN) to segment 
involved lymph nodes on HN-CT scans. 
Methods: Ground-truth segmentation of involved nodes was performed on pre-surgical HN-CT scans for 90 patients who underwent levels II-IV neck dissection for 
node-positive HPV-OPC (training/validation [n = 70] and testing [n = 20]). A 5-fold cross validation approach was used to train 5 DL-CNN sub-models based on a 
residual U-net architecture. Validation and testing segmentation masks were compared to ground-truth masks using predetermined metrics. A lymph auto-detection 
model to discriminate between “node-positive” and “node-negative” HN-CT scans was developed by thresholding segmentation model outputs and evaluated using 
the area under the receiver operating characteristic curve (AUC). 
Results: In the DL-CNN validation phase, all sub-models yielded segmentation masks with median Dice ≥ 0.90 and median volume similarity score of ≥ 0.95. In the 
testing phase, the DL-CNN produced consensus segmentation masks with median Dice of 0.92 (IQR, 0.89–0.95), median volume similarity of 0.97 (IQR, 0.94–0.99), 
and median Hausdorff distance of 4.52 mm (IQR, 1.22–8.38). The detection model achieved an AUC of 0.98. 
Conclusion: The results from this single-institution study demonstrate the successful automation of lymph node segmentation for patients with HPV-OPC using a DL- 
CNN. Future studies, including validation with an external dataset, are necessary to clarify its role in the larger radiation oncology treatment planning workflow.   

Introduction 

Approximately 66,000 cases of head and neck cancers will be diag
nosed in the United States in 2022, including 30% of which will be 
oropharynx cancers (OPC) associated with human papilloma virus 
(HPV) [1,2]. Treatment options for patients with early-stage HPV- 
associated OPC include transoral robotic surgery (TORS) with ipsilateral 
neck dissection or primary radiotherapy, with or without chemotherapy 
[3]. As evidenced by prospective studies of TORS and neck dissection for 
resectable HPV-associated OPC, 70–90% of patients managed surgically 
will require adjuvant radiotherapy–suggesting a greater role for defini
tive radiotherapy as the upfront treatment strategy for this population 
[4,5]. 

Among patients with early-stage HPV-associated OPC dispositioned 
to definitive radiotherapy, accurate identification of involved lymph 

nodes is paramount to ensuring adequate dose delivery to all sites of 
regional disease. Although lymph node segmentation has traditionally 
been performed manually by a clinician, there is an evolving role for 
deep learning algorithms in the automation of target volume segmen
tation for cancers of the head and neck [6,7]. Within the context of OPC, 
deep learning algorithms have been used to auto-segment clinical target 
volumes (CTVs) inclusive of areas at risk for clinical and subclinical 
disease [8]. However, no deep learning algorithm has focused on the 
identification and segmentation of lymph node gross tumor volumes 
(GTVs) for HPV-associated OPC. The purpose of this study was to 
develop a deep learning convolutional neural network (DL-CNN) 
capable of identifying and segmenting radiographically and pathologi
cally involved lymph nodes for HPV-associated OPC on contrast- 
enhanced head and neck computed tomography (HN-CT) scans. 
Furthermore, we aimed to use the DL-CNN to discriminate between 
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node-negative and node-positive HN-CT scans. 

Methods 

After obtaining Institutional Review Board approval, 90 patients 
who underwent TORS with selective, ipsilateral, levels II-IV neck 
dissection for newly diagnosed, clinically node-positive, HPV-associated 
OPC at our institution were retrospectively identified from a depart
mental clinical database. Additionally, 20 randomly selected patients 
who underwent TORS with selective, ipsilateral, levels II-IV neck 
dissection and were found to have clinically and pathologically node- 
negative, HPV-associated OPC were included in the dataset. The inclu
sion criterion was age of at least 18 years at the time of diagnosis while 
the exclusion criteria were a history of radiotherapy treatment to the 
head and neck region and/or a history of neck dissection. The goal of 
this study was to train a DL-CNN to segment involved lymph nodes on 
the pre-surgical HN-CT scans of these patients. 

Data preparation and preprocessing 

Pre-surgical, contrast-enhanced, diagnostic HN-CT scans were iden
tified for all patients. Expert, ground-truth segmentation of all radio
graphically involved lymph node GTVs was manually performed on 
node-positive HN-CT scans using RayStation Research (RaySearch Lab
oratories, Stockholm, Sweden) by one radiation oncologist with 5 years 
of clinical experience (NT) and reviewed by a second radiation oncol
ogist with more than 15 years of clinical experience (CDF) [9]. Surgical 
pathology reports from selective neck dissections, including annotation 
of involved lymph nodes by nodal level, were reviewed. Histopathology 
findings were correlated with neuroradiology annotations to ensure that 
all segmented lymph nodes corresponded to pathologically involved 
lymph nodes. The ground-truth lymph node segmentations for each 
patient were then combined into a solitary “ground-truth mask”. 

Pre-processing was performed on HN-CT scans to mitigate the vari
abilities in image size and resolution. The images and structure files 
were converted from Digital Imaging and Communications in Medicine 
(DICOM) format to Neuroimaging Informatics Technology Initiative 
(NIfTI) format and stripped of patient identifiers using the Advanced 
Medical Imaging Registration Engine (ADMIRE, Elekta AB, Stockholm, 
Sweden). The images were cropped to a specific sub-volume, with the 

auto-segmented cephalad border of the mandible, the manually 
segmented cephalad border of the sternum, and the auto-segmented 
external patient contour serving as the superior, inferior, and circum
ferential boundaries, respectively (Fig. 1). Image intensities were then 
truncated to the range of [− 100, 300] Hounsfield units and rescaled to 
the range of [-1, 1] to increase soft tissue contrast [10]. The images and 
their respective ground-truth masks were resampled to 1.0 mm isotropic 
resolution using a trilinear interpolator in ADMIRE. 

Model development 

A DL-CNN was developed based on a 3-dimensional (3D) residual U- 
Net architecture included in the Medical Open Network for Artificial 
Intelligence (MONAI) software package [11]. This architecture has been 
utilized successfully in previous OPC tumor auto-segmentation studies 
[12,13]. The network consisted of 4 convolution blocks in the encoding 
and decoding branches with a bottleneck convolution block separating 
these two branches (Fig. 2). In the encoding branch, all convolutional 
layers used a kernel size of 3, with each block consisting of a two-strided 
convolution layer; the residual connections contained a two-strided and 
one-strided convolution layer. In the decoding branch, all convolutional 
layers used a kernel size of 3, with each block consisting of a two-strided 
transpose convolution layer, a one-strided convolution layer, and a re
sidual connection. In the bottleneck, all convolutional layers used a 
kernel size of 1 and the residual connection consisted of a two-strided 
convolution layer. Batch normalization and Parametric Rectified 
Linear Unit (PReLU) activation functions were utilized throughout the 
architecture. 

Model training & validation 

The 90, node-positive HN-CT scans and their respective ground-truth 
masks served as input data by which the DL-CNN was developed. The 
node-positive HN-CT scans were randomly divided into 2 datasets–a 
training/validation dataset (n = 70) and a testing dataset (n = 20). Each 
of the 70 training/validation HN-CT scans was split into four, random 
regions (i.e., patches) of 96 × 96 × 96 voxels in dimension. The input 
tensor consisted of a batch size of 2, a single channel input, and 4 
patches per image, yielding a summative input of (8, 1, 96, 96, 96). Each 
patch was evaluated for the presence of an involved lymph node with 

Fig. 1. Schematic representation of the pre-processing workflow. Head and neck computed tomography scans were cropped using the mandible, sternum, and 
external contours as boundaries (A & B). Scans were divided into 4 patches of 96 × 96 × 96 voxels in dimension (C). 
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the center as foreground (i.e., involved lymph node present) or back
ground (i.e., involved lymph node absent) and a 50% probability of 
either condition. Several data augmentation processes were imple
mented to minimize overfitting. Random spatial cropping was per
formed to patch the images and ground-truth masks. Random horizontal 
flips with 50% probability and random affine transformations, with an 
axial rotation range of 12 degrees and scale range of 10%, were also 
performed. 

A 5-fold cross-validation approach was implemented to train the 5 
separate sub-models of the DL-CNN. For each of the 5 sub-models, 80% 
of the HN-CT scans in the training/validation dataset and their 

respective ground-truth masks acted as model inputs for training pur
poses. The remaining 20% of HN-CT scans served for internal validation. 
One “validation segmentation mask” was generated per training/vali
dation HN-CT scan, for a total of 70 validation segmentation masks. 
Validation segmentation masks were compared to ground-truth masks 
using overlap-based (Dice similarity coefficient [DSC]) and volume- 
based (volume similarity) metrics. The DL-CNN was trained for 700 
epochs, with a learning rate of 2 × 10-4 for the first 550 epochs and 1 ×
10-4 for the remaining 150 epochs. 

Fig. 2. Schematic representation of the U-Net architecture implemented for the deep learning convolutional neural network with annotations pertaining to the 
number of channels, batch normalization (BN) layers, and Parametric Rectified Linear Unit (PReLU) layers. 

Fig. 3. Five sub-model testing segmentation masks and one consensus segmentation mask were generated for each head and neck computed tomography scan in the 
testing dataset. The red contour corresponds to the ground-truth masks, the blue contours correspond to the sub-model testing segmentation masks, and the yellow 
contour corresponds to the consensus segmentation mask generated by combing the 5 sub-model testing segmentation masks using the Simultaneous Truth and 
Performance Level Estimation (STAPLE) algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Model testing 

The performance of the DL-CNN to detect and segment involved 
lymph nodes was evaluated using the independent testing dataset of 20 
HN-CT scans and their respective ground-truth masks. Additionally, 20 
randomly selected HN-CT scans pertaining to patients with HPV- 
associated OPC and no involved lymph nodes were included in the 
testing dataset to evaluate the ability of the model to discriminate be
tween “node-positive” (i.e., involved lymph node present) and “node- 
negative” (i.e., involved lymph node absent) HN-CT scans. In total, 5 
“testing segmentation masks” were generated per HN-CT scan (1 testing 
segmentation mask per sub-model). These 5 testing segmentation masks 
were combined to create a “consensus segmentation mask” using the 
Simultaneous Truth and Performance Level Estimation (STAPLE) algo
rithm (Fig. 3) [14]. The testing segmentation masks and consensus 
segmentation masks for the 20 node-positive HN-CT scans in the testing 
dataset were compared to their respective ground-truth masks using 
overlap-based (DSC), volume-based (volume similarity), spatial 
distance-based (Hausdorff distance [HD]), and probabilistic-based 
(Cohen Kappa Coefficient [CKC]) metrics [15]. 

Model discrimination between node-positive and node-negative HN- 
CT scans was evaluated by scoring each of the 5 testing segmentation 
masks for a respective HN-CT scan as either “1′′ to indicate that an auto- 
segmented structure was generated or “0” to indicate that no auto- 
segmented structure was generated. The scores were then summed to 
yield a “summative score” ranging from 0 (i.e., no auto-segmented 
structure was generated by any of the 5 sub-models) to 5 (i.e., auto- 
segmented structures were generated by all 5 sub-models). A HN-CT 
scan was considered “node-positive” if the summative score was equal 
to 5, and “node-negative” if the summative score was ≤ 4. This score 
threshold was chosen empirically from test results to maximize the ac
curacy, sensitivity, and positive predictive value of the DL-CNN. The 
model discrimination was evaluated by determining the area under the 
receiver operating characteristic curve (AUC). Three image resampling 
resolutions–high (1.0 mm), medium (1.5 mm), and low (2.0 mm)–were 
used to evaluate the impact of image resolution on the discriminatory 
ability of the DL-CNN. 

Clinical evaluation 

Three radiation oncology physician observers (with at least 4 years of 
clinical experience) were asked to review lymph node segmentations on 
node-positive HN-CT scans from the independent testing dataset. Each 
node-positive HN-CT scan appeared twice–once with the manually 
generated ground-truth mask and once with the DL-CNN generated 
consensus segmentation mask–for a total of 40 HN-CT scans reviewed 
per observer. Observers were asked to rate the lymph node segmenta
tions on a Likert scale for clinical acceptability (1 = clinically accept
able, highly accurate; 2 = clinically acceptable, errors not significant; 3 
= requires correction, minor errors; 4 = requires correction, large er
rors). Using a modified Turing test, observers were then asked to 
determine whether the segmentation was generated by a human or a 
computer, [12,16]. Lastly, observers were asked to rate their confidence 
in this determination using a Likert scale (1 = very confident; 2 =
somewhat confident; 3 = somewhat unconfident; 4 = very unconfident). 
The Wilcoxon signed rank test and the McNemar test were used to 
compare observers’ manually generated and DL-CNN generated seg
mentation evaluations using IBM SPSS Statistics v26, with a p value of 
less than 0.05 indicative of statistical significance. 

Results 

Patient and tumor characteristics are presented in Table 1. The me
dian age at diagnosis was 60 years and there was a male sex predomi
nance (n = 101, 92%). The majority of the patients had no history of 
cigarette smoking (n = 72, 66%) and cT1 disease (n = 63, 57%). Among 
cN1 patients, there was a median of 1 involved lymph node (range, 1–4) 
in the training/validation dataset and 1 involved lymph node (range, 
1–3) in the testing dataset. The median volumes for individual lymph 
nodes and ground truth segmentation masks were 6.7 cc (interquartile 
range [IQR], 2.8–10.3 cc) and 8.4 cc (5.6–12.9 cc), respectively. 

DL-CNN validation performance 

Segmentation mask metrics for model validation are presented in 

Table 1 
Patient and tumor clinical characteristics for all patients (N = 110), patients in the training/validation dataset (n = 70), and patients in the testing dataset (n = 40).  

Characteristic All Training/Validation Testing  
n (%) n (%) n (%) 

Median age [IQR], y 60 [53–65] 60 [54–65] 59 [53–67] 
Sex    

Male 101 (91.8) 66 (94.3) 35 (87.5) 
Female 9 (8.2) 4 (5.7) 5 (12.5) 

Smoking Status    
Never 72 (65.5) 44 (62.9) 28 (70.0) 
Former 34 (30.9) 24 (34.3) 10 (25.0) 
Current 4 (3.6) 2 (2.9) 2 (5.0) 

Oropharynx subsite    
Base of tongue 51 (46.4) 38 (54.3) 13 (32.5) 
Tonsil 59 (53.6) 32 (45.7) 27 (67.5) 

Clinical tumor classification    
cT1 63 (57.3) 44 (62.9) 19 (47.5) 
cT2 47 (42.7) 26 (37.1) 21 (52.5) 

Clinical lymph node classification    
cN0 20 (18.2) 0 (0.0) 20 (50.0) 
cN1 90 (81.8) 70 (100.0) 20 (50.0) 

Median number of removed lymph nodes [IQR] 26 [21–34.8] 26.5 [21–35] 26 [23–29] 
Number of involved lymph nodes    

0 20 (18.2) 0 (0.0) 20 (50.0) 
1 68 (61.8) 53 (75.7) 16 (40.0) 
2 18 (16.4) 16 (22.9) 2 (5.0) 
3 3 (2.7) 0 (0) 2 (5.0) 
4 1 (0.9) 1 (1.4) 0 (0.0) 

Median individual lymph node volume [IQR], cc 6.7 [2.8–10.3] 7.7 [3.0–11.1] 5.3 [2.1–8.5] 
Median ground truth segmentation mask volume [IQR], cc 8.4 [5.6–12.9] 9.6 [7.3–14.9] 6.6 [2.2–15.5] 

Abbreviations: IQR, interquartile range; cc, cubic centimeters; y, years. 
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Table 2. When compared to ground-truth masks, sub-model #4 achieved 
the highest median DSC, with a score of 0.92 (IQR, 0.90–0.94) for the 
validation segmentation masks. All the 5 sub-models generated valida
tion segmentation masks with a median DSC of at least 0.90. Similarly, 
all the 5 sub-models generated validation segmentation masks with a 
median volume similarity score of at least 0.95, with sub-model #1 
achieving the highest median volume similarity score and narrowest 
volume similarity IQR. 

DL-CNN testing performance 

Segmentation mask metrics for model testing are presented in 
Table 3. When compared to ground-truth masks, the median DSC for 
testing segmentation masks was greater than 0.90 for all sub-models. 
The median DSC for consensus segmentation masks was 0.92 (IQR, 
0.89–0.95). Comparisons between the testing segmentation masks and 
ground-truth masks for a subset of cases based on DSC are depicted in 
Fig. 4. A maximum volume similarity score of 1.0 was achieved by all 

sub-models for testing segmentation masks, with sub-model #4 
achieving the highest minimum volume similarity score and a median 
volume similarity score of 0.97. The median volume similarity score for 
consensus segmentation masks was 0.97 (IQR, 0.94–0.99). All sub- 
models achieved a median HD less than 6 mm, with a median HD for 
consensus segmentation masks of 4.52 mm (IQR, 1.22–8.38). The me
dian CKC for testing segmentation masks was nearly identical across the 
sub-models, and the median CKC for consensus segmentation masks was 
0.92 (IQR, 0.89–0.95). There was no statistically significant difference 
in DSC, volume similarity, HD, or CKC when cases pertaining to smokers 
were compared to non-smokers (Figure S1). 

DL-CNN discrimination performance 

Confusion matrices and receiver operating characteristic curves for 
the three imaging resolutions are presented in Fig. 5. The medium 
resampled resolution model achieved the most optimal identification of 
node-positive HN-CT scans (AUC = 0.98), with 20 of 20 HN-CT scans 

Fig. 4. Comparison of consensus segmentation masks (yellow) to ground-truth masks (red) for a subset of testing dataset patients with greater or equal Dice sim
ilarity coefficients (A, B, C; 1 involved lymph node, 3 involved lymph nodes, and 2 involved lymph nodes, respectively), slightly lower Dice similarity coefficients (D, 
E; 2 involved lymph nodes and 1 involved lymph node, respectively), and much lower Dice similarity coefficient (F; 1 involved lymph node) than the median Dice 
similarity coefficient value of 0.92. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with involved lymph nodes correctly identified as node-positive and 19 
of 20 of the remaining HN-CT scans correctly identified as node- 
negative. In contrast, the low resampled resolution model had the 
worst classification of HN-CT scans (AUC = 0.81), with 2 of 20 HN-CT 
scans with involved lymph nodes incorrectly identified as node- 
negative and 6 of 20 of HN-CT scans with no involved lymph nodes 
incorrectly identified as node-positive. Illustrative examples of the 
detection process and individual test case predictions using the best- 
performing model (medium resolution) are shown in Figure S2. 

Clinical performance 

Physician observer evaluations of manually generated (i.e., 
“human”) and DL-CNN generated (i.e., “computer”) segmentations are 

presented in Table 4. There was no statistically significant difference in 
the clinical acceptability of manually generated versus DL-CNN gener
ated segmentations among observers. Although observer 1 was found to 
have a statistically significant difference in reported confidence in seg
mentation source favoring manually generated segmentations, there 
was no statistically significant difference in the correct identification of 
manually generated versus DL-CNN generated segmentations for any of 
the three observers. Additionally, there was no difference in observer 
confidence in source of segmentation for the remaining 2 observers. 

Discussion 

Deep learning is a subset of machine learning that uses neural net
works to learn and classify data [7]. Within the context of radiation 

Fig. 5. Receiver operating characteristic curves for node-positive versus node-negative head and neck computed tomography scan discrimination comparing three 
resampled image resolutions (High, 1.0 mm; Medium, 1.5 mm; and Low, 2.0 mm) and their corresponding confusion matrices. 

Table 4 
Physician observer evaluations of manually generated (i.e., “human”) and model generated (i.e., “computer”) segmentations.  

Clinical Acceptability of Segmentations Source of Segmentations Confidence in Source of Segmentations  

Computer Human P value  Computer Human P value  Computer Human P value  
n (%) n (%)   n (%) n (%)   n (%) n (%)  

Observer 1   0.83    0.66    0.72 
Clinically acceptable, highly accurate 13 (0.65) 13 (0.65)  Computer 8 (0.40) 9 (0.45)  Very confident 2 (0.10) 6 (0.30)  
Clinically acceptable, errors not significant 3 (0.15) 3 (0.15)  Human 12 (0.6) 11 (0.55)  Somewhat confident 14 (0.70) 9 (0.45)  
Requires correction, minor errors 2 (0.10) 3 (0.15)      Somewhat unconfident 4 (0.20) 4 (0.20)  
Requires correction, large errors 2 (0.10) 1 (0.05)      Very unconfident 0 (0.0) 1 (0.05)  

Observer 2   0.75    0.82    0.046 
Clinically acceptable, highly accurate 4 (0.20) 8 (0.4)  Computer 11 (0.55) 11 (0.55)  Very confident 0 (0.0) 1 (0.05)  
Clinically acceptable, errors not significant 8 (0.40) 10 (0.50)  Human 9 (0.45) 9 (0.45)  Somewhat confident 4 (0.20) 9 (0.45)  
Requires correction, minor errors 6 (0.30) 1 (0.05)      Somewhat unconfident 15 (0.75) 10 (0.50)  
Requires correction, large errors 2 (0.10) 1 (0.05)      Very unconfident 1 (0.05) 0 (0.0)  

Observer 3   0.41    0.26    0.28 
Clinically acceptable, highly accurate 14 (0.70) 10 (0.50)  Computer 7 (0.35) 7 (0.35)  Very confident 0 (0.0) 0 (0.0)  
Clinically acceptable, errors not significant 5 (0.25) 10 (0.50)  Human 13 (0.65) 13 (0.65)  Somewhat confident 3 (0.15) 1 (0.0)  
Requires correction, minor errors 1 (0.05) 0 (0.0)      Somewhat unconfident 7 (0.35) 6 (0.30)  
Requires correction, large errors 0 (0.0) 0 (0.0)      Very unconfident 10 (0.50) 13 (0.65)   
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oncology, deep learning algorithms have emerged as a mechanism by 
which to automate image-based segmentation of normal structures and 
target volumes–thereby improving segmentation reproducibility and 
efficiency. We used supervised learning, contrast-enhanced HN-CT scans 
with corresponding ground-truth masks, and a patch-based approach to 
training a DL-CNN to auto-segment involved lymph node GTVs for pa
tients with early-stage HPV-associated OPC. In the validation phase, we 
found that our DL-CNN achieved median DSC and volume similarity 
scores of at least 0.90 and 0.95, respectively. When tested on unseen 
data, our DL-CNN was notable for a median DSC of 0.92 for consensus 
segmentation masks and AUC of 0.98 for successful identification of 
node-positive HN-CT scans. Physician observers were unable to distin
guish between manually generated and DL-CNN generated lymph node 
segmentations and there was no statistically significant difference be
tween the clinical acceptability of the two groups of segmentations. 

Our use of a DL-CNN to auto-segment involved lymph node GTVs on 
unseen HN-CT scans builds on the work of Cardenas et al. in the auto- 
segmentation of lymph node level CTVs for head and neck radio
therapy treatment planning [17]. Using 71 HN-CT scans acquired during 
radiotherapy simulation and their respective ground truth contours for 
model training and validation, they found that their DL-CNN achieved a 
DSC of 0.90 for the auto-segmentation of CTVs for lymph node neck 
levels II-IV in the testing phase. Physician review of an independent 
dataset of 32 HN-CT scans found that over 99% of the DL-CNN auto- 
segmented lymph node CTVs were either sufficient for clinical use or 
required minor revisions [17]. Taken together with our results, these 
findings suggest that, for patients with early-stage HPV-associated OPC, 
DL-CNNs may be used to auto-detect node-positive HN-CT scans, auto- 
segment lymph node GTVs, and auto-segment lymph node level CTVs 
as part of the radiation oncology treatment planning workflow with a 
high degree of fidelity. 

Prior studies on the role of DL-CNNs in the auto-segmentation of 
involved lymph nodes of the head and neck are limited. Bielak et al. 
investigated the impact of various magnetic resonance imaging se
quences on auto-segmentation of lymph nodes for 24 patients with 
squamous cell carcinoma of the head and neck and found a maximum 
DSC of 0.58 [18]. Similarly, Wang et al. integrated the extraction of 
various imaging features from contrast-enhanced HN-CT scans for 82 
patients with squamous cell carcinoma of the head and neck into a DL- 
CNN and achieved a mean DSC score of 0.94 for the highest performing 
model [19]. As iodinated contrast is often administered during radio
therapy simulation to enhance vascular visibility and facilitate target 
volume segmentation, we used 90 contrast-enhanced HN-CT scans 
pertaining to patients with early-stage OPC to train, validate, and test 
our model [20,21]. Additionally, as lymph node metastases in HPV- 
associated disease are characterized by several distinct features on 
clinical imaging, including cystic composition and matted conglomera
tion, we limited our cohort to this subset of head and neck cancers [22]. 

Our results have implications for treatment delivery and toxicity 
reduction among patients treated with definitive radiation for early- 
stage HPV-associated OPC. In a study of radiotherapy treatment tumor 
response for this population, Kabarriti and colleagues found that the 
mean lymph node volume decreased by 12.9 cm3 on mid-radiotherapy 
HN-CT scans when compared to baseline simulation HN-CT scans 
[23]. Additionally, studies of adaptive planning for OPC have demon
strated that the majority of patients will require their radiotherapy to 
replanned at least once during the course of treatment, principally due 
to changes in neck soft tissue that impact the robustness of radiation 
dose to both targeted and non-targeted tissues [24]. Incorporation of our 
DL-CNN into primary and adaptive radiotherapy planning for early- 
stage HPV-associated OPC may facilitate efficacy of nodal GTV delin
eation, improvement in target coverage, sparing of normal tissues, and 
efficiency of workflow [25]. 

There are several limitations to our study. We included patients with 
early-stage HPV-associated OPC who had undergone TORS of the pri
mary tumor and lymph node dissection. Therefore, it is possible that our 

results may not be fully generalizable to patients with more locore
gionally advanced disease, including patients with 3 or more radio
graphically involved lymph nodes and/or radiographic evidence of 
extranodal extension. As we combined all involved lymph nodes into a 
single ground truth segmentation mask, our use of the HD metric may 
not appropriately reflect comparisons between manually generated and 
DL-CNN generated segmentation masks inclusive of multiple lymph 
nodes separated spatially. Nonetheless, our use of HD is complemented 
by other reported metrics that demonstrate the strength of the model. 
Our findings represent the results of a small cohort of HN-CT scans ob
tained at a single institution. Additional studies are needed to externally 
validate the model in a larger dataset of HN-CT scans performed at other 
institutions, Our DL-CNN was trained, validated, and tested on contrast- 
enhanced HN-CT scans. However, as iodine-based contrast may impact 
dose calculations, non-contrast HN-CT scans are the gold standard for 
radiotherapy treatment planning [26]. Further studies incorporating 
HN-CT scans acquired without contrast may facilitate the future inte
gration of the DL-CNN into online and offline adaptive radiotherapy 
workflows for which intravenous contrast is not administered. 

Conclusion 

Patients diagnosed with early-stage HPV-associated OPC are often 
found to have clinical evidence of lymph node involvement at the time 
of diagnosis. Manual segmentation of radiographically involved lymph 
nodes is an integral part of treatment planning for those patients dis
positioned to definitive radiotherapy. Here we have presented a DL-CNN 
that can be used to generate auto-segmentations of involved lymph 
nodes that cannot be reliably distinguished from human segmentations 
by physician observers. Future studies on the validation of the DL-CNN 
on larger external datasets of HN-CT scans, on HN-CT scans acquired 
without contrast, and on HN-CT scans pertaining to patients with sur
gically unresectable disease will further clarify the role of our DL-CNN in 
the larger radiation oncology workflow. 
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