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ABSTRACT

Previous computational models have related spontaneous resting-state brain activity with local
excitatory–inhibitory balance in neuronal populations. However, howunderlying neurotransmitter
kinetics associated with E–I balance govern resting-state spontaneous brain dynamics remains
unknown. Understanding the mechanisms by virtue of which fluctuations in neurotransmitter
concentrations, a hallmark of a variety of clinical conditions, relate to functional brain activity is
of critical importance. We propose a multiscale dynamic mean field (MDMF) model—a system
of coupled differential equations for capturing the synaptic gating dynamics in excitatory and
inhibitory neural populations as a function of neurotransmitter kinetics. Individual brain regions
are modeled as population of MDMF and are connected by realistic connection topologies
estimated from diffusion tensor imaging data. First, MDMF successfully predicts resting-state
functional connectivity. Second, our results show that optimal range of glutamate and GABA
neurotransmitter concentrations subserve as the dynamic working point of the brain, that is, the
state of heightened metastability observed in empirical blood-oxygen-level-dependent signals.
Third, for predictive validity the network measures of segregation (modularity and clustering
coefficient) and integration (global efficiency and characteristic path length) from existing healthy
and pathological brain network studies could be captured by simulated functional connectivity
from an MDMF model.

AUTHOR SUMMARY

How changes in neurotransmitter kinetics impact the organization of large-scale neurocognitive
networks is an open question in neuroscience. Here, we propose a multiscale dynamic mean
field (MDMF) model that incorporates biophysically realistic kinetic parameters of receptor
binding in a dynamic mean field model and captures brain dynamics from the “whole brain.”
MDMF could reliably reproduce the resting-state brain functional connectivity patterns. Further
employing graph theoretic methods, MDMF could qualitatively explain the idiosyncrasies of
network integration and segregation measures reported by previous clinical studies.
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INTRODUCTION

Resting-state spontaneous activity (Mitra, Snyder, Hacker, & Raichle, 2014; Raichle, & Mintun,
2006; Rogers, Morgan, Newton, &Gore, 2007; Vincent et al., 2007) is presently well established
as a substrate to understand normative brain patterns and intrinsic functional organization of
macroscopic brain network dynamics. Furthermore, resting-state brain dynamics and its depar-
ture from normative patterns are important markers for characterizing various neurological/
neuropsychiatric symptoms (Pearlson, 2017; Zhou, Liu, Kwun, & Wang, 2017). Numerous
studies have attempted to understand the underlyingmechanisms that govern the spatiotemporal
dynamics of large-scale resting-state networks (Deco & Jirsa, 2012; Deco, Ponce-Alvarez, et al.,
2014; Demirtas et al., 2017; see also Cabral, Kringelbach, & Deco, 2017, for a review). All these
studies predominantly utilized a class of dynamic mean field (DMF) models known as whole-
brain computational models that have emerged as an important tool to link the healthy and path-
ological brain network dynamics with underlying change in excitation–inhibition (E–I) balance
(Abeysuriya et al., 2018; Deco, Ponce-Alvarez, et al., 2014; Vattikonda, Surampudi, Banerjee,
Deco, & Roy, 2016).

Previous studies using whole-brain DMF suggest that temporal correlations among brain
areas observed in resting state emerge, while (a) the brain dynamics operates close to criticality
that is further parametrized using a global scaling parameter depicting global coupling strength
between interconnected brain areas and (b) the excitatory input currents are balanced using
feedback inhibition control mechanisms maintaining the local homeostasis (Abeysuriya et al.,
2018; Deco & Jirsa, 2012; Deco, Ponce-Alvarez, et al., 2014; Vattikonda et al., 2016).

Valuable insights can be obtained from such studies; for example, at the resting state, the
human brain operates at maximum metastability (Deco, Kringelbach, Jirsa, & Ritter, 2017),
which allows for exploration of the dynamic repertoire of the brain’s intrinsic functional config-
urations and gives rise to rich brain network dynamics (Abeysuriya et al., 2018; Breakspear,
2017). However, one important challenge is to understand how the interaction among physio-
logical parameter(s) like excitatory and inhibitory neurotransmitter concentrations at the micro-
scale shapes the spontaneous and structured resting-state dynamics of the brain. The problem is
further compounded by the fact that brain parameters, such as the proportion of different
neurons and correspondingly neurotransmitter types, such as glutamate, gamma-aminobutyric
acid (GABA), with their associated synaptic properties cannot be manipulated independently in
living systems to delineate their role in brain function (Prinz, 2008). Thus, physiologically
realistic whole-brain network models are favorable candidates to overcome and manipulate
experimentally inaccessible parameter spaces of the system (Breakspear, 2017).

GABA and glutamate are the two key inhibitory and excitatory neurotransmitters, respec-
tively (Novotny, Fulbright, Pearl, Gibson, & Rothman, 2003), that are present all over the cor-
tex (Duncan, Wiebking, & Northoff, 2014) and govern the excitatory–inhibitory (E–I) balance
(Lauritzen, Mathiesen, Schaefer, & Thomsen, 2012). Several studies have demonstrated that
GABA has significant association with blood-oxygen-level-dependent (BOLD) signals in a
healthy human brain (Northoff, Duncan, & Hayes, 2010; Raichle, 2009). While interaction
among inhibitory neurons and excitatory neurons is thought to have a direct influence on
BOLD signals (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001), the role of GABA
and glutamate is poorly understood. Computational studies have shown how regulation of
local E–I balance sculpts spontaneous resting-state activity of brain (Deco, McIntosh, et al.,
2014; Deco, Ponce-Alvarez, et al., 2014), followed by a study from our group that has shown
the importance of E–I balance in the context of functional recovery following different types of
virtual lesions (Vattikonda et al., 2016) using whole-brain models. Some studies have further

Multiscale dynamic mean field (MDMF) model

Dynamic mean field (DMF) model:
Computational model of neuronal
network using ordinary differential
equations that captures the
macroscopic dynamics of population
activity observed in a network of
neurons with similar statistical
properties. One DMF unit can
represent a brain area composed of
two groups of neuronal populations
with similar statistical properties—
one group consisting of excitatory
neurons and the other inhibitory,
such that interactions among all
neurons can be conceptualized as
the mean activity across all neurons.

Metastability:
A dynamical property exhibited by
high-dimensional complex systems,
such as the brain. In such systems,
a global stable attractor state may
not be achieved in the observed
timescale, and the systems
perpetually traverse various attractor
states (also called the metastable
states) by switching intermittently.
Such switching behavior is
empirically observed in BOLD-fMRI
time series when functional state
transitions occur in resting brain.

Neurotransmitter:
Chemical messenger involved in
signal transmission from neuron to
neuron via synapse.

Blood-oxygen-level-dependent
(BOLD) signal:
Indirect measure of neuronal activity
via detecting changes in blood
oxygenation and blood flow in a
brain area obtained in functional
magnetic resonance imaging (fMRI)
scans.
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hypothesized that homeostatic deviations of excitatory–inhibitory balance is the key neuronal
mechanism involved in pathological scenarios (Chiapponi, Piras, Piras, Caltagirone, & Spalletta,
2016). Hence, an extension of the modeling approach to understand the multiscale parameter
space of interactions between neurotransmitter concentrations and neural population dynamics
leading to understanding normative and pathological resting-state brain network dynamics can
be of tremendous interest.

In order to link the E–I balance of DMF models to GABA-glutamate concentrations and
propose a whole-brain model that bridges multiple scales of cellular organization, we chose
the synaptic gating parameter in the DMF as an entry point. Synaptic gating from neurotrans-
mitter binding to receptors has been explained theoretically via kinetic rate equation at the
single synapse level by previous studies (Destexhe, Mainen, & Sejnowski, 1994a, 1994b).
Here, we derive an averaged synaptic gating equation representing the combined synaptic
gating of a population of neurons in a given brain area and combine them with a DMF model
of excitatory/inhibitory neural populations (Deco, McIntosh, et al., 2014) that estimates total
excitatory and inhibitory currents in a given brain region. Thus, we conceptualize a link be-
tween neurotransmitter concentration space and macroscale brain network dynamics by pro-
posing a multiscale dynamic mean field (MDMF) model. An optimal parameter range of
critical excitatory and inhibitory neurotransmitter concentrations (Deco et al., 2017) could
be identified where the model generated resting-state functional connectivity (rs-FC) is prox-
imal to empirical rs-FC. Additionally, our model is able to generate testable predictions about
departure from normative values in neurotransmitter concentrations based on quantification of
rs-FC using graph theoretic network measures of integration and segregation from a large
number of existing pathological studies (Jiang, Li, Chen, Ye, & Zheng, 2017; Sun et al., 2016;
Wang et al., 2014; Yasuda et al., 2015).

MATERIALS AND METHODS

Multiscale Dynamic Mean Field Model

Previous studies have shown that the dynamic mean field approach (Deco, McIntosh, et al.,
2014; Deco, Ponce-Alvarez, et al., 2014) is able to capture the rs-FC using feedback inhibition
control to maintain E–I balance and constrain network dynamics with empirical structural con-
nectivity (SC) extracted from the density of white matter fiber tracts connecting brain areas.
One can go further to identify the role of local E–I homeostasis in shaping up rs-FC when struc-
tural connections are perturbed (Vattikonda et al., 2016). On the other hand, at neurotransmit-
ter level, the kinetic model of receptor binding (Destexhe et al., 1994a, 1994b) relates the
neurotransmitter concentration changes to the synaptic gating variable. Thus, a multiscale
model should capture the synaptic gating dynamics, which are linked to neurotransmitter con-
centration kinetics and further play a key role in generation of excitatory–inhibitory currents in
a local population of neurons (mean field). Subsequently, we can relate the electric mean field
activity in an area to the BOLD activity by the hemodynamic model (Friston, Harrison, &
Penny, 2003; Friston, Mechelli, Turner, & Price, 2000). Each cortical region can be modeled
as a pool of excitatory and inhibitory neurons with recurrent excitatory–excitatory, inhibitory–
inhibitory, excitatory–inhibitory, and inhibitory–excitatory connections, and coupled with
neurotransmitters GABA and glutamate via NMDA (N-methyl-D-aspartate) and GABA synap-
ses, respectively (Figure 1). Long-range connections are modeled as excitatory connections
between excitatory pools of each region. Long-range inputs are also scaled according to con-
nection strength between regions derived from fiber densities computed from diffusion tensor
imaging data. Excitatory population in an area receives the following input currents: recurrent

Excitatory–inhibitory balance:
Ratio of excitatory neurotransmitter
(glutamate) and inhibitory
neurotransmitter (GABA).

Multiscale:
Refers to techniques that try to
relate the activity between two
spatiotemporal scales of neuronal
organization, such as fast electric
signaling in neurons and slow
chemical signaling via
neurotransmitters.

Network measures:
Statistical metrics computed based
on topological properties of nodes
and edges embedded in a network.
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inhibitory currents, recurrent excitatory currents, long-range excitatory currents from excitatory
populations in all other areas, as well as external currents. However, the spatial variability of the
neurotransmitter concentration has not been considered, so the values of glutamate and GABA
concentration are identical in all brain areas for a simulation run.

The study of Destexhe et al. (1994a) assumed that occurrence of neurotransmitter release at
synaptic cleft can be conceptualized as a pulse following the arrival of an action potential at
the presynaptic terminal. Accordingly, we can consider that R + T ⇄ TR represents a chemical
kinetic reaction where T, R, and TR are the neurotransmitters released in the synaptic cleft,
unbound receptors, and bound receptors of postsynaptic neuron, respectively. Subsequently,
neurotransmitter release can be captured in the rate equation that describes the dynamics of
probability of open channels of a specific neurotransmitter (synaptic gating variable). The rate
of change of synaptic gating variable for a neuron (s) is equivalent to the proportion of bound
receptors in the postsynaptic neuron and can be expressed as neural response function (δ-spikes)
scaled by maximal neurotransmitter concentration and the probability of channels being
closed (1 − s) plus the contribution of leaky synaptic gating and the backward rate constant
(Destexhe et al., 1994b):

ds
dt

¼ −βsþ α Tmax½ � 1 − sð Þ
X

tk
δ t − tf
� �

; (1)

where, dsdt represents the rate of change in the synaptic gating variable, t f are the spike times, and
[Tmax] is maximun neurotransmitter concentration. α and β are the forward and backward rate
constants of binding of neurotransmitters released into synaptic cleft from a presynaptic neuron
onto receptors of postsynaptic neuron. Thus, α contributes to the bounded receptor buildup in
postsynaptic neuron, while the β captures the leaky neurotransmitter loss to the cleft over the
membrane.

At the population level, the average synaptic gating variable (S ) can be computed for excitatory
and inhibitory populations by taking the mean of gating variables across all subpopulations,

Figure 1. Multiscale dynamic mean field (MDMF) model setup. (A) Averaged anatomical connectivity or structural connectivity matrix of
healthy human brains. (B) Whole-brain network composed of interconnected nodes. (C) Local networks, represented by nodes or cortical
areas, with each separate node consisting of excitatory (purple) and inhibitory (black) neurons with recurrent inhibitory–inhibitory,
excitatory–excitatory, inhibitory–excitatory, and excitatory–inhibitory connection; all nodes are discrete and interconnected with long-range
excitatory neurons (orange line). Each brain area is represented as a pool of excitatory (E, green) and inhibitory (I, red) neurotransmitters. In
inset image, presynaptic neuron releases neurotransmitter in the synaptic cleft, and it binds with postsynaptic receptors. (D) Model-generated
FC matrix, and (E) its fit or similarity with empirical FC.

Multiscale dynamic mean field (MDMF) model
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S = hsi. Assuming α and β do not change over an area as well as with time and firing rate,
r = h�tk δ(t − tk)i, the equation for average synaptic gating variable becomes

dS
dt

¼ −βSþ α Tmax½ � 1 − Sð Þr: (2)

Previously Deco, McIntosh, et al. (2014) demonstrated that conductance-based models over
an entire population of neurons can be used to derive the current-based field models such as a
DMF model, capturing the input excitatory and inhibitory currents to an E–I population.
Subsequently, combining a DMF model (Deco, McIntosh, et al., 2014; Deco, Ponce-Alvarez,
et al., 2014) and an average kinetic model of receptor binding (Destexhe et al., 1994a, 1994b)
that incorporates neurotransmitter concentrations (parameters) in synaptic gating dynamics
(Equation 2), we propose the multiscale dynamic mean field model. Here, dynamics of inhibi-
tory GABA-synaptic gating and excitatory NMDA-synaptic gating are governed by GABA and
glutamate concentrations Tgaba and Tglu, respectively. Thus, our implicit assumption is that the
GABA and glutamate concentrations over a population are representative of the saturation
achieved at several synaptic clefts simultaneously as per as BOLD timescale, the eventual
empirical observation we are interested in, in this study. Earlier studies have shown that satura-
tion of glutamate concentrations in synaptic clefts occur relatively fast in the order of a few
milliseconds (G. Liu, Choi, & Tsien, 1999). The current-based MDMF model is described by
the following coupled nonlinear stochastic differential equations:

I Eð Þ
i ¼ WEI0 þwþJNMDAS

Eð Þ
i þGJNMDA

X
j
CijS

Eð Þ
j − JiS

Ið Þ
i : (3)

I Ið Þ
i ¼ WII0 þ JNMDAS

Eð Þ
i − S Ið Þ

i : (4)

r Eð Þ
i ¼ aEI

Eð Þ
i − bE

� �
= 1 − exp −dE aEI

Eð Þ
i −bEð Þð Þ� �

: (5)

r Ið Þ
i ¼ aII

Ið Þ
i − bI

� �
= 1 − exp −dI aII

Ið Þ
i −bIð Þð Þ� �

: (6)

dSEi tð Þ
dt

¼ −βESEi þ αE 1 − SEi
� �

TglurEi þ σvi tð Þ: (7)

dSIi tð Þ
dt

¼ −βISIi þ αI 1 − SIi
� �

TgabarIi þ σvi tð Þ: (8)

Equations 3–6 are identical to theDMFmodel proposed inDeco, Ponce-Alvarez, et al. (2014)

and Deco, McIntosh, et al. (2014) where, I Eor Ið Þ
i is the input current to the area i, where super-

scripts I and E represent inhibitory and excitatory populations, respectively. Firing rates of excit-

atory and inhibitory populations of an area are given by r Eð Þ
i and r Ið Þ

i , respectively. S Eð Þ
i and S Ið Þ

i are
average excitatory and inhibitory synaptic gating variables of an area i, respectively. Effective
external input current, I0, is scaled by WI and WE for inhibitory and excitatory populations. Cij

represents anatomical connectivity strength, derived from diffusion imaging, scaling long-range
excitatory currents from region j to region i. Since recurrent excitatory currents are already taken
into account while computing the input current to an excitatory population, all the diagonal
elements Cii are set to zero in the SC matrix. Excitatory synaptic coupling strength is given by
JNMDA, while Ji denotes synaptic coupling strength from inhibitory to excitatory subpopulation.
vi in Equations 7 and 8 is uncorrelated standard Gaussian noise with standard deviation,
σ = 0.001 nA. G represents global coupling strength scaling long-range excitatory connections
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Figure 2. Comparison of MDMF model prediction of synaptic gating variables at steady state and the gating kinetics model proposed by
Destexhe et al. (1994b). Model-generated average (A) GABA- or (B) NMDA-synaptic gating as a function of population mean firing rate (dotted
lines) closely approximates the model proposed by Destexhe et al. (1994b) (lines with empty circles). (C) FC distance is examined as a function
of G; each point represents FC distance for each G value. (D) FC correlation is examined as a function of G; each point represents FC cor-
relation for each G value. For G = 0.69, FC distance is found to be minimum, whereas FC correlation is found to be maximum. (E) Average
firing rate of excitatory population as a function of G; each point represents average firing rate of excitatory population for a specific G value.
For G = 0.69, average firing rate of excitatory population is ~4 Hz (represented by black arrow). (F) Mean firing rate of inhibitory population as
a function of G; each point represents mean firing rate of inhibitory population for a specific G value. For G = 0.69, average firing rate of
inhibitory population is ~9 Hz (denoted by black arrow). (G) Firing rate of excitatory populations of all 68 brain areas (Desikan-Killiany atlas) is
shown for G = 0.69. (H) Firing rate of inhibitory populations of all 68 cortical areas is shown for G = 0.69.
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in Equation 3 and is a free parameter in MDMF that is optimally fitted to describe empirical
data following the earlier approach of Deco, Ponce-Alvarez, et al. (2014). The metrics for opti-
mization that we use in this article are the rs-FC and the firing rate of neural populations in in-
dividual brain areas. In other words, for a fixed glutamate andGABA concentration that captures
the healthy brain, we have selected the G value for which simulated rs-FC − empirical rs-FC
correlation is maximum, while maintaining a firing rate ~3–4 Hz (see Figure 2; Bittner et al.,
2017). Nonetheless, theoretically multiple combinations of G, GABA, and glutamate may pro-
vide good correspondence between simulated and empirical rs-FC. Hence, we have examined
multiple combinationsG, GABA, and glutamate, that show good correspondence between sim-
ulated and empirical rs-FC, to show over a range of chosen G the overall pattern of results does
not change (refer to the Supporting Information for more details). The balance between excitatory
and inhibitory currents to a neuron can be established and maintained by inhibitory synapses
using plasticity rules (Vogels, Sprekeler, Zenke, Clopath, &Gerstner, 2011). However, at themean
field level the biological complexity involved in the balance of dynamics between excitatory and
inhibitory fields can be captured grossly using the mathematical implementation of the inhibitory
plasticity rule (Hellyer, Jachs, Clopath, & Leech, 2016).

dJi tð Þ
dt

¼ γrIi rEi − ρ
� �

: (9)

Equation 9 describes the dynamics of Ji, which is an inhibitory plasticity rule representing
changes in Ji (synaptic weight) to ensure that inhibitory current clamps the excitatory current of
a population, thereby maintaining a homeostasis. Homeostasis is achieved with Ji dynamics
such that the firing rate of the excitatory population is maintained at the target firing rate
ρ = 3 Hz, and γ is the learning rate in Equation 9. The chosen target firing rate is the firing
rate observed when the inhibitory and excitatory currents are matched.

Synaptic activity of each area is used as input to the hemodynamic model (Friston et al.,
2003; Friston et al., 2000) to generate the resting-state BOLD responses of each brain area.
Differential equations are solved numerically using Euler–Maruyama method with time step
of 0.1 ms, and all simulations are performed in MATLAB. All the parameters used for the sim-
ulation are given in Table 1. Simulations were carried out across glutamate (0.1 to 15 mmol)
and GABA (0.1 to 15 mmol) concentration regimes that span the parameter space reported from

Table 1. Parameters used to simulate MDMF mode

I0 0.382 nA Deco, Ponce-Alvarez, et al. (2014) αE 0.072 ms−1 mM−1 Destexhe et al. (1994b)

JNMDA 0.15 Deco, Ponce-Alvarez, et al. (2014) βE 0.0066 ms−1 Destexhe et al. (1994b)

WE 1.0 Deco, Ponce-Alvarez, et al. (2014) αI 0.53 ms−1 mM−1 Destexhe et al. (1994b)

WI 0.7 Deco, Ponce-Alvarez, et al. (2014) βI 0.18 ms−1 Destexhe et al. (1994b)

w+ 1.4 Deco, Ponce-Alvarez, et al. (2014) σ 0.001 (nA) Deco, McIntosh, et al. (2014)

aI 615 (nC−1) Deco, Ponce-Alvarez, et al. (2014) G 0.69

bI 177 (Hz) Deco, Ponce-Alvarez, et al. (2014) γ 1

dI 0.087 (s) Deco, Ponce-Alvarez, et al. (2014) ρ 3 Hz Deco, Ponce-Alvarez, et al. (2014)

aE 310 (nC−1) Deco, Ponce-Alvarez, et al. (2014) dE 0.16 (s) Deco, Ponce-Alvarez, et al. (2014)

bE 125 (Hz) Deco, Ponce-Alvarez, et al. (2014) di 0.087 (s) Deco, Ponce-Alvarez, et al. (2014)

Multiscale dynamic mean field (MDMF) model
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healthy and diseased brains. However, to highlight an optimized range of neurotransmitter
concentrations where normal resting-state brain function can be defined, we relate to empirical
reports of neurotransmitter concentration (Govindaraju, Young, & Maudsley, 2000; Hu, Chen,
Gu, & Yang, 2013).

Validation on Empirical Data

For validation,MDMF units are placed in realistic cortical locations using structural connectivity
matrix obtained from empirical data. Subsequently, rs-FCs from BOLD time series are computed
using the MDMF approach from the same group of subjects and compared quantitatively with
empirical rs-FC employing two different parcellation schemes for reliability. Further, global and
local graph theoretic network measures from our model data are qualitatively compared with
empirical observations previously reported in literature for understanding the pathological
scenarios. The dataset used in this study is collected from the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN), University of Cambridge, UK, that uses a 3T Siemens TIM
Trio scanner with a 32-channel head coil (voxel size 3 × 3 × 4.4 mm; Shafto et al., 2014).

Generation of SC Matrix

Empirical diffusion-weighted imaging (DWI) data for our study are a randomized subsample of
40 healthy participants (19males, age range 23–38; 21 females, age range 18–34) from a sample
size of 175 volunteers in the age range of 18 to 40 years of the Cam-CAN dataset. We selected a
focused age range to avoid age-related variability affecting interpretation of our observations. T1
anatomical images, diffusion-weighted images, gradient vectors, and gradient values are also
obtained. The empirical SCmatrix is generated following seed region of interest (ROI) selection,
tracking, and aggregation of generated tracks by using an automated pipeline as proposed by
Schirner, Rothmeier, Jirsa, Mcintosh, and Ritter (2015). High-resolution T1 anatomical images
are used to create segmentation and parcellation of cortical gray matter using FreeSurfer’s
(https://surfer.nmr.mgh.harvard.edu/) recon-all function.

For each subject, the followingmajor steps are carried out: motion correction, skull stripping,
removal of non-brain tissue, intensity normalization, brainmask generation, cortical reconstruc-
tion, cortical tessellation generating white matter (WM), gray matter (GM) and GM-pia interface
surface-triangulations, WM segmentation, and probabilistic atlas-based cortical parcellation.
WM–GM interface is employed as seeding and termination masks for diffusion-weighted mag-
netic resonance imaging (MRI) tractography. Along with the eddy current correction, geometric
distortions correction, intervolume subject motion correction, bias-field correction, and denois-
ing using MRtrix, the b0 image is linearly registered to the subject’s anatomical T1-weighted
image thereby transforming the high-resolution mask volumes from the anatomical space to
the subject’s diffusion space (via FSL’s flirt boundary-based registration).

Generated masks from WM segmentations are used to terminate tracks immediately when
they leave WM. Moreover, MRtrix (https://www.mrtrix.org/) supported subvoxel tractography
and tractography masks are generated from FreeSurfer’s high-resolution parcellation schemes.
In this step, the diffusion tensor (so the diffusion ellipsoid) for each voxel is calculated and stored
in image volumes; on this basis an eigenvector map and fractional anisotropy are computed and
masked by the binary WM mask, which is created earlier. For the estimation of fiber-response
function, the mask containing high-anisotropy voxels are calculated. Constrained spherical
deconvolution algorithm that uses previously estimated fiber-response function computes fiber
orientation distribution for each voxel in WM.
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Cortical gray matter parcellation into 34 ROIs in each hemisphere is undertaken following
Desikan-Killiany parcellation (Desikan et al., 2006) and to test robustness on the Destrieux
brain atlas (Destrieux, Fischl, Dale, & Halgren, 2010) that parcellates each hemisphere into
75 ROIs. To estimate connection strength (value ranging from 0 to 1) between each pair of
ROIs, probabilistic tractography algorithm is used to estimate how one ROI can influence
the other in cortical GM parcellation. The pipeline aggregates generated tracks to estimate
the structural connectome for each individual subject. The normalized weighted connection
counts used here contain only distinct connections between each pair of regions.

Generation of rs-FC Matrix

The major steps involved in preprocessing of image volumes using the CONN toolbox (https://
web.conn-toolbox.org/) and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) are as follows: re-
alignment, interframe motion correction and unwarping, slice timing correction, coregistration
of the functional images to their respective anatomical MRI images, structural segmentation
and spatial normalization, and functional spatial normalization (Whitfield-Gabrieli & Nieto-
Castanon, 2012). For scans that are affected by movement-related artifacts, a motion and
outlier scrubbing step is performed using the Artifact Detection Tools software in the
CONN toolbox to correct those confounding effects, following which the functional images
are smoothed using a Gaussian kernel of 8 mm full-width at half maximum. Here, T1-weighted
images are segmented into WM, GM, and cerebrospinal fluid (CSF) areas. The temporal time
series that characterizes the estimated subject motion (three rotation and three translation param-
eters, plus another six parameters representing their first-order temporal derivatives), in addition
to signals emanating from the subject-specific WM mask and CSF mask, are used as temporal
covariates. Those are removed using linear regression from the BOLD signal, and finally a band-
pass filter (0.01 Hz < f < 0.10 Hz) is applied to get the residual BOLD time series.

Following the preprocessing of image volumes and subject-wise coregistration of functional
images with T1-anatomical images, two different parcellation schemes were employed: 68 cor-
tical areas (Desikan et al., 2006) and 150 cortical areas (Destrieux et al., 2010). FMRI data were
collected from all participants with their eyes closed while remaining awake for 9 min, 20 s. For
each participant, resting-state fMRI scans were acquired at 261 time points with TR = 1.97 s.

For each of the parcellation schemes, a representative BOLD signal is computed by calcu-
lating the mean of the BOLD signals from all the voxels in the corresponding ROI. Pairwise
Pearson correlation coefficients were computed among ROIs from the z-transformed BOLD
time series to generate the rs-FC matrix for each subject. Thus, the generated rs-FC matrix rep-
resents correlation of the BOLD activity between brain regions.

Comparing Empirical and Simulated FC, Metastability

Prediction of empirical rs-FC was validated using the Frobenius norm of the difference be-
tween the simulated and empirical rs-FC matrices. Thus, FC distance (FCD) for one combina-
tion of glutamate and GABA is defined as the following:

FCD ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

XN

j¼1
empirical FC i; jð Þ − simulated FC i; jð Þð Þ2

r
: (10)

Using the measure of metastability to define optimal parameter space. Metastability measures the
tendency to deviate from stable manifolds in a dynamical system. For functional brain net-
works, a stable manifold may be the vector space spanned by the phase-locking indices,
which captures synchronization among nodes. Earlier research has proposed that metastability

Structural connectome:
Map of brain areas connected with
physical neuronal connections.
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is an important measure to describe information processing in a resting-state brain (Alderson,
Bokde, Kelso, Maguire, & Coyle, 2018; Deco et al., 2017; Naik, Banerjee, Bapi, Deco, & Roy,
2017); more specifically, maximal metastability can be interpreted as a regime of maximal
functional network switching (Deco et al., 2017). Hence, we seek to identify the parameter
ranges of GABA/glutamate concentrations for which metastability computed from simulated
and empirical BOLD time series were matched.

In the present study, metastability is measured using the standard deviation of the Kuramoto
order parameter across time (Sahoo, Pathak, Deco, Banerjee, & Roy, 2020; Vasa et al., 2015).
Kuramoto order parameter captures the degree of synchronization among a bunch of oscilla-
tors, and is defined by the following equation:

R tð Þ ¼
Xn

k¼1
ei�k tð Þ

��� ���=n; (11)

where �k(t) denotes the phase of each narrowband BOLD signal (band-passed at 0.03–0.06 Hz)
at node k, and n is the total number of nodes. Hilbert transform was used to compute the
instantaneous phase �k(t) of each narrowband signal k using MATLAB function hilbert.m
(Sahoo et al., 2020; Vasa et al., 2015). Earlier findings report that the narrow frequency bands
have been mapped to the gray matter, and it has been found to be functionally relevant com-
pared with other frequency bands (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006;
Deco et al., 2017).

Order parameter R(t) measures the degree of synchronization of the n oscillating nodes at the
global level. If n phases are uniformly distributed, then R takes on value ~ 1/n, whereas if phases
are perfectly synchronized over a time period, then <R(t)> = 1. Thus, the standard deviation of

order parameter over time,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R tð Þ − R tð Þh ið Þ2� 	q

, estimates the tendency of the system to deviate

further away from the synchronization manifold over time and can qualify as a measure for
metastability. Standard deviation of order parameter is calculated from both empirical resting-
state fMRI signals and from simulated BOLD signals.

Graph-Based Metrics to Assess Network Topologies

Adjacency matrices are constructed from rs-FC for applying graph theoretical metrics in the
following steps. For network construction, only positive correlations of rs-FC are considered in
the current study, and a proportional thresholding approach is used to compute the connec-
tivity matrix (van den Heuvel et al., 2017). Although choosing sign of correlation for construc-
tion of graphs is a matter of debate (Fornito, Zalesky, & Breakspear, 2013), the earlier study by
van den Heuvel et al. (2017) reports that no significant changes were found in overall FC while
using the absolute value of correlation or taking only positive correlations, but low correlation
thresholds can lead to spurious results. In a proportional thresholding approach, the number of
edges remains the same for all the connectivity matrices (van den Heuvel et al., 2017). The
number of edges to be preserved in the connectivity matrix solely depends on what value is
assigned to the proportion of strongest weight (PSW). Once PSW is fixed, the same number of
edges were considered for each connectivity matrix; in the current study PSW = 0.25 is used
for proportional thresholding. Finally, proportional thresholded rs-FC matrices are used to gen-
erate binary adjacency matrices (setting all surviving connections to 1 and other connections
to 0) for the various connection densities. Although there is no consensus in the literature on
what specific proportional threshold should be used for the network construction, a range of
5% to 40% proportional thresholds have been reported (Fornito, Zalesky, & Bullmore, 2010).
Brain Connectivity Toolbox is used to compute all the graph-based measures that quantify
segregation and integration in information processing among brain areas, as described below.
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In addition, we have examined various PSW selections that are higher and lower than PSW =
0.25, which didn’t qualitatively change the pattern of results (see the Supporting Information).

Integration Measures

Global efficiency. Quantifies efficient exchange of information across the entire network
(Wang, Zuo, & He, 2010). Global efficiency of graph Δ is denoted by the following formula:

Eglob Δð Þ ¼ 1
n n−1ð Þ

X
i≠j2Δ

1
dij

; (12)

where i and j represent vertices in the graph, n is number of vertices, and dij is the shortest path
length between node i and node j in Δ.

Characteristic path length. Quantifies average shortest path length between all pairs of nodes in
the network and measures efficiency of information transfer in a network.

Segregation Measures

Clustering coefficient (Cp). Cp of a network is defined as the average of the clustering coeffi-
cients over all nodes in the network, where the clustering coefficient Ci of a node i is calcu-
lated using the following equation:

C ið Þ ¼ 2E
ki

ki − 1ð Þ; (13)

where E represents the number of connections among the node i’s neighbors and ki is the
degree of node i.

Local efficiency. Quantifies how well a network can exchange information when a node is
removed.

Elocal Δð Þ ¼ 1
n

X
i2ΔEglob Δið Þ: (14)

Eglob(Δi) is the global efficiency of subgraph Δi, which is composed of the immediately adjacent
neighbors of node i.

Modularity. Quantifies the degree to which a network may be subdivided into clearly delin-
eated groups; it is defined as the following:

Q ¼ 1=2l
X

ij
Ai; j −

kikj
2l


 �
δ si; sj
� �

; (15)

where l is the total number of edges; si denotes the community to which i is assigned; δ(si, sj) is 1,
if si = sj, and 0 otherwise; ki and kj are the degree of nodes; and Ai, j is the number of edges
between vertices i and j.

RESULTS

Whole-Brain MDMF Model Predicts rs-FC

The architecture of the MDMF model consisting of cortical areas or nodes that are intercon-
nected with structural connections is represented in Figure 1A. The whole-brain network
(Figure 1B) with long-range excitatory projections among distributed brain areas contribute
to resting-state brain activity. By construction, averaged synaptic gating is scaled with releases
of neurotransmitter, and neurotransmitter released in the synaptic cleft is shown in the inset
image of Figure 1C. Each cortical area is described as a pool of excitatory and inhibitory
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populations with recurrent excitatory–excitatory, inhibitory–inhibitory, excitatory–inhibitory,
and inhibitory–excitatory connections, whereas long-range connections are modeled as excit-
atory connections between excitatory populations of each region (Figure 1C). Synaptic gating
depends on neurotransmitter released in the synaptic cleft, hence average synaptic gating is
governed with mean release of neurotransmitter in a node, since there is no spatial distinction
of cleft from the node in the MDMF model. So, the ensemble activity of each cortical area is
the outcome of E–I neurotransmitter homeostasis (Figure 1C). MDMF uses the anatomical struc-
tural connectivity matrix to connect the brain regions, following which dynamic interactions
Equations 3–9 generate BOLD signals in each parcellated brain region. Finally, the functional
connectivity matrix computed from simulated BOLD signal is matched with empirical rs-FC
(Figures 1D and 1E).

Steady-State Solutions of the MDMF Model

In Figures 2A and 2B, relations of GABA- and glutamate-mediated synaptic gating and popula-
tion mean firing rates are generated by taking the steady-state solutions for the equations
(Equations 7 and 8) of the MDMF model, along with GABA- or glutamate-mediated synaptic
gating from the model proposed by Destexhe et al. (1994b). We have used fixed values of
glutamate (7.46 mmol) and GABA (1.82 mmol) concentrations observed in precuneus of a
normal healthy individual’s brain during resting state and reported in a magnetic resonance
spectroscopy (MRS) study by Hu et al. (2013). Steady-state synaptic gating from the Destexhe
model is computed numerically by integrating Equation 2 for the neurons whose firing statistic
was defined by Poisson distribution with mean firing rates from 1 to 300 Hz, and taking the
asymptotic value of synaptic gating S(t) at t → ∞. Steady-state values of synaptic gating, SEss
and SIss, for the MDMFmodel are computed from Equations 7 and 8 analytically (for σ = 0) when

the system reaches attractor state (setting dS
dt = 0) and the subsequent algebraic steps:

SEss ¼
αETNMDArE

βE þ αETNMDArE
� � : (16)

SIss ¼
αITGABArI

βI þ αITGABArI
� � : (17)

Figures 2A and 2B show that in terms of average gating kinetics, the MDMFmodel results are
almost equivalent to the model proposed by Destexhe et al. (1994b). Subsequently, we estimated
simulated rs-FCs by solving the system of Equations 3–9 numerically and then computing pairwise
temporal correlations amongMDMF units, for a range ofGs for a fixed concentration of glutamate
(7.46mmol) andGABA (1.82mmol) representative of a healthy brain. Considering optimal scenar-
ios in which FC distance between simulated and empirical rs-FC is minimized (Figure 2C), FC cor-
relation is maximized (Figure 2D), and average firing rate of excitatory populations (Figure 2E) and
average firing rate of inhibitory populations (Figure 2F) doesn’t rise above 4 Hz and 9 Hz, respec-
tively, a fixed value of G = 0.69 was chosen for all subsequent numerical analysis using MDMF,
including the scenarios of diseased brain captured by parametric variation ofGABAand glutamate.
An important point to note here is that even though G is a scaling parameter with no biophysical
basis, there can be bifurcations upon parametric variation ofG (more details are in the Supporting
Information). AtG = 0.69, average firing rate of cortical excitatory populations is guaranteed to be
~4 Hz, which is within the observed range of mean firing rate of excitatory population in cortex
(~3–6 Hz, Figure 2E; Bittner et al., 2017), and average firing rate of cortical inhibitory populations
is ~9 Hz (Figure 2F). In Figures 2G and 2H, firing rates of excitatory population and inhibitory

Neurotransmitter homeostasis:
A healthy human brain maintains
optimal concentrations of
neurotransmitters so that excitation
and inhibition are balanced to
execute normal brain function.

Functional connectome:
Map of temporally correlated brain
areas based on measured time series
activity, such as from BOLD-fMRI,
electro/magneto-encephalogram
(EEG/MEG).

Magnetic resonance spectroscopy
(MRS):
Noninvasive technique used to
measure metabolic changes such as
neurotransmitter concentrations in
the human brain.
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Table 2. All 34 ROIs in each hemisphere. Area ID denotes the order of ROIs in the functional and
structural connectivity matrices for each hemisphere

Area ID Abbreviation Full name
1. BSTS Banks of superior temporal sulcus

2. CAC Caudal anterior cingulate

3. CMF Caudal middle frontal

4. CUN Cuneus

5. ENT Entorhinal

6. FUS Fusiform

7. IP Inferior parietal

8. IF Inferior temporal

9. IC Isthmus cingulate

10. LO Lateral occipital

11. LOF Lateral orbitofrontal

12. LIN Lingual

13. MOF Medial orbitofrontal

14. MT Middle temporal

15. PH Parahippocampal

16. PC Paracentral

17. PAOP Pars opercularis

18. PAOR Pars orbitalis

19. PT Pars triangularis

20. PEC Pericalcarine

21. POCE Postcentral

22. POCI Posterior cingulate

23. PRCE Precentral

24. PRCU Precuneus

25. RAC Rostral anterior cingulate

26. RMF Rostral middle frontal

27. SF Superior frontal

28. SP Superior parietal

29. ST Superior temporal

30. SM Supramarginal

31. FP Frontal pole
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population, respectively, of each cortical area are shown in all 68 brain areas (the full name of
ROIs in each hemisphere is provided in Table 2). The firing rates of excitatory populations across
cortical areas are relatively similar, although with some degree of variability as reported previ-
ously (Mochizuki et al., 2016).

Determining Local Homeostasis Regime of GABA and Glutamate Concentrations Relating to rs-FC

We solved the system of Equations 3–9 numerically over a parameter space of glutamate and
GABA concentrations from 0.1 to 15 mmol. Mean of firing rates of excitatory population
across all parcellated cortical areas are examined for various GABA and glutamate concentra-
tions. Two different parcellations—Desikan-Killiany (Desikan et al., 2006) and Destrieux
(Destrieux et al., 2010)—are used to evaluate the robustness of the results. Figures 3A and 3B

Table 2. (continued )

Area ID Abbreviation Full name
32. TP Temporal pole

33. TT Transverse temporal

34. INS Insula

Figure 3. (A, B) Neuronal firing, (C, D) metastability, and (E, F) FC distance as a function of GABA and glutamate concentrations. (A, B) Mean
firing rate: Average of firing rates of excitatory population using (A) Desikan-Killiany and (B) Destrieux parcellations. (C, D) Metastability com-
puted from the simulated BOLD signals using (C) Desikan-Killiany and (D) Destrieux parcellations. (E, F) FC distance: Similarity between
empirical rs-FC and simulated rs-FC computed using Frobenius norm over various GABA (0.1–15 mmol) and glutamate (0.1–15 mmol)
concentrations using (E) Desikan-Killiany and (F) Destrieux parcellations. (G, H) FC correlation: Correlation between empirical rs-FC and
simulated rs-FC computed over various GABA (0.1–15 mmol) and glutamate (0.1–15 mmol) concentrations using (G) Desikan-Killiany and
(H) Destrieux parcellations.
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depict mean firing rate of excitatory populations across 68 and 150 parcellated cortical
areas, respectively, at glutamate concentration ranging from 0.1 to 15 mmol and GABA con-
centration ranging from 0.1 to 15 mmol. Metastability is computed using Kuramoto order pa-
rameter (see the Materials and Methods section for details) from simulated BOLD signals from
parcellated brain areas (Figures 3C, 3D) across various concentrations of GABA and gluta-
mate. Metastability computed from empirical BOLD signals obtained from subsamples of
Cam-CAN dataset (40 subjects) is found to range from ~0.0002 to ~0.003. So, the region out-
lined by white lines in Figures 3C and 3D denotes parameter regimes where metastability from
simulated BOLD signals closely matches metastability obtained from empirical BOLD signals.
Hence, using the Desikan-Killiany atlas, a match between metastability of simulated BOLD
signal and empirical BOLD signal is found at glutamate concentrations ranging from 6.1 to
10.5 mmol and GABA concentrations ranging from 1.5 to 4.2 mmol (Figure 3C). Even with
a finer parcellation scheme (Destrieux et al., 2010), glutamate concentrations ranging from 4.2
to 9.1 mmol and GABA concentrations ranging from 0.2 to 3 mmol show a good match be-
tween metastability of simulated BOLD signal and empirical BOLD signal (Figure 3D). Also,
the maximum similarity between the empirical rs-FC and model-predicted rs-FC, measured
by the Frobenius norm and correlation, is found at glutamate concentrations ranging from
6.1 to 10.5 mmol and GABA concentrations ranging from 1.5 to 4.2 mmol (Frobenius norm,
Figure 3E, and FC correlation, Figure 3G). Using a finer parcellation scheme (Destrieux atlas,
150 parcellated brain areas), the maximum similarity between the empirical rs-FC and simu-
lated rs-FC measured by Frobenius norm and correlation is found at glutamate concentrations
ranging from 4.2 to 9.1 mmol and GABA concentrations ranging from 0.2 to 3 mmol (Frobenius
norm, Figure 3F, and FC correlation, Figure 3H). Empirical observations from MRS studies
show that an adult normal human brain contains glutamate from 6 to 12.5 mmol/kg and
GABA from 1.3 to 1.9 mmol/kg (Govindaraju et al., 2000).

Finally, we have argued that the local homeostasis of E–I balance is obtained at glutamate
concentrations ranging from 6.1 to 10.5 mmol and GABA concentrations ranging from 1.5 to
4.2mmol using theDesikan-Killiany atlas. Here, bothmetastability and FC distance are employed
to determine the optimal regime of GABA and glutamate concentrations.

Relationship Between Neurotransmitter Concentrations and the Degree of Functional Segregation

and Integration

In the present study,we have computed the graph theoretical properties that quantitate functional
segregation and integration from simulated functional connectivity using the Brain Connectivity
Toolbox. Figures 4A and 4C illustrate the network segregation measures, modularity and clus-
tering coefficient, respectively, while Figures 5A and 5C represent network integration mea-
sures, characteristic path length and global efficiency, respectively, across various GABA and
glutamate concentrations. To represent variation in graph theoretical measures at the specific
neurotransmitter concentrations, Figures 4B and 4D represent changes in modularity and clus-
tering coefficient, respectively, whereas Figures 5B and 5D illustrate variations in characteristic path
length and global efficiency, respectively, at the discrete concentration of glutamate (7.5 mmol, blue
line; 8 mmol, red line; 8.5 mmol, yellow line) over various concentrations of GABA. Here, the
homeostasis regime of GABA concentrations ranging from 1.5 to 4.2 mmol are marked by the
shaded region.

The interpretations from network segregation measures (Figures 4B and 4D) and integration
measures (Figures 5B and 5D) with glutamate–GABA concentrations illustrate the following
scenarios of neurotransmitter level: (a) low GABA concentration (0.1–1.4 mmol), (b)

Multiscale dynamic mean field (MDMF) model

Network Neuroscience 771



homeostasis regime of GABA concentration (1.5–4.2 mmol; shaded region), and (c) high
GABA concentration (4.3–15 mmol), along with the discrete concentrations of glutamate
(7.5, 8, or 8.5 mmol; selected from the homeostasis regime of glutamate). All the segregation
measures (modularity, Figure 4B; clustering coefficient, Figure 4D) have minima for a regime
of optimal GABA and glutamate values. On the other hand, the characteristic path length has
minima for optimal concentrations of GABA–glutamate (Figure 5B), while the global efficiency
peaks at the optimal concentration of GABA and glutamate (Figure 5D).

Empirical rs-FC (Figure 6A), simulated rs-FC generated at high glutamate concentration
(Figure 6B), optimal glutamate concentration (Figure 6C; homeostatic regime), and low gluta-
mate concentration (Figure 6D) with GABA concentration fixed at 1.5 mmol demonstrate that
maximum similarity between empirical and simulated data (Figures 6A and 6C) can be
achieved at optimal GABA/glutamate values. Euclidean distance between the simulated and
empirical rs-FC is computed using the Frobenius norm (Vattikonda et al., 2016) and is found to

Figure 4. Contour plots showing the changes in network segregation measures such as (A) modularity and (C) clustering coefficient across
various concentrations of GABA (0.1–15 mmol) and glutamate (0.1–15 mmol). The effect of changes in GABA concentrations ranging from 0.1
to 15 mmol at discrete values of glutamate concentration (7.5 mmol, blue line; 8 mmol, red line; 8.5 mmol, yellow line) is shown on network
segregation measures including (B) modularity and (D) clustering coefficient. The shaded regions denote graph theoretical measures in ho-
meostasis regime of GABA ranging from 1.5 to 4.2 mmol with discrete values of glutamate concentration (7.5, 8, or 8.5 mmol), whereas
outside the shaded regions represents pathological scenarios.
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be minimum for optimal GABA/glutamate (Figure 6E). In addition, FC distances computed
using only default mode network (DMN) nodes indicate high similarity between empirical
and simulated data for optimal values of GABA/glutamate (Figure 6F). An earlier report shows
that an increased glutamate/GABA ratio results in enhanced correlations among DMN net-
work nodes (Kapogiannis, Reiter, Willette, & Mattson, 2013). Hence, we argue that MDMF
can qualitatively predict the reorganization of correlations among large-scale brain networks
following changes in neurochemical concentrations. Brain areas of the DMN comprise left
isthmus cingulate, left inferior parietal, left medial orbitofrontal, left parahippocampal, left
superior frontal, right inferior parietal, right medial orbitofrontal, right parahippocampal, and
right superior frontal (Seibert & Brewer, 2011) are all selected from the 68 brain regions dis-
tributed in the right and left hemispheres based on the Desikan-Killiany atlas (Vattikonda et al.,

Figure 5. Contour plots showing the changes in network integration measures such as (A) characteristic path length and (C) global efficiency
across various concentrations of GABA (0.1–15 mmol) and glutamate (0.1–15 mmol). The effect of changes in GABA concentrations ranging
from 0.1 to 15 mmol at discrete values of glutamate concentration (7.5 mmol, blue line; 8 mmol, red line; 8.5 mmol, yellow line) is shown on
network integration measures like (B) characteristic path length and (D) global efficiency. The shaded regions denote graph theoretical mea-
sures in homeostasis regime of GABA ranging from 1.5 to 4.2 mmol with discrete values of glutamate concentration (7.5, 8, or 8.5 mmol),
whereas outside the shaded regions represents pathological scenarios.
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2016). Here, left isthmus cingulate is selected as a seed region. In Figures 6G–6J, we have
shown how correlation among nodes of DMN changes in various scenarios such as high
(Figure 6H), optimal (Figure 6I), or low (Figure 6J) glutamate concentrations as compared with
empirical DMN nodes (Figure 6G).

DISCUSSION

In the present study, we have proposed a multiscale dynamic mean field model that provides a
mechanistic explanation of whole-brain resting-state network organization in human brain as a
function of underlying change in GABA and glutamate concentrations. In other words, it is an
effort to bridge two different scales: neurotransmitter concentration and population activitymea-
sured using excitatory firing rate derived from DMF. MDMF brings specificity in precise quan-
tification of the critical range of neurotransmitter concentrations, which allows us to estimate a
departure from normative values based on measurement of key network topological properties
of integration and segregation. This further opens up the possibility of tracking departures from
healthy to pathological brain states in a systematic manner by comparing against literature-
derived empirical estimates of the above network measures. The most crucial findings from
the current study are the following: (a) demonstration of a regime of optimal balance between
neurotransmitter (glutamate–GABA) concentrations in the parameter space and regulation and
maintenance of local homeostasis in neural populations in a given brain area; and (b) demon-
stration of the possibility that both low and high neurotransmitter (glutamate–GABA) concentra-
tions in the parameter space can lead to widely disparate observations of network measures of

Figure 6. Comparison of empirical rs-FC and simulated rs-FC. (A) Empirical rs-FC. (B) Simulated rs-FC with 12.5 mmol glutamate and 1.5 mmol
GABA (high glutamate), (C) 7.5 mmol glutamate and 1.5 mmol GABA (optimal glutamate), and (D) 3.5 mmol glutamate and 1.5 mmol GABA
(low glutamate). (E) FC distance between empirical rs-FC and simulated rs-FC obtained at various glutamate concentrations including 12.5mmol,
7.5 mmol, or 3.5 mmol glutamate with GABA concentration fixed to 1.5 mmol. (F) FC distance between empirical DMN and simulated DMN
nodes generated at different glutamate concentrations including 12.5 mmol, 7.5 mmol, or 3.5 mmol glutamate with 1.5 mmol GABA. Pairwise
correlation between nodes of DMN with left isthmus cingulate (LIC) as the seed region and left inferior parietal (LIP), left medial orbitofrontal
(LMOF), left parahippocampal (LPH), left superior frontal (LSF), right inferior parietal (RIP), right medial orbitofrontal (RMOF), right parahippo-
campal (RPH), and right superior frontal (RSF) shown at various scenarios: (G) empirical-DMN, (H) high glutamate (12.5 mmol glutamate and
1.5 mmol GABA), (I) optimal glutamate (7.5 mmol glutamate and 1.5 mmol GABA), and ( J) low glutamate (3.5 mmol glutamate and 1.5 mmol
GABA).
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segregation and integration in clinical studies (we discuss this in detail in later paragraphs). An
important caveat of MDMF as well as other biophysically realistic neural models is that even
though they give enormous explanatory power and several phenomena can be explained, a
direct comparison with other existing models in terms of data fitting is ad hoc in nature. In the
rest of this section, we concentrate our discussion on the explanatory role that MDMF may play
in understanding neural mechanisms underlying resting-state brain activity in health and
disease and what insights can be gained by potential generalization studies in the future.

The MDMF model links two distinct scales of observation and measurement; the steady-
state metrics from neurotransmitter kinetics and neural field dynamics contribute harmoniously
to give rise to emergent functional connectivity patterns. Recent studies have shown that
human brain operates at maximum metastability (Deco et al., 2017) and with the operational
principles of local feedback inhibition (Deco, Ponce-Alvarez, et al., 2014). The inhibitory plas-
ticity rule (Hellyer et al., 2016) was employed by clamping the firing rate of cortical excitatory
population at ~3 Hz to achieve a robust parameter space for MDMF, which opens up new
avenues in the domain of computational neuropsychiatry. Previous studies have identified that
characterization of an optimal E–I neurotransmitter homeostasis regime is critical for under-
standing the dynamical working point shift associated with mental and neurological disorders
(Cabral, Hugues, Kringelbach, & Deco, 2012; Cabral, Kringelbach, & Deco, 2012; Deco,
McIntosh, et al., 2014). Thus, MDMF could be used as a computational connectomics tool
by clinicians and neuroscientists apart for studying a variety of questions related to neuropsy-
chiatric disorders. Usage of computational whole-rain models in predicting seizure propaga-
tion has been recently highlighted by Proix, Bartolomei, Guye, and Jirsa (2017). To validate
the applicability of theMDMFmodel in the diseased brain, we undertook an extensive literature
research to identify the changes of glutamate–GABA concentrations in neurological disorders
(see Tables 3 and 4).

Interestingly, deviation from optimal neurotransmitter concentrations can help in prediction of
pathological brain network states using MDMF. Graph properties such as modularity, clustering
coefficient, global efficiency, and characteristic path length computed from simulated rs-FC could
decrease or increase depending on how far away from the optimal glutamate–GABA concentra-
tions are chosen. A close qualitative match between empirical reports of segregation and integra-
tion measures obtained from clinical studies and those predicted from the MDMF model was
achieved (see Figures 4 and 5). Importantly, the MDMF model may help in conceptualizing the
pathophysiologyof neuropsychiatric and neurodegenerative disorders,where the communication
among brain areas can be classified in terms of local and global measures, and their relationship
with the underlying physiological mechanism at the molecular level. In epileptic patients, some
studies report increased GABA concentration; in contrast, others report decreasedGABA concen-
tration in a brain area as compared with healthy subjects (details of the studies are provided in
Table 3). Concomitantly, network segregation measures such as modularity are found to be

Table 3. Comparison of GABA levels measured with brain MRS recordings from epileptic patients and healthy subjects reported in
the literature

Sl. No. Neurotransmitter
Epileptic patients as

compared with control Brain region Reference
1. GABA Increased Dorsolateral prefrontal cortex Chowdhury et al. (2015)

2. GABA Decreased Occipital lobe Petroff et al. (1995)

3. GABA Increased Frontal area Hattingen et al. (2014)
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increased in epileptic patients (Table 4). An increase or decrease in GABA concentration relative
to the optimal regime of GABA concentration (shaded region in Figure 4) may result in increased
modularity. Hence, the MDMFmodel could successfully predict how changes in GABA concen-
tration (both an increase or a decrease) relative to optimal GABA concentration lead to increased
modularity. Further, previous empirical studies have reported that network integration measures
such as characteristic path length are increased in epileptic patients, whereas global efficiency is
reported to be decreased (Table 5). Here, the MDMF model could demonstrate how deviations
in GABA concentration relative to the optimal regime of GABA concentration (shaded region;
refer the Results section) results in increased modularity and a decrease in global efficiency.

In schizophrenia patients, GABA concentrations are found to be lowered in occipital cortex
(Thakkar et al., 2017) and prefrontal cortex (Marsman et al., 2014) as compared with healthy
subjects (Table 6). On the other hand, network segregation measures such as clustering coeffi-
cient are reported to be increased or decreased in schizophrenia patients (Table 4). MDMF
shows that a decrease in GABA (0.8 to 1.4 mmol) is associated with an increase in clustering
coefficient for the specific regime of GABA concentration. If GABA concentration goes below
0.8mmol, a sudden drop in clustering coefficient is observed (see the Results section). Therefore,
the MDMF model could predict how a decrease in GABA concentration relative to the optimal
GABA concentration may result in both an increase or a decrease in network segregation mea-
sures such as clustering coefficient. Thus, the most important and unique feature of the MDMF
model is that it could link two different parameters such as neurotransmitter concentrations and
network measures in a unified modeling framework. We argue that such qualitative predictive
power from a biologically realistic model has immense potential to explain interindividual
variability of metrics evaluated over large population cohorts of neurological and mental
disorders as well as healthy aging. In the future, we would like to extend this model to datasets

Table 4. Network segregation measures reported in literature using human brain fMRI from epileptic and schizophrenia patients relative to
healthy subjects discrete

Sl. No.
Network segregation
measures of brain

Epileptic patients
as compared
with control Reference

SZ patients
as compared
with control Reference

1. Clustering coefficient Increased Jiang et al. (2017);
Pedersen et al. (2015);
Wang et al. (2014);
Yasuda et al. (2015)

Increased Hadley et al. (2016)

Clustering coefficient — — Decreased Y. Liu et al. (2008);
Lynall et al. (2010)

2. Modularity Increased Pedersen et al. (2015)

Table 5. Network integration measures reported in literature using human brain fMRI from schizophrenia and epileptic patients relative to
healthy subjects (empirical observations)

Sl. No.
Network integration
measures of brain

Epileptic patients
as compared
with control Reference

SZ patients
as compared
with control Reference

1. Characteristic path length Increased Wang et al. (2014) Increased Sun et al. (2016)

2. Global efficiency Decreased Wang et al. (2014);
Yasuda et al. (2015)

Decreased Ganella et al. (2017);
Hadley et al. (2016)
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where the local excitatory–inhibitory homeostasis has been artificially altered, for example after
medical drug usage. Such datasets can potentially expand the predictive power of the MDMF
model.

Although inspired by its success, the MDMF model differs substantially in many ways from
the previously proposed DMF model (Deco, Ponce-Alvarez, et al., 2014) that introduced the
local excitatory–inhibitory balance. In addition to capturing the essence of modulation in neu-
rotransmitter concentration using the multiscale parameter space of the MDMF model, the
inhibitory plasticity rule replaces the feedback inhibition control used in earlier modeling
efforts (Deco, Ponce-Alvarez, et al., 2014; Vattikonda et al., 2016) towards regulating homeo-
static E–I balance mechanisms. Our results demonstrate that even if the inhibitory plasticity
rule is applied locally, it can affect globally, that is, the large-scale brain dynamics. The local
inhibitory plasticity rule in the whole-brain network is biologically relevant for providing
stabilization in a plastic network and regulating optimal information flow and noise correlation
(Vogels et al., 2011). The dynamical consequences of including this feature or that of feedback
inhibition control in a network of neural masses has not been well explored, and future work
will need to address this limitation. Nonetheless, the steady-state solutions linking
GABA/glutamate to synaptic gating provides an ideal entry point to visualize the homeostasis
of excitatory–inhibitory currents and neurotransmitters from an unique analytic vantage point.

An important limitation of the MDMF at the current stage is that the modulations in neu-
rotransmitter concentration as a state variable are ignored. All references to the multiscale as-
pects are limited to the parameter space only. However, the concentrations of these
neurotransmitters are variable across different areas; these can be measured from positron
emission tomography (PET) recordings (D’Hulst et al., 2015). Nonetheless, a detailed analysis
with glutamate–GABA values in individual brain areas contributing to resting-state dynamics
remains out of the scope at this point because of lack of availability of detailed data, but it will
be an interesting issue to resolve in the future as and when such data are available. Another
important limitation is the absence of distance-dependent conduction delays that modulate
communication and synchronization between brain areas. To keep our findings tractable
and to avoid complexity, delays were neglected in this study; these may serve as a critical
ingredient for shaping up global brain dynamics, giving rise to phenomena such as oscillations
and other complex spatiotemporal patterns such as chaos and multistability (Deco, Jirsa,
McIntosh, Sporns, & Kötter, 2009; Ghosh, Rho, McIntosh, Kötter, & Jirsa, 2008). In addition,
we have avoided the incorporation of neuromodulatory effects in the MDMF model because
the discussion is purely limited to a relatively small time window of resting-state dynamics.
Lastly, the proxy measure of metastability, the standard deviation of the Kuramoto order
parameter, that has been used in this article can be modified in the future by incorporating
the distributions of higher order moments. However, incorporation of all these features is
possible in the MDMF framework in the future. In fact, the DMF component can be replaced
with thalamocortical models (e.g., Freyer et al., 2011; van Albada & Robinson, 2009) to address
homeostasis in EEG/MEG data in future computational studies.

Table 6. Comparison of GABA levels measured with brain MRS recordings from schizophrenia patients and healthy subjects reported in the
literature

Sl. No. Neurotransmitter
Schizophrenia patients as
compared with control Brain region Reference

1. GABA Decreased Occipital cortex Thakkar et al. (2017)

2. GABA Decreased Prefrontal cortex Marsman et al. (2014)
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To conclude, we have characterized the homeostasis of glutamate–GABA concentration via
a realistic large-scale neural model in the healthy brain and elucidated how any deviation from
the homeostasis regime of neurotransmitter concentrations leads to pathological conditions. The
MDMF model could be used to draw inferences from multiple scales of observations of neuro-
transmitter concentration and neurovascular organization captured by correlations among
BOLD time series. Interestingly, the identification of the pathological neurotransmitter concen-
tration space also opens up a novel future direction in the quest of identifying specific sets of
biomarkers for characterizing progression from health to disease. Another potentially interesting
direction for this approach could be fMRI data during specific sensorimotor and cognitive tasks
that are far less traversed at this point. Another future direction of MDMF could be geared more
towards generating specific predictions during task conditions or perturbation with brain stim-
ulations, such as transcranial direct stimulation/transcranial magnetic stimulation (tDCS/TMS)
with a high degree of patient specificity. Virtual lesions can be introduced as outlined in
Vattikonda et al. (2016) for identification of reorganization in the whole-brain connectome as
a function of neurotransmitter homeostasis. This remains a target for our future research.
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