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a b s t r a c t

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental,
psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demon-
strated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory
response, and gut microbiota dysbiosis are core pathological links associated with it. However, the under-
lying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elu-
cidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid
metabolism disorder. In the present review, we explored the ways and means by which genomics, tran-
scriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate
biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limita-
tions and recommended future research directions of multi-omics studies on these diseases.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Metabolic disease, such as type 2 diabetes mellitus (T2DM),
hyperlipidemia, and obesity, are increasingly common owing to
the change of lifestyle and the rapid development of industrializa-
tion. As an important feature of metabolic diseases, glycolipid
metabolism disorder is silently threatening human health. It is
estimated that in 2040, 642 million adults worldwide will have
diabetes, and the vast majority of them will be T2DM [1]. Over-
weight is a risk factor for diabetes, dyslipidemia, and non-
alcoholic fatty liver disease. According to an ecological study, about
a third of the global population has been determined to be obese or
overweight since 1980 [2]. The epidemiological findings of dyslipi-
demia are equally discouraging. Several researchers have found
that total cholesterol decreased the most in high-income western
regions and in central and eastern Europe, while increased the
most in east and southeast Asia. Particularly, the population with
high cholesterol has increased significantly in China, which now
has one of the highest cholesterol levels in the world [3].

The harmof glycolipidmetabolismdisorder lies in the damage of
general organ causedby long-termabnormalbloodglucoseand lipid
levels, leading to the gradual decline of its function. Meanwhile,
microvascular andmacrovascular injury are regarded as the impor-
tant cause of disability and mortality in patients. As reported,
patients with concurrent T2DM, hypertension, and dyslipidemia
are 6 times more likely to have cardiovascular disease compared
with those with T2DM alone [4]. Currently, a single intervention of
hyperglycemia or hyperlipidemia cannot effectively regulatemulti-
ple metabolic disorders, resulting in suboptimal lipid control and
poor glycemic control. Glycolipid metabolism disorder are more
complicated than single factor metabolic abnormalities, because of
5936
multi-factorial interaction [5]. Based on the complexity of themeta-
bolic regulatory network, simultaneous regulation of different
metabolic pathways can be more potent than regulation of a single
pathway in the treatment of glycolipid metabolism disorder [6].
Combination therapy has been demonstrated to be superior to
monotherapy in metabolic abnormalities [7,8].

Owing to the complexity of the pathogenesis of glycolipid meta-
bolism disorder, its underlying molecular mechanisms are so far
unknown. A better understanding of the pathophysiology of glycol-
ipid metabolism disorder using multi-omics will improve preven-
tive, diagnostic, therapeutic and reparative strategies. In the pages
that follow, we consider the progress made in genomics, transcrip-
tomics, proteomics, metabolomics and gut microbiomics, and dis-
cuss how bringing data from these techniques together through
integromics and systems biology. Multi-omics research sheds new
light on revealing the potential pathogenic targets, pathophysiolog-
ical mechanisms and biomarkers of therapeutic intervention for the
occurrence anddevelopment of glycolipidmetabolismdisorder, and
offers a fresh perspective on controlling the progression of it.
2. Pathophysiology of glycolipid metabolism disorder

Glycolipid metabolism disorder is a complex and systemic dis-
ease caused by multiple metabolic organ dysregulations. The
pathogenesis of these conditions involves interactions among core
pathological mechanisms such as neuroendocrine axis dysfunction,
insulin resistance, oxidative stress, chronic inflammatory response,
and gut microbiota dysbiosis. The foregoing processes are impli-
cated in the occurrence and progression of these diseases.

The human body controls the release of neurotransmitters, hor-
mones, and cytokines through the nervous and endocrine systems
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to maintain glycolipid metabolism homeostasis. The hypothalamus
regulates energy metabolism by detecting signals from the periph-
eral tissues [9]. Tanycytes and 5-HT neurons are key cells and lep-
tin are important signaling molecules regulating glycolipid
metabolism along the neuroendocrine axis [10–13]. Insulin resis-
tance (IR) is characterized by declines in glucose uptake and insu-
lin utilization efficiency and is a common symptom of glycolipid
metabolism disorder. It occurs primarily in muscle, fat, and liver
tissues [14]. The mechanism underlying the development of IR is
associate with impaired insulin signal transduction, including
accumulation of specific lipid mediators, abnormal features of
mitochondrial function, and increases in stress-activated protein
c-Jun-N-terminal-kinase (JNK) and inflammatory pathways
[15,16]. Oxidative stress is a central factor in the initiation and pro-
gression of glycolipid metabolism disorder and is characterized by
the augmented generation or diminished elimination of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) because
of an imbalance between pro-oxidant and antioxidant levels. Glu-
cotoxicity and lipotoxicity promote IR through oxidative stress by
damaging pancreatic islet cells, adipocytes, and their signaling
pathways [17]. Chronic low-grade inflammation is a critical feature
of glycolipid metabolism disorder and is characterized by massive
infiltration of immunocytes including macrophages, natural killer
(NK) cells, mast cells, and others [18,19]. In chronic metabolic
inflammation, inflammatory factors and cells regulate glycolipid
metabolism in the liver, fat, muscle, pancreas, and other tissues
and organs through an extensively interwoven immune network,
thereby inducing IR and glycolipid metabolism disorder. Several
recent studies showed that gut microbiota or the ‘second genome’
are implicated in the occurrence and development of multiple
metabolic diseases. Gut microbiota can modulate nutrient metabo-
lism upon dietary intake and produce many metabolites to interact
with the host in a variety of ways, including regulating glucose and
lipid metabolism pathways, influencing the differentiation and
function of immune cells, affecting insulin sensitivity and so on
[20]. In-depth research on the interactions between the gut micro-
biota and the host has revealed that the former execute vital func-
tions in metabolic regulation via the gut-liver-brain axis [21].

3. Biomarkers of glycolipid metabolism disorder in multi-omics
research

Biomarkers can be powerful tools in the management of dis-
eases. For glycolipid metabolism disorder, plasma glucose (mea-
sured after fasting or a glucose tolerance test), glycylated
hemoglobin, and plasma lipids are regarded as clinical biomarkers
for diagnostic and screening. The future of medicine lies in individ-
ualized therapies, prospective tracking of individual health indica-
tors, and critical attention on preventive measures [22]. Based on
this, individualized and multidimensional biomarkers are urgently
needed to reveal the prediction, diagnosis and prognostic features
of glycolipid metabolism disorder, and provide more valuable ref-
erence information for drug development, clinical diagnosis and
personalized treatment. Recently, with the development of omics
technologies and bioinformatics, multi-omics research on
glycolipid metabolism disorder has gradually increased, which is
conducive to understanding the molecular mechanism of disease
occurrence and evaluating biomarkers, promoting the process of
precision medicine for glycolipid metabolism disorder
(Supplementary Table 1).

3.1. Genomics

Genomics is a subdiscipline of genetics that characterizes and
quantifies organism’s complete genome and studies the
relationship between genes and their effects on organisms [23].
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The etiology of glycolipid metabolism disorder is known to have
a considerable genetic component. Over the past two decades, link-
age analyses, candidate gene approaches, and large-scale genome-
wide association study (GWAS) have successfully identified more
than 100 genes that confer susceptibility to glycolipid metabolism
disorder. Genomics explains the key genetic variants associated
with the risk of glycolipid metabolism disorder, provides guidance
for future studies, and helps formulate efficacious preventive and
therapeutic measures for disease. Pharmacogenomics optimizes
treatment schedules, improves the effectiveness of personalized
therapy, and minimizes potential side effects during clinical
treatment.

3.1.1. Genes associated with susceptibility to glycolipid metabolism
disorder

Genes determine individual susceptibility to diseases. Most
genes determining susceptibility to glycolipid metabolism disorder
regulate insulin secretion and sensitivity and pancreatic b cell
function. These include TCF7L2 (transcription factor 7-like 2), PPARs
(peroxisome proliferator-activated receptors), KCNJ11 (potassium
inwardly rectifying channel subfamily J member 11), SLC30A8 (so-
lute carrier family 30 member 8), FTO (fat mass and obesity-
associated), and so on [24] (Fig. 1a). TCF7L2 is strongly associated
with T2DM [25], is a major transcription factor (TF) in the canoni-
cal Wnt signaling pathway, regulates intrapancreatic glucose
homeostasis, and is essential for glucose-stimulated insulin secre-
tion (GSIS) maintenance and pancreatic b cell survival [26]. In
2006, Grant et al. reported that variation in TCF7L2 expression
was closely associated with T2DM risk in a case-control study on
Caucasians in Iceland, Denmark, and the United States [27]. The
association of T2DM with single-nucleotide polymorphisms (SNPs)
in TCF7L2 has raised global concern and was confirmed in ethni-
cally diverse populations [28–31]. PPARc (peroxisome
proliferative-activated receptor, gamma) is a member of the
nuclear hormone receptor superfamily of TFs and the first screened
candidate gene associated with glycolipid metabolism disorder
[32]. PPAR activation regulates gene networks controlling various
homeostatic processes involving inflammation, adipogenesis, lipid
and glucose metabolism, and insulin resistance [33]. SLC30A8 is
correlated with pancreatic function and is predominantly
expressed in that organ. It encodes the endocrine pancreas-
restricted zinc transporter ZnT8. Abnormal SLC30A8 and ZnT8 func-
tion affect insulin biosynthesis, storage, and secretion and hinder
normal glucose metabolism. In 2007, SLC30A8 was identified as a
novel T2DM susceptibility gene [34]. Subsequent studies verified
the association between SLC30A8 SNPs and T2DM in different racial
and ethnic groups [35–37]. FTO is the first candidate obesity gene
to be recognized in the general population. It is highly expressed
in hypothalamic nuclei and homeostatically controls the energy
balance. Variations in FTO are associated with the risks of obesity
and T2DM [38–41]. Kir6.2 and SUR1 (sulfonylurea receptor 1) form
the pancreatic b cell KATP channel. SUR1 is the site of sulfonylurea
binding while Kir6.2 is an ion channel encoded by ABCC8 (ATP
binding cassette subfamily C member 8) and KCNJ11 [42,43]. Vari-
ations in KCNJ11 and SUR1 impede KATP channel function, impair
insulin secretion, and increased susceptibility to T2DM [44,45].

As deep sequencing technologies continued to evolve, the
focus of glycolipid metabolism disorder research gradually
shifted from common genetic variations (GWAS (genome-wide
association studies) era) to rare genetic variations (post-GWAS
era). To date, the exact number of genes determining glycolipid
metabolism disorder susceptibility and the precise mechanisms
of their interactions have not been established. However, the
results of recent GWAS have been encouraging. Xue et al con-
duct a meta-analysis of GWAS with 16 million genetic variants
and identify 139 common and 4 rare variants associated with



Fig. 1. Genetic variants associated with glycolipid metabolic disorders. a. Overview of canonical signaling mechanisms involved in beta-cell glucose sensing and responses to
secretory potentiators or inhibitors. TCF7L2 (Transcription factor 7-like 2) has a role in the canonical Wnt (Wingless-type MMTV integration site) pathway. SLC30A8 (Solute-
linked carrier 30, member 8) encodes ZnT8 (Zinc transporter 8) which regulates the influx of zinc into intracellular vesicles of insulin is presumed to be critical for insulin
storage and secretion. KCNJ11 (K+ inwardly rectifying channel, subfamily J, member 11) and SUR1 (Sulfonylurea receptor 1) encode KATP channel together, thus indirectly
sensing blood glucose concentrations and controlling insulin release. PPARs (Peroxisome proliferator-activated receptors) in glycolipid metabolism disorder. BAT, brown
adipose tissue; FFA, free fatty acids; ROS, reactive oxygen species; T2DM, type 2 diabetes mellitus; TG, triglycerides; WAT, white adipose tissue. b. Pharmacogenomics and its
targets in glycolipid metabolic disorders. MATE1, multidrug and toxin extrusion 1; OCT, organic cation transporters; SLC47A1, solute carrier family 47 member 1; SUR1,
Sulfonylurea receptor 1; KCNJ11, K+ inwardly rectifying channel, subfamily J, member 11; ABCC8, ATP-binding cassette, subfamily C, member 8; GLP-1, glucagon-like peptide-
1; GLP-1R, glucagon-like peptide-1 receptor; DPP-4, dipeptidyl peptidase-4; SGLT2, sodium-glucose cotransporter 2; MGT, magnesium transporter; SLC5A2, solute carrier
family 5 member 2; PNPLA3, patatin-like phospholipase domain-containing protein 3;MDR1, multidrug resistance gene 1; CYP450, cytochrome P450; HMG-CoA, 3-hydroxy-3-
methylglutaryl coenzyme A.
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T2DM, 42 of which (39 common and 3 rare variants) are inde-
pendent of the known variants [46]. Fuchsberger et al. reported
that 126 variants in four genes (TCF7L2, ADCY5, CCND2, EML4)
were significantly associated with the risk of T2DM [47]. In a
large-scale genome-wide association study, Spracklen et al. iden-
tified new genetic links correlated with T2DM in 433,540 East
5938
Asians. They identified 301 distinct association signals at 183
loci, and 61 loci among that are newly implicated in predisposi-
tion to T2DM [48]. Locke et al conduct a genome-wide associa-
tion study and Metabochip meta-analysis of body mass index
(BMI) in up to 339,224 individuals. This analysis identifies 97
BMI-associated loci, 56 of which are novel [49].



X. Fang, R. Miao, J. Wei et al. Computational and Structural Biotechnology Journal 20 (2022) 5935–5951
It is well known that glycolipid metabolism disorder are poly-
genic disorders, but even combining with exons and whole-
genome sequencing data, genetic variants might explain only
about 10 % of the phenotypic variability in patients with glycolipid
metabolism disorder [50]. Environmental factors such as lifestyle
modification, nutritional imbalance and behaviour change might
be more critical in the development of glycolipid metabolism dis-
order. Aging and genetic variation are both important contributors
to the epigenetic variability seen in individuals affected by obesity
or T2DM. Furthermore, the in utero environment and external fac-
tors such as physical activity and availability of nutrients affect the
epigenome [51]. Consequently, further exploration of epigenetic
factors and their mechanisms of glycolipid metabolism disorder
will bring new ideas and opportunities for the prevention and
treatment of glycolipid metabolism disorder.
3.1.2. Pharmacogenomics of glycolipid metabolism disorder
Metformin is prescribed as a first-line therapy for T2DM, as it is

low-cost, has high efficacy, and is unlikely to induce hypoglycemia
or other adverse reactions. When metformin monotherapy fails to
provide satisfactory efficacy or provokes adverse effects, other
hypoglycemic agents can be combined with metformin or substi-
tute for it altogether. The latest American Diabetes Association/
European Association for the Study of Diabetes (ADA/EASD) con-
sensus reports indicate that sulfonylureas, thiazolidinediones,
dipeptidyl peptidase 4 (DPP-4) and sodium-glucose cotransporter
2 (SGLT2) inhibitors, and glucagon-like peptide-1 (GLP-1) receptor
agonists are reasonable as second-line treatment options [52].
Metformin is a hydrophilic organic cationic drug and it depends
upon organic cation transporters (OCTs) to enter hepatocytes and
renal epithelial cells where it is excreted through bile and urine,
respectively, via multidrug and toxin extrusion protein 1 (MATE1).
SLC47A1 (solute carrier family 47 member 1) encodes MATE1 and
plays a key role in metformin transport and excretion [53]. Most
OCT polymorphisms except MATE1 affect metformin pharmacoki-
netics and pharmacodynamics [54]. Sulfonylureas are insulin sec-
retagogues and comprise an important class of oral hypoglycemic
agents. They stimulate pancreatic b cells to release insulin by bind-
ing high-affinity plasma membrane receptors conjugated with KATP

channels. The latter are regulated by SUR1, KCNJ11, and ABCC8 and
their polymorphisms are associated with sulfonylurea efficacy
[55–57]. GLP-1 receptor agonists exert their hypoglycemic effect
by binding glucagon-like peptide 1 receptor (GLP-1R). GLP-1R poly-
morphisms are correlated with GLP-1 receptor agonists efficacy
[58,59]. DPP-4 inhibitors upregulate GLP-1 by retarding DPP-4
inactivation, activate intestinal GLP-1R, promote insulin release,
and reduce glycemia [60]. Hence, DPP-4 inhibitor efficacy may be
influenced by GLP-1R and DPP-4 polymorphisms [61,62]. SGLT2
inhibitors constitute a novel class of antidiabetic drugs that lower
plasma glucose by inhibiting renal glucose reabsorption and pro-
moting urinary glucose excretion. Genes related to the clinical effi-
cacy of SGLT2 inhibitors include MGT (magnesium transporter),
SLC5A2 (solute carrier family 5 member 2), PNPLA3 (patatin-like
phospholipase domain-containing protein 3), and others [63–65].

Polymorphisms associated with statins have become the focus
of pharmacogenomics studies on lipid-lowering drugs. Candidate
genes associated with the differential statin efficacy are divided
into two main categories. Members of the first class such as
CYP450 (cytochrome P450) and MDR1 (multidrug resistance muta-
tion 1) regulate pharmacokinetics and encode drug-metabolizing
enzymes and drug transport [66]. Members of the second class
such as apolipoprotein and HMG-CoA (hydroxymethylglutaryl-coe
nzyme A) regulate pharmacodynamics and encode drug targets
and lipid metabolism [67–69]. (Fig. 1b).
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3.2. Transcriptomics

Transcriptomics is a discipline that studies the gene transcrip-
tion and transcriptional regulation in cells at the overall level,
which contributes to understand the gene expression profiles of
diseases, and then reveals the metabolic network and regulatory
mechanisms of life course from the transcriptional level. As is well
known, there are some non-protein-coding genes within the
organism, and the transcription products of these genes are known
as non-coding RNAs (ncRNAs), mainly including long non-coding
RNAs (lncRNAs), micro RNAs (miRNAs), circular RNAs (circRNAs).
Non-coding RNAs plays a substantial regulatory role in the occur-
rence and development of glycolipid metabolism disorder, and
could be useful as early molecule marker for the diagnosis of gly-
colipid metabolism disorder (Fig. 2).

3.2.1. LncRNAs
LncRNAs account for more than 80 % of all non-coding RNAs,

and its transcripts are widely involved with every aspect of cellular
biological function. They regulate related protein-coding genes in
numerous ways, and complement DNA bases to form stable
triple-helix complexes, thus impairing the expression of target
genes [70]. Altered expression of lncRNAs has been associated with
poor glycemic control, insulin resistance, accelerated cellular
senescence, and inflammation in diabetes patients [71]. Morán
et al comprehensively reported the lncRNA expression profiles in
human pancreatic b-cells, uncovered a high-confidence set of
1128 human islet-cell genes, and showed that they are an integral
component of the b-cells differentiation and maturation program
[72]. Several researchers have found that downregulation of
lncRNA TUG1 (taurine upregulated gene 1) expression affected
apoptosis and insulin secretion in pancreatic b-cells in vitro and
in vivo, resulting in the occurrence of diabetes [73]. More recent
research has revealed that the downregulation of the lncRNA
GAS5 (growth arrest-specific transcript 5) is significantly associ-
ated with the occurrence and development of diabetes. Its down-
regulation can affect cell cycle and insulin secretion in pancreatic
b-cells [74,75]. Alvarez-Dominguez et al established the tran-
scripome of mouse adipose tissues by RNA sequencing, identified
1500 lncRNAs, and located lnc-BATE1 (brown adipose tissue
enriched long non-coding RNA 1) is the key lncRNA regulating
brown fat, providing a new target for the treatment of obesity
[76]. Recent study determined that a new lncRNA, lncRNA suppres-
sor of hepatic gluconeogenesis and lipogenesis (lncRNA SHGL), is a
novel insulin-independent suppressor of hepatic gluconeogenesis
and lipogenesis [77].

3.2.2. MiRNAs
MiRNAs are small non-coding RNAs composed of 19–22 nucleo-

tides that modulate gene expression by binding to the 30 untrans-
lated region of specific messenger RNAs (mRNAs) [78]. Impaired
insulin secretion from the pancreatic b-cells is central in the patho-
genesis of T2DM, and miRNAs are fundamental regulatory factors
in this process [79]. The most abundant miRNA in the islet, miR-
375, was also the first miRNA detected in pancreatic islet and
may constitute a novel pharmacological target for the treatment
of diabetes as a regulator of insulin secretion [80]. The miR-7 and
the miR-200 family are other examples of islet abundant miRNAs.
b-cell-specific overexpression of miR-7a in mice results in reduced
insulin secretion [81]. Overexpression of miR-200 in mice is suffi-
cient to induce beta cell apoptosis and lethal T2DM in mice [82].
High expression of miR-29 in liver, fat, and muscle tissue may trig-
ger insulin resistance [83]. A growing body of evidence suggests
that obesity-related and adipose tissue-derived circulating miRNAs
are promising as novel therapeutic targets for obesity and related
diseases [84]. The research group of Prof. Hu revealed that miRNAs



Fig. 2. Key RNAs affecting beta-cell mass, inflammation or lipid metabolism. lncRNA TUG1, taurine upregulated gene 1; lncRNA GAS5, growth arrest-specific transcript 5; lnc-
BATE1, brown adipose tissue enriched long non-coding RNA 1; lncRNA SHGL, suppressor of hepatic gluconeogenesis and lipogenesis; CDR1as, hsa_circ_0001946, ciRS-7.
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of the miR-17 � 92 family inhibit the inflammatory response of
macrophages by maintaining the expression of IL-10, thus main-
taining the homeostasis of adipose tissue macrophages and
inhibiting obesity [85]. Several studies have shown that miR-802
is increased in the pancreatic islets of obese mouse models and
inducible transgenic overexpression of miR-802 in mice causes
impaired insulin transcription and secretion [86].
3.2.3. CircRNAs
Circular RNAs are covalently closed transcripts mostly gener-

ated from precursor-mRNA by a non-canonical event called back-
splicing. They are highly stable, evolutionarily conserved, and
widely distributed in eukaryotes [87]. Recently, mounting evidence
suggests that the misregulation of circRNAs is among the first
alterations in various metabolic disorders including obesity and
diabetes mellitus (DM). So far, the best known endogenous cir-
cRNA related to diabetes is CDR1as (also termed as hsa_-
circ_0001946, ciRS-7) which can promotes islet b-cells
proliferation and insulin secretion in diabetes as a powerful miR-
7 inhibitor [88,89]. Zhao et al found has_circ_0054633 differen-
tially expressed in peripheral blood of patients with T2DM and
healthy control [90]. Another study revealed that has_-
circ_0054633 can regulates high glucose-induced human vascular
endothelial cell dysfunction [91]. Hence, hsa_circ_0054633 may
be involved in the pathogenesis of diabetes and could be used as
a biomarker for the diagnosis of T2DM. The past two years have
witnessed a significant increase in the number of studies determin-
ing the function of circRNAs in human adipogenesis and obesity
[92]. Researchers analyzed the transcriptome of human and mouse
visceral and subcutaneous fat by RNA sequencing methods, found
that the silencing of circArhgap5-2 in vivo resulted in inhibition
of lipid droplet accumulation and downregulation of adipogenic
markers [93]. However, the mechanism by which circArhgap5-2
modulates adipogenesis remains to be determined. Zhu’s experi-
ments suggest that knockdown of hsa_circH19 promotes hADCSs
(human adipose-derived stem cells) adipogenic differentiation
via targeting of PTBP1 (polypyrimidine tract-binding protein 1),
5940
high levels of hsa_circH19 is an independent risk factor for the
metabolic syndrome [94].
3.3. Proteomics

The essence of proteomics is to study proteins on a large scale,
including protein expression, post-translational modifications, and
protein–protein interactions [95]. The study of proteins, as the final
product of genetic transcription and posttranscriptional modifica-
tions, has also played a pivotal role in the understanding of disease.
At present, the proteomics research of glycolipid metabolism dis-
order mainly use two-dimensional gel electrophoresis (2-DGE),
high performance liquid chromatography (HPLC), time-of-flight
mass spectrum (TOF-MS) and other methods to explore the
biomarkers for diagnosis and the pathways involved in disease
pathogenesis (Fig. 3).

Shono et al. revealed the possible pathogenesis of T2DM by pro-
teomics methods, which was specifically caused by alterations of
protein secondary structure domains and post-translational modi-
fications after the body received multiple pathogenic signals [96]. C
reactive protein and a2-macroglobulin are clinically sensitive
biomarkers of T2DM. Riaz et al. compared changes in serum differ-
ential protein levels in diabetic patients and healthy populations.
Levels of C reactive protein (CRP) was found to increased by
872 % in the diabetic patients as compared to the controls, which
supporting for the viewpoint that the occurrence of diabetes is
related to inflammation [97]. Takada et al. found that serummono-
meric a2-macroglobulin is highly expressed in many diabetic sub-
jects by mass spectrometry analysis, and it might become an
important biomarker for diagnosis of T2DM [98]. A Swedish study
identified cathepsin D and confirmed six proteins (leptin, renin,
interleukin-1 receptor antagonist [IL-1ra], hepatocyte growth fac-
tor, fatty acid-binding protein 4, and tissue plasminogen activator
[t-PA]) as IR biomarkers [99]. Huth et al. identified proteins related
to the prediction and early diagnosis of T2DM [100]. Mannose-
binding lectin-associated serine protease 1 (MASP) levels were
positively associated with both incident type 2 diabetes and predi-



Fig. 3. General scheme of current proteomic, for clinical metabolic research. Human body fluids (i.e. serum, urine and blood) have to be properly stored and prepared with
optimised protocols. Subsequently, the proteins should be purifified and/or isolated to get digested peptides. The adequate 2-DE (two-dimensional gel electrophoresis), HPLC
(high-performance liquid chromatography) or TOF-MS (time-of-flight mass spectrometer) based strategy is applied, and once we get the data (potential biomarkers),
validation assays (i.e. ELISA and/or western blotting) can be carried out choosing specifific antibodies to identify real protein-biomarkers.
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abetes. Adiponectin was inversely associated with incident type 2
diabetes. MASP, adiponectin, apolipoprotein A-IV, apolipoprotein
C-II, C reactive protein were associated with individual continuous
outcomes. A recent example of MS (Mass Spectrometry) pro-
teomics analysis, paired with 2-dimensional gel electrophoresis,
showed higher levels of Alpha-1-antichymotrypsin, Alpha-1-
antitrypsin, apolipoprotein A-I, haptoglobin, retinol-binding pro-
tein 4, transthyretin, and zinc-alpha-2-glycoprotein in those with
abdominal adiposity or insulin resistance compared with normal
individuals [101].

Benabdelkamel et al. compared the protein expression of
mature adipocytes within subcutaneous adipose tissues and found
that, compared to the healthy individuals, a total of 23 proteins
specifically expressed were identified in obese subjects, which
are mainly involved in glucose and lipid metabolism, energy regu-
lation, cytoskeleton structure and redox reactions [102]. Bae et al.
proposed that individuals who are obese harbor a large number of
differential proteins in insulin-sensitive tissues such as liver, skele-
tal muscle and adipose tissue. Of these, leukocyte common
antigen-related phosphatase, PTP-a (protein tyrosine phosphatase
a), PTP-1B (protein tyrosine phosphatase 1B) are highly expressed.
Follow-up studies demonstrated that these enzymes participate in
insulin signaling [103]. It has been established that cofilin-1 (CFL1)
has an inhibitory effect on brown adipocyte differentiation. The
overexpression of CFL1 inhibited the brown fat deposition and
repressed the brown marker genes UCP1, PRDM16, PGC-1a and
PPARc [104].

3.4. Metabolomics

Metabolomics often utilizes approaches based on nuclear mag-
netic resonance (NMR) and/or various MS techniques to analyse
the metabolites in biological samples, including low-molecular-
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weight compounds such as amino acids, organic acids, lipids,
nucleotides, and sugars [105]. A review of recent research revealed
that many studies found correlations between glycolipid metabo-
lism disorder and metabolomics characteristics [106]. Thus, meta-
bolomics research can be used to describe abnormal metabolism
during the progression of glycolipid metabolism disorder, provide
insight into disease mechanisms, and explore disease-associated
biomarkers to assess the severity of disease and potential meta-
bolic pathways (Fig. 4).

3.4.1. Amino acids metabolomics of glycolipid metabolism disorder
In recent years, numerous studies found that branched chain

amino acids (BCAAs) are potential biomarkers of glycolipid meta-
bolism disorder, including valine, leucine and isoleucine. Newgard
et al confirmed that BCAAs in particular were higher in individuals
that were obese in a cross-sectional metabolomics analysis of
obese and lean individuals [107]. Guasch-Ferré et al meta-
analyzed results from eight prospective studies that reported risk
estimates for metabolites and T2DM, including 8,000 individuals
of whom 1,940 had T2DM [108]. The results showed that BCAAs
was positively associated with the risk of T2DM. Growing experi-
mental evidence have posited potential mechanism of glycolipid
metabolism disorder caused by up-regulation of BCAAs. BCAAs
and their corresponding branched chain keto acids (BCKAs) can
activate mTOR signaling, induce oxidative stress, cause mitochon-
drial dysfunction, and potentially contributing to the development
of further insulin resistance [109,110]. Analyses in a smaller cohort
utilizing Mendelian randomization suggested that higher BCAAs
levels do not have a causal effect on insulin resistance while
increased insulin resistance drives higher circulating fasting BCAAs
levels [111]. This findings point to elevated BCAAs as a down-
stream effect of adiposity and insulin resistance. Several studies
have also found positive associations of aromatic amino acids,



Fig. 4. Schematic representation of the metabolic pathways in in the events of glycolipid metabolism disorder. Purple represents fatty acids metabolism; Flesh color
represents choline metabolism; bisque represents phospholipids metabolism; green represents ketone metabolism; blue represents carbohydrate metabolism; yellow
represents the tricarboxylic acid (TCA) cycle; pink, gray, and brown represent amino acid metabolism.
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including tyrosine and phenylalanine, with future development of
T2DM [112], while glycine and glutamine were negatively corre-
lated with the development of T2DM [113,114]. Higher levels of
2-aminoadipic acid (2-AAA), a lysine degradation product, were
also found to be associated with increased risk for incident dia-
betes mellitus [115]. 2-AAA is associated with adipogenesis and
insulin resistance, and can serve as a diabetes risk marker.

3.4.2. Lipids metabolomics of glycolipid metabolism disorder
Blood levels of free fatty acids (FFAs) rise slowly with elevated

body mass, which is considered as an important feature of
obesity-related metabolic diseases. Elevated clinical measures of
lipids, specifically of bulk triglycerides, are considered a traditional
risk factor for T2DM. The intracellular accumulation of fatty acid
(FA) oxidation products such as diacylglycerols, triacylglycerols,
and ceramides is linked with insulin resistance [116]. A large
population-based study showed that fasting serum levels of glyc-
erol, FFAs, monounsaturated FAs, saturated FAs, and n-7 and n-9
FAs are biomarkers for an increased risk of development of hyper-
glycemia and T2DM [117]. Lu et al. conducted metabolomics anal-
ysis of serum in the Chinese population and found that partial free
fatty acid (palmitic acid, stearic acid, oleic acid and linoleic acid)
and some ketone bodies (acetone and acetoacetic acid) in T2DM
patients were significantly higher than those in healthy controls
[118]. Ketone bodies are products of fat catabolism that are used
as alternative substrates to glucose as sources of energy when car-
bohydrate intake is low and there is a surplus of circulating FFAs. It
is considered to be a key metabolites in metabolism disruption.
Several reports have shown that total ketone bodies were mildly
elevated in patients with T2DM and were associated with fasting
FFAs and inversely associated with triglycerides and insulin resis-
tance [119]. Phospholipids are critical components of the cell lipid
bilayer. Recent research has established that
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lysophosphatidylcholines (LPCs) and lysophosphatidylethanolami-
nes (LPEs), phosphatidylcholine-plasmalogens (PC-PLs), sphin-
gomyelins (SMs), and cholesterol esters (CEs) were inversely
associated with risk of T2DM, while triacylglycerols (TAGs), diacyl-
glycerols (DAGs), and phosphatidylethanolamines (PEs) were pos-
itively associated with T2DM risk [120].

3.4.3. Carbohydrate metabolomics of glycolipid metabolism disorder
Elevated glucose level is an important metabolic feature of gly-

colipid metabolism disorder. Hexose sugars are the most fre-
quently analyzed carbohydrate in metabolomics studies of
incident diabetes mellitus. A prospective study revealed that hex-
ose sugars was positively correlated with T2DM, whereas a species
of mannitol and several deoxyhexose sugars were found to be
inversely associated with diabetes mellitus risk [121]. Mack et al.
conducted oral glucose tolerance test (OGTT) on healthy control
populations, prediabetic populations and diabetic participants,
and found that maltose, trehalose, fructose and mannose in plasma
of prediabetic populations and diabetic participants were higher
than those in healthy populations [122]. At the onset of glycolysis,
glucose is converted to pyruvate inside the cell. Lu et al. found that
serum pyruvate concentration was significantly higher in T2DM
patients compared with normal controls, indicating increased gly-
colysis in T2DM patients [123]. A recent study based on 1H NMR
found elevated levels of pyruvate, lactate, and citric acid in T2DM
patients, as well as elevated serum levels of tricarboxylic acid
(TCA) cycle intermediates, such as succinic acid, creatine, and cre-
atinine, compared with healthy controls [124].

3.4.4. The regulatory role of metabolites of gut microbiota in glycolipid
metabolism disorder

Gut microbiota is involved in the catabolism and anabolism of
nutritional elements in daily foods. About 10 % of the circulating
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metabolites in the human body come from bacteria and participate
in metabolic regulation in human [125]. The metabolic products of
gut microbiota, such as short-chain fatty acids (SCFAs), BCAAs,
trimethylamine oxide (TMAO), tryptophan and indole derivatives,
are intimately correlated with the pathogenesis of glycolipid meta-
bolism disorder. In the proximal colon, gut microbiota ferment car-
bohydrates to produce SCFAs (such as acetate, propionate, and
butyrate). Numerous in vitro and in vivo studies revealed that
SCFAs, as beneficial microbial metabolites for prevention and treat-
ment of glycolipid metabolism disorder, participate in the mainte-
nance of intestinal mucosa integrity, improve glycolipid
metabolism, control energy expenditure and regulate the immune
system and inflammatory responses [126,127]. In contrast, in the
distal colorectum, protein hydrolysis and fermentation can yield
various harmful metabolites such as BCAAs (valine, isoleucine
and leucine), phenols, and ammonia. BCAAs are involved in various
bioprocess such as protein metabolism, gene expression, insulin
resistance and proliferation of hepatocytes [128]. Gut microbiota
also can directly modulate bile acid (BA) metabolism through the
enterohepatic FXR-FGF15-FGFR4 axis. BA regulates cholesterol
and triglyceride metabolism and maintains glucose and energy
homeostasis [129,130]. Additionally, the gut microbiota can meta-
bolise choline and L-carnitine from dietary sources (eg, red meat,
eggs and fish) to produce trimethylamine (TMA), and then convert
into TMAO [131]. In humans, the level of TMAO increased in
patients with diabetes or at risk of diabetes and in obesity [131–
133]. Tryptophan is an essential aromatic amino acid acquired
through common diet sources, including oats, poultry, fish, milk
and cheese. In addition to kynurenine and serotonin, tryptophan
can also be directly metabolized into indole and its derivatives
by gut microbiota, some of which are available as aromatic hydro-
carbon receptor (AhR) ligands [134]. It has previously been
observed that metabolic disorders are characterised by a reduced
capacity of the microbiota to metabolise tryptophan into AhR ago-
nists [135]. It was recently shown that IMP (imidazole propionate),
a metabolite produced by histidine utilisation of gut microbiota,
was enhanced in T2DM and associated with insulin resistance
[136].

3.4.5. Other metabolites
1,5-anhydroglucitol (1,5-AG) is the major polyol in vivo, which

structure is similar to glucose. Most notably, 1,5-AG level is reflec-
tive of short-term glucose status, postprandial hyperglycemia, and
glycemic variability which are not captured by HbA1c assay [137].
Studies found evidence that a single-nucleotide polymorphism in
the CYP7A1 coding region associated with deoxycholic acid levels
that was also associated with T2DM in published GWAS meta-
analyses, and the metabolism of bile acids and phospholipids
shares some common genetic origin with T2DM [138]. Ferrannini
et al identified a-hydroxybutyrate (a-HB) and linoleoyl-glycero
phosphocholine (L-GPC) as joint markers of IR and glucose intoler-
ance [139]. a-HB is an organic acid positioned at an interesting
crossroad of intermediary metabolism—amino acid catabolism
and glutathione synthesis—and upstream to the TCA cycle. Prior
studies that have noted that a-HB is derived from a-ketobutyrate
and has the potential to identify IR and risk of impairment of gly-
cemic control and conversion of prediabetes to an evident diabetic
state [140,141]. Metabolomics and lipidomics delineation by liq-
uid/gas chromatography mass spectrometry was conducted on
115 middle-aged Dutch individuals (50 with MetS; 65 controls)
in the Leiden Longevity Study [142]. They found that 9 metabolites
were negatively correlated and 26metabolites (mostly acyl carniti-
nes, amino acids and keto acids) were positively correlated with
the metabolic syndrome score. In addition, the metabolic syn-
drome (score) was associated with multiple individual metabolites
(e.g., valeryl carnitine, pyruvic acid, lactic acid, alanine) and lipids
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in the univariate analyses [143]. Mainly, these molecules were
intertwined with the metabolism of glucose, amino acid, and lipid.
3.5. Gut microbiomics

Intestinal flora is the microbiota colonized the gut. Its composi-
tion and function can be influenced by many factors, such as inher-
itance, living circumstances, lifestyle, dietary habits and drugs, and
thus may impact the glucose and lipid metabolism in the host
through inflammation and immune responses and metabolic path-
ways [144]. Genomics technologies, such as shotgun metagenomic
sequencing and high-throughput sequencing of 16S rRNA gene, are
by far commonly employed techniques of microbiome sequencing
to determine the diversity, composition, structure distribution and
function of gut microbiota. It has been reported that the gut micro-
biota of patients with glycolipid metabolism disorder is comprised
primarily of opportunistic pathogens, accompanied by decreasing
in beneficial microbes (Fig. 5).

The gut microbiota plays a predominant role in host nutrient
metabolism, xenobiotic and drug metabolism, maintenance of
structural integrity of the gut mucosal barrier, immunomodula-
tion, and protection against pathogens [145]. Perturbations in gut
microbiota can have negative health consequences. Particularly,
the gut microbiota has advanced as an important contributor to
the development of glycolipid metabolism disorder. In diabetic
humans, there is a lack of uniformity in gut microbiota profiles. A
number of researchers have demonstrated that the relative abun-
dances of the genus Lactobacillus is positively correlated with
T2DM [146,147]. Notably, the association of several species of Lac-
tobacillus with T2DM is species-specific. For example, in T2DM
patients, Lactobacillus acidophilus and Lactobacillus gasseri are
decreased, while Lactobacillus xylosus is increased [148,149]. These
results suggested that this bacterial genus’ influence on host meta-
bolism present highly diversity. Studies in different population
have also shown that diabetic gut microbiota have lower concen-
trations of Roseburia intestinalis and Faecalibacterium prausnitzii
(both butyrate-producing bacteria), and higher levels of Streptococ-
cus mutans and members of Clostridiales [150].

In recent years, the influence of gut microbiota as a potential
mechanism driving factors of obesity and its related comorbidity
has become the focus of attention. Up to now, most studies dis-
played that obesity leads to low richness and diversity of gut
microbiota [151–153]. Turnbaugh et al. demonstrated for the first
time that transferring the gut microbiota from genetic obesity
model (ob/ob mice) to germ-free mice by fecal microbiota trans-
plantation (FMT) resulted in body fat accumulation and body
weight gain in the latter [154]. In addition, comparisons of the dis-
tal gut microbiota of genetically obese mice and their lean litter-
mates, as well as those of obese and lean human volunteers
revealed that obesity is associated with changes in the relative
abundance of the two dominant bacterial divisions, the Bacteroide-
tes and the Firmicutes. Liu et al found that the abundance of Bac-
teroides thetaiotaomicron, a glutamate-fermenting commensal,
was markedly decreased in obese individuals [155]. Obesity was
associated with notable changes in microbiome composition, such
as Akkermansia, Faecalibacterium, Oscillibacter, and Alistipes, which
show a significant decrease [156].
4. Recent advances in joint multi-omics analyses of glycolipid
metabolism disorder

The initiation and progression of human diseases involve sev-
eral pathological processes at the genome, transcriptome, pro-
teome and metabolome levels. Single-omics data only reflect
changes at one disease level and have limited effectiveness at



Fig. 5. Schematic overview of functions attributed to gut microbiota. SCFA, short chain fatty acids; GPR41, G-protein coupled receptor 41; GPR43, G-protein coupled receptor
43; GPR119, G-protein coupled receptor 119; GLP1, Glucagon Like Protein 1; GLP2, Glucagon Like Protein 2; PYY, peptide YY; TMA, trimethylamine; TMAO, Trimethylamine-
N-oxide; FXR, farnesoid X receptor; Fgf15, fibroblast growth factor 15; BCCAs, branch Chain Amino Acids.
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screening disease targets. The comprehensive analysis of multi-
level omics data is a more integrative and accurate approach
towards individualized treatment, elucidation of the molecular
mechanisms of disease, early clinical diagnostics, prognostics,
and drug dosage and administration.

4.1. Transcriptomics and proteomics combination

Transcriptomics and proteomics combination simultaneously
measure overall RNA and protein status, clarify their roles in vari-
ous physiological processes, and reveal their mutual regulation and
association. Transcriptomics does not fully reflect all biological
characteristics while proteomics does not dynamically reflect gene
expression. However, integrating both analytical methods mutu-
ally overcomes these deficiencies. Using a combination of tran-
scriptomics and proteomics, Haythorne et al find significant
dysregulation of major metabolic pathways in islets of diabetic
bV59M mice. Multiple genes/proteins involved in glycolysis/gluco-
neogenesis are upregulated, whereas those involved in oxidative
phosphorylation and branched chain amino acid metabolism are
markedly downregulated. Indeed, aldolase B was the most upregu-
lated of all proteins (65-fold) and there was also a dramatic
increase in both mRNA (246-fold) and protein levels (40-fold) of
the fructose/glucose transporter SLC5A10 [157]. Losko et al.
revealed the role of MCPIP1 in adipogenesis and adipocyte metabo-
lism by proteomics and transcriptomics [158]. RNA-Seq analysis
followed by confirmatory Q-RT-PCR revealed that elevated MCPIP1
levels in 3T3-L1 adipocytes upregulated transcripts encoding pro-
teins involved in signal transmission and cellular remodeling and
downregulated transcripts of factors involved in metabolism.
These data are consistent with proteomic analysis, which showed
that MCPIP1 expressing adipocytes exhibit upregulation of pro-
teins involved in cellular organization and movement and
decreased levels of proteins involved in lipid and carbohydrate
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metabolism. Moreover, MCPIP1 adipocytes are characterized by
decreased level of insulin receptor, reduced insulin-induced Akt
phosphorylation, as well as depleted Glut4 level and impaired glu-
cose uptake.

4.2. Metabolomics and proteomics combination

Metabolomics and proteomics identify disease biomarkers. A
combination of proteomics and metabolomics may be used for
simultaneous mechanistic and phenotypic studies, systematically
describes the regulation of protein synthesis and metabolism, dis-
closes the upstream and downstream regulatory pathways of key
proteins andmetabolites, and helps explain the signaling pathways
andmechanisms associatedwith disease development. Researchers
have used proteomics and metabolomics to elucidate the mecha-
nism of food-induced cholesterol biosynthesis. They found that ele-
vated postprandial blood glucose and insulin levels activate
mTORC1 (mechanistic target of rapamycin complex 1), which stabi-
lizes HMGCR (3-hydroxy-methylglutaryl coenzyme A reductase),
phosphorylates USP20 (ubiquitin-specific peptidase 20), and upreg-
ulates cholesterol biosynthesis. Long-term high-sucrose, high-fat
diets induce USP20 phosphorylation, stabilize HMGCR, increases
serum cholesterol, and cause metabolic diseases. By contrast,
USP20 inhibition promotes HMGCR degradation, reduces lipid
biosynthesis, enhances succinate production, and promotes heat
generation. Therefore, USP20 inhibition is potentially an effective
therapeutic approach for metabolic disorders including hyperlipi-
demia, non-alcoholic fatty liver disease, obesity, and T2DM [159].
Wang et al. harvested small intestine tissue and collected serum
samples from T2DM model Chinese hamsters, analyzed them by
LC-MS/MS (liquid chromatography-tandem mass spectrometry)
proteomics and GC–MS/MS (gas chromatography-tandem mass
spectrometry) metabolomics, respectively, and performed joint
analyses of the differentially expressed proteins and metabolites.
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Annotation by bioinformatics analysis revealed that these differen-
tially abundant proteins in the small intestinewere commonly asso-
ciated with abnormal glucose and lipid metabolism, IR, impaired
insulin secretion, amino acid metabolism disorders, and inflamma-
tory dysregulation. Moreover, differentially abundant metabolites
in the serumwere amino acids andwere related to diabetic IR. Com-
bined analysis ofmetabolomics and proteomics revealed significant
changes in glutathione metabolism, biosynthesis of phenylalanine,
tyrosine and tryptophan, and arginine and proline metabolism in
T2DMmodel Chinese hamsters [160].

4.3. Gut microbiomics and metabolomics combination

Gut microbiota are vital to human metabolism. They provide
enzymes for various biochemical and metabolic pathways in the
host, participate in amino acid, bile acid, and carbohydrate metabo-
lism, and form co-metabolic relationships with the host. Metabolo-
mics is based on high-throughput analysis and bioinformatics
technology and investigates variations and trends in overall endoge-
nousmetabolism. It can detectmetabolites in gutmicrobiota, reflect
the changes ingutmicrobiota function that occurunder specific con-
ditions, intuitively examine the relationships among gutmicrobiota
and disease development and progression, and provide a research
basis for disease prevention and treatment. The analysis of gut
microbiota diversity based on shotgun metagenomic and 16S rRNA
gene sequencing plus metabolomics comprehensively explores the
relationships among gut microbiota disease occurrence, drugmeta-
bolism and pharmacodynamics, and gut microbiota structure and
function. Pedersen et al found that the serum metabolome of
insulin-resistant individuals is characterized by increased levels of
BCAAs, which correlate with a gut microbiome that has an enriched
biosynthetic potential for BCAAs and is deprived of genes encoding
bacterial inward transporters for these amino acids. Prevotella copri
and Bacteroides vulgatus are identified as the main species driving
the association between biosynthesis of BCAAs and IR [161]. A
metagenomic and targeted metabolomic analysis is conducted in
182 leanandabdominally obese individualswith andwithoutnewly
diagnosed T2DM. The abundance of Akkermansia muciniphila (A.
muciniphila) significantly decreases in lean individuals with T2DM
than without T2DM. Its abundance correlates inversely with serum
3b-chenodeoxycholic acid (b CDCA) levels and positively with insu-
lin secretion and fibroblast growth factor 15/19 (FGF15/19) concen-
trations [162].

4.4. Joint multi-omics analyses

To identify the early stages of T2DM, researchers obtained sam-
ples from 106 healthy and prediabetic individuals over
approximately-four years and profiled their transcriptomes, meta-
bolomes, cytokines, proteomes, and changes in their microbiomes
[163]. Regression analyses of steady-state plasma glucose (SSPG)
in insulin-resistant and insulin-sensitive subjects disclosed that IR
was associated with elevated inflammation. It was also associated
with altered lipid metabolism, and several long-chain polyunsatu-
rated fatty acids were positively correlated with SSPG. Researchers
also analyzed the relationships among the gut microbiota and host
metabolites. In insulin-sensitive but not insulin-resistant subjects,
Barnesiella spp.were positively correlatedwith IL-1b and Faecalibac-
terium spp. were negatively correlated with TNF-a. (tumor necrosis
factor alpha). Butyricimonas spp. were negatively correlated with
four lipids in insulin-resistant subjects.Multi-omics profile analyses
revealed molecules that were unique to each individual and differ-
ent from the cohort mean. One subject had abnormal levels of vari-
ous metabolites and cytokines relative to the cohort average. Ten
months after the final medical visit, the subject was diagnosed with
T2DM and the multi-omics data indicated the dysregulation of
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T2DM related pathways. IL-1ra and high-sensitivity C-reactive pro-
tein (hsCRP)werehighlyelevatedduring the last threemedical visits
prior to the T2DM diagnosis. Researchers detected exogenous sub-
stances such as methyluric acid and methylxanthine among the
molecules strongly associatedwith IL-1ra. The aforementioned sub-
stances are metabolites associated with glucose tolerance dysfunc-
tion and gut dysbiosis and were closely associated with the
expression of host factors in the complement system, acute immune
response signaling, and the lipopolysaccharide (LPS)-stimulated
mitogen-activated protein kinase (MAPK) pathway. All of these are
associated with the development of T2DM. Loss of gut microbial
diversity andgainof bodyweightwereobservedevenwhensubjects
were diagnosed with T2DM. Several researchers used linear mixed
models to examine the underlying relationships among glucose
(FPG, HbA1C), inflammation (hsCRP) levels, and multi-omics mea-
surements in healthy-baseline models and the relative changes at
all time points in dynamic models [164]. The study indicated that
both HbA1C and hsCRP were positively associated with total white
blood cell (WBC), monocyte and neutrophil counts. Hepatocyte
growth factor (HGF) was also associated with HbA1C and hsCRP
which is consistentwith its role in glucosemetabolism andmodula-
tion of the inflammatory response. The authors also reported that
FPG and HbA1C are associated with ‘‘leukotriene biosynthesis”
which contributes to inflammation and leads to insulin resistance.
HbA1C is also associated with other lipid metabolism-related path-
ways including ‘‘plasma lipoprotein assembly” and ‘‘chylomicron
assembly”. The foregoing findings underscore the connections
among inflammation and lipid and glucose metabolism as well as
the regulation of these processes.
5. Discussion

The incidences of disorders of glycolipid metabolism such as
T2DM, obesity, and hyperlipidemia have risen to epidemic propor-
tionsandpose serious threats tohumanhealth. Importantobjectives
inmedical research are the elucidationof the pathogenesis of glycol-
ipidmetabolismdisorder and the development and implementation
of efficacious prevention and treatment strategies. Neuroendocrine
axis dysfunction, IR, oxidative stress, chronic inflammatory
response, and gutmicrobiota dysbiosis are nowconsidered themain
pathological mechanisms of glycolipid metabolism disorder. They
mutually interact in an interwoven network and initiate and cause
the progression of disease. For most patients, existing glycolipid
metabolism disorder prevention measures such as altering dietary
habits or increasing exercise aremostly ineffective. Available thera-
peutic measures can improve patient health status to a certain
extent. It is nonetheless difficult to restore metabolic levels to nor-
mal. Thus, further exploration into the pathogenesis of glycolipid
metabolism disorder is necessary. Technological advances have led
to the ‘omics era’, which is enabling the collection and integration
of data and information at different molecular levels. The informa-
tion obtained through omics techniques will contribute to a better
understanding of glycolipid metabolism disorder pathophysiology,
offer new opportunities for diagnosis and prognosis and lead to
improved management of patients with glycolipid metabolism dis-
order. However, owing to the limitations of the development of
omics technologies and the complexity of the research on glycolipid
metabolism disorder, the multi-omics research on glycolipid meta-
bolism disorder still faces numerous challenges.
5.1. Multi-omics studies reveal the pathophysiology of glycolipid
metabolism disorder

Multi-omics studies usually examine genes (genomics), RNA
(transcriptome), proteins (proteomics), and downstream
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metabolites (metabolomics) produced during DNA replication,
transcription, translation, and post-translational modification,
respectively. Multi-omics data provide evidence for pathogenesis,
identify biomarkers, and reveal therapeutic targets for glycolipid
metabolism disorder.

Research into the genes regulating susceptibility to glycolipid
metabolism disorders is crucial. These include TCF7L2, PPARG,
KCNJ11, SLC30A8, FTO. and others. Genetic polymorphisms affect
glycolipid metabolism disorder mainly by decreasing pancreatic
b cell function or increasing IR. GWAS have disclosed disease-
related targets by contrasting genomic data for cases and controls
at the population level. GWAS have returned encouraging results
and helped direct and focus future research. The prediction of gly-
colipid metabolism disorder by screening susceptibility genes is in
its infancy and few studies have been conducted in this area. They
can nonetheless provide clues for exploring pathogenesis and
searching for drug targets. Pharmacogenomics is the study of the
interrelationships among genetic polymorphisms and drug effects
and is based on genomics. Pharmacogenomics helps improve drug
efficacy and safety, guides the research and development of new
drugs, and provides a reference for the clinical administration of
individualized medicine. Several studies demonstrated that indi-
vidual differences in pharmacological glycolipid metabolism disor-
der therapy are closely associated with genetic polymorphisms in
drug transporter and targets, drug catabolic enzymes, and genes
related to the risk of developing glycolipid metabolism disorders.

Non-coding RNAs (ncRNAs) regulate gene expression at the
transcriptional and post-transcriptional levels and affects the pro-
gression of glycolipid metabolism disorder. LncRNAs affect several
molecular signaling pathways and participate in glycolipid meta-
bolism disorder. Lnc-BATE1 establishes and maintains brown fat
and its thermogenic capacity. Downregulation of lncRNA TUG1
and lncRNA GAS5 is connected to the occurrence of glycolipid
metabolism disorder. MiRNAs regulate target gene expression at
the post-transcriptional level and may serve as clinical diagnostic
biomarkers. MiR-375 is specific to pancreatic b cells and its overex-
pression inhibits glucose-induced insulin secretion in them. Over-
expressed miR-7, miR-200, miR-29 and miR-802 play vital roles in
the pathogenesis of glycolipid metabolism disorder. CircRNAs reg-
ulate genes, compete with miRNAs for binding sites, and control
glycolipid metabolism disorder. In islet cells, CDR1-as overexpres-
sion interferes with miR-7 function and improves the insulin level.
Silencing circArhgap5-2 may inhibit lipid droplet accumulation
and downregulate adipogenic markers.

Proteomics effectively identifies dysregulated proteins and
pathways in cells under pathological conditions and helps discover
disease-specific mutations and epigenetic alterations. C-reactive
protein and a2-macroglobulin are sensitive markers of T2DM.
MASP is positively correlated with T2DM and prediabetes mellitus,
Adiponectin is negatively correlated with T2DM onset. Cathepsin
D, leptins, renins, IL-1ra, and t-PA are IR biomarkers. Leukocyte
common antigen-related phosphatase, PTP-a and PTP-1B are
upregulated in the livers, skeletal muscle, and adipose tissue of
obese persons. The proteomics of glycolipid metabolism disorder
is in its infancy. Nevertheless, progress has been made in the pro-
teomics study of b cells, skeletal muscle, and adipose tissue. Other
novel biomarkers will eventually be discovered, and they might
play pivotal roles in the analysis of clinical serum, plasma, and
urine samples.

Metabolic markers are downstream genome outputs and
upstream environmental inputs. Studies on metabolites and
metabolomics can disclose gene-environment interactions [165].
Several studies demonstrated that BCAAs, tyrosine, phenylalanine,
2-AAA, FFAs, ceramides, TAGs, DAGs, PEs, hexose, maltose, tre-
halose, fructose, mannose, deoxycholic acid, 1,5-AG and LPS are
associated with numerous disease pathways in glycolipid
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metabolism disorder. Gut microbiota produce various metabolites
that function as signaling molecules and substrates for host meta-
bolic responses. They affect both physiological and pathological
processes in the host. Previous research showed that the gut
metabolites SCFAs, BCAAs, bile acids, and TMAO are closely associ-
ated with the development of glycolipid metabolism disorder.

The gut microbiota are novel potential drivers of the pathophys-
iology of glycolipid metabolism disorder, interact with obesity,
low-grade inflammation, IR, and T2DM, and might function as
hubs. Human gut microbiota also affect the brain function and alter
host behavior via the microbe-gut-brain axis [166]. They can pro-
mote host metabolic health by facilitating weight loss, improving
blood glucose control and IR, and so on. Hence, gut microbiota
are promising drug targets in the treatment of glycolipid metabo-
lism disorder. Many patients with glycolipid metabolism disorder
have moderate gut dysbiosis. The abundances of the Lactobacillus
spp., Lactobacillus gasseri and Streptococcus mutans are elevated
while those of Roseburia intestinalis, Faecalibacterium prausnitzii,
Bacteroides thetaiotaomicron, Akkermansi spp., Faecalibacterium
spp., Oscillibacter spp., and Alistipes spp. are reduced in patients
with glycolipid metabolism disorder. As gut microbiota play vital
roles in human health and disease, antibiotic, probiotic, and prebi-
otic administration might regulate the gut microbiota and, by
extension, glycolipid metabolism. Several studies showed that rea-
sonable probiotic or prebiotic supplementation can regulate the
host gut microbiota, thereby ameliorating energy metabolism
and controlling chronic low-level inflammation [167]. Probiotic
therapy improved glucose intolerance, hyperlipidemia, and hyper-
insulinemia ina glucose-induced diabetic mouse model [168].

Single-omics research lacks multilevel integration and has lim-
ited utility in determining the etiology of complex diseases. For
these reasons, multi-omics is now widely applied in glycolipid
metabolism disorder research. Multi-omics confirms pathogenesis
through both macro- and micro-etiology, comprehensively and
systematically investigates the roles of the environment and genet-
ics in glycolipid metabolism disorder, and elucidates the patho-
genic factors and molecular mechanisms of these diseases. Multi-
omics also explores the factors mediating the association between
the environment and lifestyle in glycolipid metabolism disorder
and could, therefore, clarify pathogenic mechanisms. Multi-omics
could also help develop risk prediction models for use in precision
medicine, predict disease in high-risk individuals, and screen drug
treatment subjects to monitor drug efficacy and adverse reactions.

5.2. Multi-omics studies exist limitations

Multi-omics studies of glycolipid metabolism disorder are grad-
ually becoming more profound with the development of omics
technology and bioinformatics. The precise diagnosis and treat-
ment of glycolipid metabolism disorder based on joint multi-
omics analyses could eventually dominate the field. However, sev-
eral limitations remain. Early and timely diagnosis of glycolipid
metabolism disorders could improve the control and prognosis of
these diseases. GWAS expanded the identification of relevant gene
loci associated with glycolipid metabolism disorder. In clinical
practice, however, the applicability of known susceptibility poly-
morphisms is limited. Furthermore, existing gene loci only explain
part of the genetic variation in glycolipid metabolism disorder and
require validation in clinical samples and trials. Stable, detectable
ncRNAs could serve as molecular markers for the clinical diagnosis
and prognosis of glycolipid metabolism disorder. Nevertheless,
there are few comprehensive studies on ncRNAs, their mechanisms
are unclear, and big sample data are lacking for them. Proteomics
has been widely applied in the study of diseases related to glycol-
ipid metabolism disorder. As proteomics is relatively new, it is not
yet optimally reproducible. Certain rare proteins are difficult to
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identify and studies on them are time-consuming and expensive.
Current research still compares tissue and serum samples between
healthy individuals and those diagnosed with glycolipid metabolic
disorders. Metabolomics is an important technological approach in
the study of glycolipid metabolism disorder. Its integration with
multi-omics data has begun to elucidate the complex relationships
among gut microbiota, host metabolism, and the pathogenesis of
glycolipid metabolism disorder. This investigative strategy has also
led to novel diagnostic and therapeutic approaches and has laid a
solid foundation for precision medicine. However, metabolomics
lacks a universal analytical platform and mature consistent opera-
tional methods. Moreover, its results are conflicting. Most studies
have not been analytically or clinically validated. Hence, there
are few examples of the highly efficient application of metabolo-
mics in clinical research. Gut dysbiosis has been implicated in obe-
sity, diabetes, other diseases, and their progression. Ameliorating
gut dysbiosis might help treat glycolipid metabolism disorder.
However, the precise components and metabolic activity of the
gut microbiome associated with glycolipid metabolism disorder
are unknown. Evidence from animal experimentation suggests that
the gut microbiota is the key to the development of obesity,
inflammation, insulin resistance, and intestinal barrier dysfunc-
tion. Nevertheless, there are few human clinical mechanistic stud-
ies, and randomized, large-sample, multicenter clinical trials are
required. Though joint multi-omics analyses expand investigations
into glycolipid metabolism disorder, they may lead to false discov-
eries because of the combined effects of multiple factors and high
variability among individual datasets. Thus, it is difficult to inter-
pret multi-omics data or use them to identify biologically relevant
molecules. As international data become publicly available and
analytical platforms and collaborative groups increase, available
resources for multi-omics studies will become more abundant
and the cost of research will dramatically decrease. On the other
hand, long-term follow-up and laboratory tests are required for
ongoing research and the ethical and data sharing issues related
to the research are of great concern. GWAS has high throughput
and low genome detection costs and has, therefore, been widely
used in large-scale cohorts. By contrast, metabolomics and pro-
teomics have relatively low throughput and high cost. For these
reasons, it is still comparatively uncommon to apply omics in
large-scale cohort assays. Integrative multi-omics data analysis is
still in its infancy and universal data integration and analytical
methods must be developed to make full and effective use of
available multi-omics data.
6. Future perspectives

The innovation of high-throughput technologies and omics data
including genomes, transcriptomes, proteomes and metabolomes,
and so on has disclosed risk factors and helped develop novel
biomarkers associated with glycolipid metabolism disorder. Dis-
ease biomarkers reveal specific pathological features and detect
changes in the status of various medical conditions. Though they
may have high predictive efficacy in clinical studies, they nonethe-
less have certain limitations. The reliability of a biomarker depends
upon the genetic background of the study subject, the treatment
regimen, the composition of the gut microbiome, and the diagnosis
and intervention times. Moreover, biomarkers do not possess uni-
versal clinical value. Therefore, multicenter, large-scale, standard-
ized clinical studies are required to improve the diagnostic
efficacy and practical applicability of glycolipid metabolism disor-
der biomarkers.

The development of personalized treatment options for
glycolipid metabolism disorder requires clinical feature informa-
tion, the integration of complex multi-omics data, and a metabolite
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network map. In this manner, the expression patterns of key func-
tional genes and signaling pathways regulating glycolipid metabo-
lism disorders may be precisely plotted. For these reasons,
multidimensional data sources must be integrated into big data
studies to develop precision medicine for glycolipid metabolism
disorder. A systematic and comprehensive understanding of the
risk factors associated with glycolipid metabolism disorder is
required to predict and prevent these medical conditions.

Prospective cohorts, multi-omics studies, high-quality baseli-
nes, follow-up information, biological samples, and multi-omics
detection should be applied. In this way, novel risk factors associ-
ated with glycolipid metabolism disorders may be identified and
their pathogenesis may be elucidated. Future multi-omics studies
on glycolipid metabolism disorder, will require more clinical sam-
ples for verification and must develop and validate stratified risk
models. The latter apply bioinformatics analysis and integrate
high-throughput genomics, transcriptomics, proteomics, and
metabolomics data to obtain comprehensive information regard-
ing susceptibility genes, mechanistic pathways, and disease stage
markers of glycolipid metabolism disorder. This information will
facilitate early, precise intervention and enable accurate diagnosis
and treatment in populations with high risk and incidence of gly-
colipid metabolism disorders.
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