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A Commentary on

GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of

Hippocampal NR2B and DISC1

by Zhou, D., Lv, D., Wang, Z., Zhang, Y., Chen, Z., and Wang, C. (2018). Front. Mol. Neurosci.
11:121. doi: 10.3389/fnmol.2018.00121

It is with great interest we have read the article “GLYX-13 Ameliorates Schizophrenia-Like
Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1”
(Zhou et al., 2018).

Interestingly, this study showed that GLYX-13 prevents hippocampal N-methyl-D-aspartate
receptor subtype 2B—Disrupted in schizophrenia 1 (GluN2B-DISC1) signaling and behavioral
changes induced by schizophrenia-mimetic drug MK801 in mice. To confirm GluN2B directly
regulating DISC1, these researchers showed that the effects of GLYX-13 were vanished after
GluN2B knockdown in mice.

GLYX-13 is an amidated tetrapeptide. Studies have shown that GLYX-13 can specifically
bind to the glycine site of N-methyl-D-aspartate receptors (NMDARs) and act as a partial
agonist of GluN2B-containing NMDARs (Moskal et al., 2005; Stanton et al., 2009). GLYX-13
improves learning and increases the magnitude of LTP in rat hippocampus (Zhang et al.,
2008). Both GLYX-13 and ketamine have antidepressant-like effects, while GLYX-13 has fewer
psychotomimetic side effects than ketamine in both humans and rats (Burgdorf et al., 2013; Moskal
et al., 2014). According to previous study, both GLYX-13 and ketamine are able to increase cell
surface protein expression of GluN2B in rats (Burgdorf et al., 2013). This might help to explain
similar antidepressant effects of these two compounds. However, the mechanism how GLYX-13
causes less side effects is still unclear. Interestingly, memantine, another weak NMDARmodulator,
also shows fewer side effects than other NMDAR antagonists in treating Alzheimer’s disease
(Parsons et al., 1999). Therefore, it is important for the treatment of psychiatric disorders to
understand howGLYX-13 and other NMDARmodulators affect the neuronal system in psychiatric
disorders without causing serious side effects.

Although GluN2B-containing NMDAR hypofunction and DISC1 alteration are implemented
in the neuropathology of schizophrenia (Callicott et al., 2005; Geddes et al., 2014), the mechanism
of their possible interactions are not clear. In fact, dysfunction of GluN2B is involved in a
number of severe mental disorders (Moghaddam and Javitt, 2012; Paoletti et al., 2013). GluN2B
is found to be over-activated in Alzheimer’s disease (Paoletti et al., 2013). Furthermore, GluN2B
antagonists reduce amyloid β-induced synaptic deficits and impairs long term potentiation.
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(Rönicke et al., 2011) Conversely, GluN2B hypo-activity is found
in hippocampus accompanied by cognitive impairment and
memory loss in rats (Clayton et al., 2002). In clinical studies,
GluN2B antagonists exacerbate the schizophrenia-like symptoms
in both healthy people and patients (Moghaddam and Javitt,
2012), while antipsychotic drug olanzapine can activate GluN2B
via phosphorylation of the GluN2B at Y1472 (Zhang et al., 2016).

Moreover, GluN2B has a number of phosphorylation sites,
which could be responsible for GluN2B function. For example,
phosphorylation of Y1472 attenuated the internalization of
GluN2B (Roche et al., 2001). In this paper (Zhou et al., 2018),
GluN2B changes were found, which could be due to alterations of
the internalization. An early study has shown that Casein Kinase
2 (CK2) might be responsible for this internalization (Sanz-
Clemente et al., 2010), therefore a detection of CK2 might help
to clarify the internalization process of GluN2B.

In addition, due to the slow deactivation kinetics of GluN2B
containing NMDARs (Cull-Candy and Leszkiewicz, 2004),
activated synapses with GluN2B type NMDARs exhibit a strong
Ca2+ influx. The Ca2+ influx in turn regulates downstream
Ca2+-dependent proteins such as CaMKII and leads to activity-
induced gene expression, synaptic plasticity and neurite growth
(Sanz-Clemente et al., 2013; Barcomb et al., 2016). Thereafter,
GluN2B-containing NMDARs regulate neurite growth and
synaptic plasticity (Brigman et al., 2010).

It is noteworthy that GluN2B interacts with dopamine
receptor D2 receptor (D2R) (Fan et al., 2014). D2R can physically
interact with GluN2B in the post synaptic density (PSD) of the
striatum in rats (Liu et al., 2006). Meanwhile, the binding of
GluN2B with D2R can significantly affect the phosphorylation of
S1303 of GluN2B, and thus affect CaMKII activity and synaptic
plasticity. The author also found the binding sequence of D2R
is TKRSSRAFRA (amino acid position 225–234) located in the
third intracellular loop of D2R. Co-immunoprecipitation study

also confirmed that GluN2B and D2R are tightly associated.
Moreover, the activation of D2R by cocaine can significantly
increase this complex formation and thus reduces NMDAR
mediated currents due to dephosphorylated S1303 of the GluN2B
subunit (Liu et al., 2006). Furthermore, another study also
demonstrated D2R over-activation reduces spine density via
GluN2B-dependent pathways in mice (Jia et al., 2013).

The recent manuscript of Zhou et al. showed that GluN2B
hypofunction is highly related to the reduction of DISC1.
Interestingly, DISC1 binds to D2R, and the binding site is located
at amino acid positions 211–225 (Su et al., 2014), which is
close to the GluN2B binding site and also located in the third
intracellular loop of D2R. Primary cell culture studies have
shown that D2R and DISC1 can form a complex, which is
regulated by the activity of D2R (Su et al., 2014). Studies have
shown that increased numbers of D2R-DISC1 complexes can
be identified in post-mortem brains from schizophrenia patients
and that interruption of D2R-DISC1 complex is correlated
with antipsychotic effects in several mouse models (Dahoun
et al., 2017). Additionally, phosphorylation of GSK-3α/β has
been confirmed to be affected by D2R-DISC1 complex (Su
et al., 2014). Therefore, GluN2B might interact with DISC1
through D2R and regulate its downstream GSK-3α/β signaling
pathways. Furthermore, it is well known that D2R is one of the
main targets of psychotherapy for schizophrenia and virtually
all antipsychotic drugs have D2R antagonistic properties.
Therefore, the involvement of D2R can connect DISC1 and
GluN2B and provide a potential target for schizophrenia
therapy.
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