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Clear cell renal cell carcinoma (ccRCC) is a common urinary systemmalignant tumor with a
high incidence and recurrence rate. Pyroptosis is a kind of programmed cell death caused
by inflammasomes. More and more evidence had confirmed that pyroptosis plays a very
significant part in cancer, and it is controversial whether pyroptosis promotes or inhibits
tumors. Consistently, its potential role in ccRCC treatment efficacy and prognosis remains
unclear. In this study, we systematically investigated the role of pyroptosis in the ccRCC
samples from The Cancer Genome Atlas (TCGA) database. Based on the differentially
expressed pyroptosis-related genes (DEPRGs), we identified three pyroptosis subtypes
with different clinical outcomes, immune signatures, and responses to immunotherapy.
Gene set variation analysis (GSVA), Gene Ontology (GO) analysis, and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis revealed that pyroptosis activation meant
infiltration of more immune cells that is conducive to tumor progression. To further
investigate the immunomodulatory effect of pyroptosis in ccRCC, we constructed a
pyroptosis-score based on the common differential prognostic genes of the three
pyroptosis subtypes. It was found that patients with high pyroptosis-score were in an
unfavorable immune environment and the prognosis was worse. Gene set enrichment
analysis suggested that immune-related biological processes were activated in the high
pyroptosis-score group. Then, the least absolute shrinkage and selection operator
(LASSO) Cox regression was implemented for constructing a prognostic model of
eight pyroptosis-related long noncoding RNAs (PRlncRNAs) in the TCGA dataset, and
the outcomes revealed that, compared with the low-risk group, the model-based high-risk
group was intently associated with poor overall survival (OS). We further explored the
relationship between high- and low-risk groups with tumor microenvironment (TME),
immune infiltration, and drug therapy. Finally, we constructed and confirmed a robust
and reliable PRlncRNA pairs prediction model of ccRCC, identified PRlncRNA, and verified
it by experiments. Our findings suggested the potential role of pyroptosis in ccRCC,
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offering new insights into the prognosis of ccRCC and guiding effectual targeted therapy
and immunotherapy.
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INTRODUCTION

Renal cell carcinoma (RCC) is derived from renal tubular
epithelium, accounting for 80%–90% of renal malignant
tumors. The incidence of RCC ranks third in urinary system
tumors (Sung et al., 2021). Clear cell RCC (ccRCC) is the most
common histopathological type of RCC, accounting for about
60%–85% of RCC. Currently, the treatments of ccRCC are
multidisciplinary comprehensive treatments including surgery,
molecular targeted therapy, immunotherapy, chemotherapy, and
radiotherapy. However, ccRCC patients often experience
postoperative recurrence, insensitivity to medical treatment, or
drug resistance after treatment, leading to poor prognosis, which
is related to multiple factors, such as the excessive proliferation of
malignant tumor cells and inhibition of cell death. Regulated cell
death (RCD) is the defense mechanism against cancer, and it is
also a way to drive tumorigenesis, including apoptosis, entosis,
necroptosis, pyroptosis, and ferroptosis (Koren and Fuchs, 2021).

Pyroptosis represents an interesting modality of regulated
necrosis and is a kind of programmed cell death caused by
inflammasomes, which are manifested by the incessant cells
swelling until the cells break, leading to the release of cellular
contents and intense inflammation. The inflammasome is a key
substance in the pyroptosis process. Under the stimulation of
pathogens or lipopolysaccharides, it can promote the maturation
of the precursor of IL-18 and IL-1β and trigger the pyroptosis
process by activating Caspase-1 (Tang et al., 2020; Liu X. et al.,
2021b). Current studies have proved that inflammasomes are
present in a variety of tumor cells (Dunn et al., 2012).
Inflammasome-associated proteins can promote or inhibit the
growth of tumor cells in different tumor cells, showing the
heterogeneousness of cancer and the complicacy of the
immunity microenvironment. Pyroptosis can restrain the
proliferation of tumor cells (Nagarajan et al., 2019) and also
promote tumor growth by forming an environment suitable for
tumor cell growth (Gao et al., 2018). Although there are studies
(Jiang et al., 2021; Tang et al., 2021) exploring the potential role of
pyroptosis in ccRCC, the data were not well optimized and
therefore could not fully explain the effect of pyroptosis on
ccRCC. Our study will optimize the data to investigate the
influence of pyroptosis on the tumor microenvironment
(TME) and drug sensitivity of ccRCC.

Long noncoding RNAs (lncRNAs) are RNA transcripts longer
than 200 nucleotides, including natural antisense transcripts,
overlapping transcripts, and intronic transcripts. Many studies
have shown that lncRNAs have diverse phenotypes and
mechanisms by regulating cell proliferation, replication,
angiogenesis, cell death, and metastasis (Liu S. J. et al., 2021).
LncRNAs have been proved to regulate the pyroptosis of tumor
cells. For example, lncRNA-XIST can inhibit pyroptosis to
promote non-small cell lung cancer (Liu et al., 2019) and

lncRNA ADAMTS9-AS2 restrains gastric cancer and increases
the drug sensitivity of cisplatin by promoting pyroptosis (Ren
et al., 2020). Pyroptosis-related lncRNA (PRlncRNA) signature
has been established as a model to predict the treatment effect and
prognoses of various cancers (Hong et al., 2020; Bu et al., 2021; Lv
et al., 2021; Ping et al., 2021; Song S. et al., 2021; Tang et al., 2021).
However, as a result of the differences in data processing, it is
impossible to directly compare the difference in absolute
expression levels of lncRNAs among different data sets.
Consequently, it is necessary to properly normalize and
standardize the expression levels of lncRNAs. Fortunately, the
researchers found a way to normalize based on the relative
ranking of lncRNAs. For instance, an example of applying
these methods was long noncoding RNA pairs (lncRNAPs),
which have proved to be reliable (Hong et al., 2020; Song S.
et al., 2021).

Given the above, we optimized the data to deeply survey the
role of pyroptosis in the TME and targeted therapy effect of
ccRCC and integrated a PRlncRNAPs prognostic model that
eliminates differences in data processing to forecast the tumor
immune infiltration, targeted therapy effect, and prognosis of
ccRCC. Finally, we analyzed the lncRNA most related to
pyroptosis and verified it by experiments, which provided a
promising target for ccRCC.

MATERIALS AND METHODS

Data Sources and Processing
The RNA-seq data (counts value) and the corresponding clinical
information of ccRCC from the KIRC project of TCGA_GDC
(https://portal.gdc.cancer.gov/), including 539 ccRCCs and 72
normal samples, were downloaded. According to the sample
quality annotations provided in The Cancer Genome Atlas
(TCGA) database (https://gdc.cancer.gov/about-data/
publications/pancanatlas), 100 samples were filtered to exclude
patients whose pathological diagnosis was not consistent with
ccRCC and who had more than one tumor and underwent
radiotherapy and/or chemotherapy (Supplementary Table S1).
Finally, we obtained a total of 439 patients for follow-up studies,
containing 447 tumor samples and 64 normal samples (some
patients had multiple samples; Supplementary Table S2). Then
the counts values were converted into TPM values. The gencode.
gene.info.v22 file was downloaded from the GDC reference file
(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-
reference-files) to do gene annotation and extract lncRNA. Using
the “caret” R package, the TCGA cohort was randomly divided
into training and validation sets in the ratio 7:3. GSE76207
downloaded from the GEO website (https://www.ncbi.nlm.nih.
gov/geo/) was used as the external validation data. Subsequently,
52 pyroptosis-related genes (PRGs) were obtained from MSigDB
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(REACTOME_PYROPTOSIS) (http://www.broad.mit.edu/gsea/
msigdb/) and previously published articles (Supplementary
Table S3).

Consensus Clustering Analysis of DEPRGs
Differential analysis was carried out by the “DESeq2” package
(Love et al., 2014), and the counts value downloaded from TCGA
was used as the input data (|log2FC| > 1, padj <0.05). The R
package “ConsensusClusterPlus” was employed for consensus
unsupervised clustering analysis (Wilkerson and Hayes, 2010),
dividing patients into different molecular subtypes according to
the expression levels of differentially expressed pyroptosis-related
genes (DEPRGs). The clustering was based on the following
criteria: First, the intragroup correlation was close, while the
intergroup correlation was weak. Second, the area under the
cumulative distribution function (CDF) curve did not increase
significantly. Third, the number of samples in all groups should
not be too small. Univariate Cox regression analysis was
performed to screen the prognosis-related genes, and the
Kaplan–Meier method was used to calculate the overall
survival (OS) between different clusters.

The Differences in Tumor
Microenvironment, Immune Infiltration, and
Drug Therapy of Pyroptosis Subtypes
The “ESTIMATE” R package was used to evaluate the TME score,
such as stromal score, immune score, estimate score, and tumor
purity. We evaluated infiltrations of immune cells with
“CIBERSORT (Newman et al., 2015),” “XCELL (Aran et al.,
2017),” “GSVA (Hänzelmann et al., 2013),” “TIMER (Li et al.,
2020),” “QUANTISEQ (Finotello et al., 2019),” “MCPCOUNTER
(Becht et al., 2016),” “EPIC(Racle et al., 2017),” and
“CIBERSORT-ABS” R packages. Four types of
immunophenoscore (IPS), including CTLA4_negative + PD-
1_negative, CTLA4_positive + PD-1_negative,
CTLA4_negative + PD-1_positive, CTLA4_positive + PD-
1_positive, were obtained from the TCIA Database (https://
tcia.at/home). The high PD-1_positive IPS showed a well-
predicted response to anti-PD-1 treatment. The R package
“pRRophetic (Geeleher et al., 2014)" was applied to evaluate
the drug sensitivity of first-line targeted therapy for ccRCC,
including sunitinib, sorafenib, and axitinib (Numakura et al.,
2021). Correlation analysis was performed using the SPEARMAN
correlation test and the Wilcoxon signed-rank test.

Gene Set Enrichment Analysis
To determine whether there were differences in biological processes
among different clusters, we downloaded
“c2.cp.kegg.v7.4.symbols.gm” and “c5.go.v7.4.symbols.gmt” from
MSigDB (http://www.gsea-msigdb.org/gsea/index.jsp). Then, we
used “GSVA” package for analysis, and important pathways were
shown in the form of heatmap. The “clusterProfiler” package was
applied for GeneOntology (GO) annotation andKyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment pathway analysis of
differentially expressed genes (DEGs). An adjusted p-value (padj)< 0.
05 was considered statistically significant.

Construction of Prognosis-Related
Pyroptosis-Score
We obtained 403 common differential genes through pairwise
difference analysis of the three pyroptosis subtypes by the
"DESeq2″ R package (|log2FC| > 1, padj <0.01), and then
univariate Cox analysis was performed to identify
183 prognosis-related genes. Subsequently, we used the
principal component analysis to obtain PC1 and PC2 from
feature genes, which were added as the pyroptosis-score of
each patient. Then, we compared the survival and clinical
characteristics of patients with different pyroptosis-score by
Kaplan–Meier analysis. The “estimate,” “CIBERSORT,” and
“pRRophetic” packages were utilized to evaluate the immune
infiltration and immune microenvironment of patients with
different pyroptosis-score, and to preliminarily explore
therapeutic drugs. Finally, we used GSEA software for
GSEA analysis to analyze the signal pathways that patients
with different pyroptosis-score may participate in. The padj
<0.05 was defined as statistically significant.

Construction of a Pyroptosis-Related Long
Noncoding RNA Pairs-Based Prognostic
Signature
First, we extracted the lncRNAs from the significantly
different genes (|log2FC| > 1, padj <0.05) of patients with
high or low pyroptosis-score and used co-expression analysis
to obtain 76 lncRNAs co-expressed with 19 DEPRGs (|
correlation coefficient| > 0.55, p < 0.001). These lncRNAs
were paired to form PRlncRNAPs, and each PRlncRNAP was
scored. Then, we compared the expression levels of these two
lncRNAs. If the latter was lower than the former, the score was
recorded as 1, otherwise the score was defined as 0.
PRlncRNAPs with over 80% or under 20% of score 0 or 1
were excluded from further analysis (Xiong et al., 2020).
Subsequently, the PRlncRNAPs were subjected to
univariate Cox analysis, and PRlncRNAPs with p < 0.001
were used for further study. To address the multicollinearity
effect between variables, we used the “glmnet” R package for
least absolute shrinkage and selection operator (LASSO) Cox
regression (Engebretsen and Bohlin, 2019). Then we
constructed a prognostic model by multivariate Cox
analysis. Finally, we worked out the riskScore of each
sample based on the following formula:

riskScore � ∑
n

i�1
Coef i × Xi

where imeans the number of prognostic PRlncRNAPs, Coef is
the regression coefficient, and X is the expression value of
PRlncRNAPs, respectively. We evaluated the accuracy of
riskScore in forecasting the prognoses of patients by the
time-dependent receiver operating characteristic (ROC)
curve (Heagerty et al., 2000). Then, the median value of
riskScore was defined as the cutoff point to divide the
patients into prone and low-risk groups in the training or
validation group.
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Clinical Value of riskScore
Kaplan–Meier survival analysis was performed to assess the
differences in OS of patients with high or low risk. Univariate
and multivariate Cox regression analyses were performed on
riskScore and clinicopathological features to evaluate whether
riskScore was an independent clinical prognostic factor. The
hazard ratio (HR) was calculated by “survival” R package.
Vesteinn Thomson’s study showed that all TCGA tumors were
divided into six immune subtypes, including wound healing, IFN-
γ dominant, inflammatory, lymphocyte depleted,
immunologically quiet, and TGF-β dominant (Thorsson et al.,
2018). Chi-square test was performed to investigate the
differences in immune subtypes between high- and low-risk
groups.

Establishment and Validation of a
Nomogram Scoring System
The “rms” package was employed for developing a predictive
nomogram based on the results of the independent prognosis
analysis. In the nomogram scoring system, each variable got a
score and the scores of all variables were added to get the total
score of each sample. The ability of the model to correctly classify
the research event was evaluated by ROC curves and concordance
index (C-index). The ROC curves and C-index) were also used to
compare the models we built with others (He et al., 2021; Zhang F.
et al., 2021; Chen et al., 2022; Sun et al., 2022; Zhang et al., 2022).
The differences in the predicted survival events and the virtually
observed outcomes were compared by calibration plots of the
nomogram. Compared with the ROC curve, decision curve
analysis (DCA) considers the clinical utility of a specific
model, and we used it to depict the potential clinical effect of
the prognostic model (Kerr et al., 2016).

Clinical Tissue Samples and Cells
The ccRCC tissues and matched adjacent normal tissues were
obtained from 32 patients in The First Affiliated Hospital of Sun
Yat-sen University (Guangzhou, China). All tissues were
immediately frozen in liquid nitrogen and stored at –80°C
until RNA was extracted. The samples used in this study were
approved by the Ethics Committee of The First Affiliated
Hospital of Sun Yat-sen University (Guangzhou, China). The
above 32 patients signed the informed consents. HK2, 786-O,
769-P, CAKI-2, and OS-RC-2 in this study were purchased from
the Chinese Academy of Science.

Quantitative Real-Time PCR (qRT-PCR)
Total cellular RNA was extracted using Trizol (Thermofisher
Scientific, United States). The RNA was reverse transcribed into
cDNA following the steps of the PrimeScrip Reverse Transcription
Kit (Takara, Dalian, China). The PCR reaction systemwas configured
and analyzed according to the instructions of SYBR Green Pro Taq
HS premix (Accurate Biology, Changsha, China). The PCR primer
sequences were: AC002331.1 forward: 5′-TGCTGCCAAAGTAGG
AGGATTC-3′, reverse: 5′-GAAGGAAGTGCTCCACACAGTC-3’;
GAPDH forward: 5′-GTCTCCTCTGACTTCAACAGCG-3′,
reverse: 5′-ACCACCCTGTTGCTGTAGCCAA-3’.

Statistical Analyses
The unpaired t-test and Wilcoxon rank-sum test were used to
evaluate the difference between normally distributed and non-
normally distributed data, respectively. OS curves were obtained
with Kaplan–Meier analysis and differences between groups were
calculated with log-rank test. R software (version 4.0.3) and
Adobe Illustrator (version 25.0) were employed for statistical
analysis and drawing. p-value <0.05 indicates statistical
significance.

RESULTS

Data Processing
This study was conducted according to the flow chart
(Supplementary Figure S1). In order to make our research
more trustworthy, TCGA data were randomly divided into a
training set (n = 308) and a validation set (n = 131) in the ratio 7:3.
There was no difference in various clinicopathological parameters
between the two datasets, with p-value > 0.05 (Table 1).

Identification of Pyroptosis Subtypes in
ccRCC
First, we obtained the DEGs by investigating the difference between
the ccRCC group and the normal group using the “DESeq2” package.
Then, 19 DEPRGs were acquired after the intersection with PRGs
(Figure 1A), including 17 upregulated and two downregulated
DEPRGs (Figure 1B). Univariate Cox regression was performed
to reveal the prognosis of 19 DEPRGs in patients with ccRCC

TABLE 1 | Clinicopathological features of 439 ccRCC patients.

Type Details Total Training Validation p value

Age ≤65 293 (66.74%) 201 (65.26%) 92 (70.23%) 0.3679
>65 146 (33.26%) 107 (34.74%) 39 (29.77%) —

Gender Female 159 (36.22%) 111 (36.04%) 48 (36.64%) 0.9907
Male 280 (63.78%) 197 (63.96%) 83 (63.36%) —

Fustat Alive 300 (68.34%) 211 (68.51%) 89 (67.94%) 0.9961
Dead 139 (31.66%) 97 (31.49%) 42 (32.06%) —

Grade G1 13 (2.96%) 9 (2.92%) 4 (3.05%) 0.4889
G2 180 (41%) 133 (43.18%) 47 (35.88%) —

G3 176 (40.09%) 117 (37.99%) 59 (45.04%) —

G4 63 (14.35%) 43 (13.96%) 20 (15.27%) —

Unknown 7 (1.59%) 6 (1.95%) 1 (0.76%) —

Stage Stage I 208 (47.38%) 145 (47.08%) 63 (48.09%) 0.4305
Stage II 46 (10.48%) 37 (12.01%) 9 (6.87%) —

Stage III 109 (24.83%) 75 (24.35%) 34 (25.95%) —

Stage IV 73 (16.63%) 49 (15.91%) 24 (18.32%) —

Unknown 3 (0.68%) 2 (0.65%) 1 (0.76%) —

T T1 214 (48.75%) 150 (48.7%) 64 (48.85%) 0.1673
T2 56 (12.76%) 46 (14.94%) 10 (7.63%) —

T3 160 (36.45%) 106 (34.42%) 54 (41.22%) —

T4 9 (2.05%) 6 (1.95%) 3 (2.29%) —

M M0 339 (77.22%) 242 (78.57%) 97 (74.05%) 0.6895
M1 69 (15.72%) 47 (15.26%) 22 (16.79%) —

Unknown 31 (7.06%) 19 (6.17%) 12 (9.16%) —

N N0 196 (44.65%) 138 (44.81%) 58 (44.27%) 0.7167
N1 13 (2.96%) 8 (2.6%) 5 (3.82%) —

Unknown 230 (52.39%) 162 (52.6%) 68 (51.91%) —
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(Supplementary Table S4). p < 0.05 was utilized as the screening
threshold to screen 14 genes related to prognosis. Then, we divided
patients into high and low groups based on the optimal cutoff value of
the above 14 genes, and the survival analysis curves of 14 genes were
obtained (Supplementary Figure S2). The pyroptosis network

showed the interaction and prognostic value of the 19 DEPRGs
(Figure 1C). Then, univariate Cox analysis was performed to identify
seven prognosis-related DEPRGs. The “ConsensusClusterPlus”
package was applied to cluster the TCGA-KIRC cohort into
different groups through the consistent expression of the seven

FIGURE 1 | The landscape of DEPRGs in ccRCC and identification of pyroptosis subtypes. (A) The Venn diagram showed overlapping genes. (B) A heatmap was
used to show the differential expression of 19 DEPRGs expressions in ccRCC and noncancerous tissues. (C) Interaction between DEPRGs in ccRCC. The line
connecting DEPRGs represented their interaction, and the strength of the correlation between DEPRGs was indicated by the thickness of the line. Pink and blue,
respectively, represented positive and negative correlations. The color of the left half circle represented the gene expression in ccRCC, with high expression in red
and low in gray. The color of the right half circle represented the influence of genes on prognosis. Purple was the risk factor of prognosis, green was the favorable factor of
prognosis, and the size of the circle represented the p-value. (D) Consensus matrix when k was 3. (E) Consensus CDF when k was between 2 and 9. (F) Delta area
showed the relative change of the area under the CDF curve comparing k and k−1 and it met our screening criteria when k = 3. (G) PCA showedmarked differences in the
transcriptome among the three pyroptosis subtypes. (H) The clinicopathological characteristics of the three subtypes and different expression levels of DEPRGs. (I)
Survival curves of patients with three pyroptosis subtypes (***p < 0.001, **p < 0.01, *p < 0.05).
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FIGURE 2 | Immune landscape and drug response of pyroptosis subtypes. (A) The heatmap of immune cell infiltration annotations and immune microenvironment
scores in pyroptosis subtypes. (B) The levels of estimate score, immune score, stromal score, and tumor purity in pyroptosis subtypes. (C) The relative abundance of 22
immune cell types in pyroptosis subtypes. (D) The expression levels of common immune checkpoints among pyroptosis subtypes. (E) The heatmap of the interaction
between immune cells. (F) IPS comparison among the three pyroptosis subtypes of the patients with ccRCC in the CTLA4 negative/positive or PD-1 negative/
positive groups. CTLA4_positive or PD-1_positive, respectively, stood for anti-CTLA4 or anti-PD-1 therapy (***p < 0.001, **p < 0.01, *p < 0.05).
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DEPRGs. When the consensus matrix k value was 3, the crossover
among ccRCC samples was the least, whichmet our screening criteria
(Figure 1D–F). PCA demonstrated that the three subtypes were
distributed in different clusters (Figure 1G). There were significant
differences in clinicopathological parameters such as grade, stage, T,

M, and N of the three pyroptosis subtypes of patients (Figure 1H).
Kaplan–Meier survival analysis suggested that patients with different
pyroptosis subtypes had significant differences in OS (p < 0.001),
among which patients with C1 subtype had the best OS and C3
subtype was the worst (Figure 1I).

FIGURE 3 | The interaction and correlation among the pyroptosis subtypes. (A) The different IC50 of targeted drugs in the three pyroptosis subtypes. (B–D)GSVA
enrichment analysis presents the activation states of biological pathways in the three pyroptosis subtypes. The heatmaps were utilized to visualize the biological
processes. Red and blue, respectively, represented the activated and inhibited pathways. (E) A Venn diagram revealed the common differential genes of the three
pyroptosis subtypes. (F,G) GO and KEGG analysis of DEGs in the three pyroptosis subtypes (***p < 0.001, **p < 0.01, *p < 0.05).
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Immune Landscape and Drug Response of
Pyroptosis Subtypes
To further investigate the relationship between pyroptosis
subtypes and immune cells, we quantified the enrichment
scores of single-sample gene set enrichment analysis (ssGSEA)
for different immune cell subgroups. The results indicated that

compared with subtype C1, activated dendritic cell, MDSC,
macrophage, activated CD4 T cell, T follicular helper cell,
activated CD8 T cell, and natural killer T cell infiltrated more
in C2 and C3 (Figure 2A). Then “ESTIMATE” package was
utilized to evaluate the TME scores of the three subtypes,
containing stromal score, immune score, estimate score, and

FIGURE 4 | The clinical characteristics and immune landscape of the pyroptosis-score groups. (A) Survival curves of patients with high and low pyroptosis-scores.
(B) The ratio of survival status in patients with high and low pyroptosis-scores and the difference in pyroptosis-score level of different survival status. (C) The survival
curves of patients with high and low pyroptosis-scores at different stages and grades. (D) The different levels of estimate score, immune score, stromal score, and tumor
purity in high and low pyroptosis-score groups. (E) Correlation analysis between pyroptosis-score and immune cells. (F) Differences in relative abundance of 22
immune cell types in patients with high and low pyroptosis-scores (***p < 0.001, **p < 0.01, *p < 0.05).
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FIGURE 5 | The correlation of pyroptosis-score with immune checkpoints and drug response, and the biological process of grouping. (A) Spearman correlation
coefficient diagram of pyroptosis-score and common immune checkpoints. (B) Spearman correlation scatter plot between pyroptosis-score and CTLA4, PDCD1,
PDCD1LG2, and CD274. (C) The different expression levels of common immune checkpoints between the high and low pyroptosis-score groups. (D–F) The different
IC50 of the targeted drugs among high and low pyroptosis-score. (G,H) GSEA enrichment analysis of high and low pyroptosis-score groups, including KEGG
pathways (G), and GO annotation (H) (***p < 0.001, **p < 0.01, *p < 0.05). (I) The pyroptosis-score of the three pyroptosis subtypes.
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FIGURE 6 |Construction of a prognostic signature for ccRCC. (A,B) LASSO coefficient plot of PRlncRNAPs. (C) Forest plots of the eight OS-related PRlncRNAPs.
(D) The ROC curve showed the diagnostic value of riskScore for the ccRCC prognosis. (E) PCA on the basis of prognostic characteristics. The red and blue dots,
respectively, represented patients with high and low risk. (F) OS analysis of patients with high and low riskScore. (G) Distribution of riskScore and survival status of
patients. (H) Survival curves of patients with the high- and low-risk groups in different grades and stages (***p < 0.001, **p < 0.01, *p < 0.05).
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FIGURE 7 | Clinical characteristics and immune infiltration of risk groups based on riskScore. (A) The heatmap reveals the distribution of clinical characteristics in
patients in the high- and low-risk groups. (B) Univariate and multivariate Cox regression analyses showed that risk was an independent prognostic factor. (C) The
receiver operating characteristic curve of riskScore and clinical features. (D) Different levels of estimate score, immune score, stromal score, and tumor purity in different
risk groups. (E) Lollipop chart of tumor-related infiltrating immune cells on the basis of TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC algorithms in different risk groups. (F) The expression levels of common immune checkpoints in different risk groups (***p < 0.001, **p < 0.01,
*p < 0.05).
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FIGURE 8 | Drug treatment response and nomogram construction and validation. (A) The distribution of six immune subtypes of patients in high- and low-risk
groups. (B–D) Different IC50 of targeted drugs between the patients in high- and low-risk groups. (E) The alluvial diagram demonstrated the relationship between risk
groups based on riskScore and molecular subtypes. (F) A nomogram containing clinical features and the risk groups based on riskScore to predict survival time. (G) The
receiver operating characteristic curve of nomogram and clinical features. (H) The C-index for exhibiting the ratio of the predicted result to the actual result. (I) The
C-index trend over time. (J) The calibration curve was used to predict the OS of ccRCC patients in the training and validation cohorts. (K) The NB assessing the outcome
was illustrated by DCA.
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tumor purity. Compared with C1, C2 and C3 subtypes showed
that the tumor purity was lower and immune cells and stromal
cells were higher. Estimate score suggested that the relative
content of stromal cells and immune cells in C3 subtype was
the highest (Figure 2B). CIBERSORT was employed for
analyzing the relative abundance of 22 immune cells in each
tumor sample, and the results suggested that there were more
T cells regulatory (Tregs), T follicular helper cells, and CD8
T cells in C3 subtype (Figure 2C). Currently, immune checkpoint
inhibitors are the first-line therapeutic drugs for advanced
ccRCC. We had screened several targeted biomarkers that
were essential for immunotherapy and further clarified
whether the pyroptosis subtypes were related to them. We
discovered that CTLA4, PDCD1, and PDCD1LG2 had the
highest expression in the C3 subtype (Figure 2D). Survival
analysis revealed that when FGL1, LAG3, TNFRSF18, and IL-
23A were highly expressed, the prognosis of patients was worse,
while JAK1, JAK2, and LDHA were on the contrary
(Supplementary Figure S3), which may provide a new target
for immunotherapy of ccRCC. The heatmap exhibiting the
interaction of immune cells was plotted, which displayed that
the immune score was highly negatively correlated with different
types of macrophages but positively correlated with different
types of T cells (Figure 2E). We performed immunophenogram
analysis for analyzing the relationship between IPS and
pyroptosis subtypes (Figure 2F). The outcomes revealed that
in CTLA4_negative + PD-1_positive type and CTLA4_positive +
PD-1_positive type, the IPS of C3 subtype was the highest. These
results suggested that C3 subtype patients were more sensitive to
anti-PD-1 therapy or a combination of anti-PD-1 and anti-
CTLA4 therapies. The targeted therapies, including axitinib,
sorafenib, and sunitinib, were the first-line therapeutic drugs
for ccRCC. We explored the effect of pyroptosis subtypes on the
sensitivity of these drugs in ccRCC (Figure 3A). Interestingly, we
realized that the IC50 of axitinib was higher in C3 subtype, while
those of sorafenib and sunitinib were lower. Based on the above
analysis, we found that the state of pyroptosis may significantly
inhibit or enhance the expression of specific immune cell types
and then potentially affect the reaction to immunotherapy and
targeted therapies.

Interaction and Correlation Between
Pyroptosis Subtypes
The gene set variation analysis (GSVA) enrichment analysis was
used for investigating the potential biological processes among the
three pyroptosis subtypes (Figure 3B–D). It was found that
metabolism-related pathways were significantly enriched in C1
subtypes, such as KEGG_FATTY_ACID_METABOLISM, while
C2 and C3 subtypes presented enrichment pathways related to
complete immune activation, including KEGG_ANTIGEN_PRO
CESSING_AND_PRESENTATION, KEGG_PRIMARY_IMMUN
ODEFICIENCY, KEGG_CYTOKINE_CYTOKINE_RECEPTOR
_INTERACTION, KEGG_ANTIGEN_PROCESSING_AND
_PRESENTATION, KEGG_T_CELL_RECEPTOR_SIGNALING
_PATHWAY, and KEGG_TOLL_LIKE_RECEPTOR_SIGNAL
ING_PATHWAY. To further clarify the biological differences

between the three pyroptosis subtypes, 403 common difference
genes were obtained by pairwise difference analysis between
pyroptosis subtypes (Figure 3E), and genes function enrichment
analysis was carried out (Figure 3F). It was found that the common
difference genes were significantly enriched in immune-related
biological processes. KEGG enrichment pathway analysis further
confirmed the activation of immune-related pathways, including
cytokine–cytokine receptor interaction, T-cell receptor signaling
pathway, and chemokine signaling pathway (Figure 3G). It
suggested that pyroptosis played a vital role in the immune
regulation of TME.

Construction of Pyroptosis-Score and the
Relationship With TME and Drug Response
To further understand the immune regulation of pyroptosis on
ccRCC, we made an effort to analyze the common differential
genes of the three pyroptosis subtypes and established a
pyroptosis-score based on the subtype-related DEGs for each
patient. After univariate Cox regression analysis, 183 prognosis-
related genes were obtained from 403 common DEGs of
pyroptosis subtypes, and then PCA was performed. We add
the scores of PC1 and PC2 to get the pyroptosis-score of each
sample. After that, the optimal threshold was obtained by the R
package “survminer” to divide the patients into high and low
pyroptosis-score groups. Relative to the low pyroptosis-score
patients, there were a shorter OS (Figure 4A) and more
deaths (Figure 4B) in the high group. Kaplan–Meier analysis
was applied to investigate the relationship between pyroptosis-
score and the prognosis in different clinical groups. The results
indicated that regardless of the patient’s stage and grade, the
prognosis of patients in the high pyroptosis-score group was
worse (Figure 4C). Relative to low pyroptosis-score, patients in
the high group had lower tumor purity and higher immune cells
and stromal cells. The estimate score also revealed that the
relative content of stromal cells and immune cells in the high
pyroptosis-score group was higher (Figure 4D). Correlation
analysis indicated that pyroptosis-score was positively
correlated with activated CD4 T cell, activated CD8 T cell, T
follicular helper cell, type 2 T-helper cell, activated dendritic cell,
andMDSC (Figure 4E). Compared with the low pyroptosis-score
group, the patients in the high group infiltrated more memory-
activated CD4 T cell, T follicular helper cells, Tregs, and
macrophage M0 cells (Figure 4F). Correlation analysis
between scores and immune checkpoints presented that
pyroptosis-score was positively correlated with CTLA4,
PDCD1, and PDCD1LG2 (Figure 5A,B). The high pyroptosis-
score group expressed higher CTLA4 and PDCD1 and lower
CD274 (Figure 5C). Then, we performed immunophenogram
analysis for analyzing the relationship between IPS and
pyroptosis-score (Supplementary Figure S4). The outcomes
revealed that in CTLA4_negative + PD-1_positive type,
CTLA4_positive + PD-1_negative type, and CTLA4_positive +
PD-1_positive type, the IPS of high pyroptosis-score group was
higher. These results suggested that patients in high pyroptosis-
score groups were more sensitive to immunity therapies. In terms
of targeted drug treatment sensitivity, the high pyroptosis-score
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group was more sensitive to sorafenib and sunitinib treatment
(Figure 5D,E), but there was no significant difference in axitinib
(Figure 5F). GSEA enrichment analysis indicated that the
pathways of the high pyroptosis-score group were mainly
related to DNA damage repairs, such as KEGG_BASE_EXCI
SION_REPAIR, KEGG_DNA_REPLICATION, and KEGG_P53
_SIGNALING_PATHWAY. The pathways of the low pyroptosis-
score group were enriched in the activation of metabolism
pathways such as KEGG_FATTY_ACID_METABOLISM,
KEGG_HISTIDINE_METABOLISM, and KEGG_TRYPTOPH
AN_METABOLISM (Figure 5G). We also found that immune-
related biological processes were activated in the high pyroptosis-
score group (Figure 5H). There were significant differences in the
pyroptosis-score among the pyroptosis subtypes. The outcomes
revealed that the pyroptosis-score was the lowest in C1 and the
highest in C3 (Figure 5I). The characteristics of patients with C3
subtype and high pyroptosis-score group were consistent. Both
have immune activation characteristics, and the prognosis was
worse than that in other groups.

Identification of OS-Related PRlncRNAPs
and Establishment of the Prognostic Model
There were 76 lncRNAs co-expressed with 19 DEPRGs in the
differential genes of the high and low pyroptosis-score groups.
By recombining the 76 lncRNAs, we obtained 1,425
PRlncRNAPs and the corresponding relative expression
levels; then 90 PRlncRNAPs related to prognosis were
recognized through the univariate Cox regression analysis
(p < 0.001). Subsequently, we extracted 22 OS-related
PRlncRNAPs after 1,000 iterations by LASSO Cox
regression analysis (Figure 6A,B). Ultimately, we obtained
eight PRlncRNAPs to construct the risk model by multivariate
regression analysis (Figure 6C), and the coefficient of
PRlncRNAPs was employed for calculating the riskScore
(Supplementary Table S5). The above method was carried
out in the randomly selected training set, and the same
coefficient was applied to the validation set. The ROC
curves showed that the riskScore exhibited excellent
prediction ability. In the training set, the 1-, 3-, and 5-year
areas under the curve (AUC) were 0.784, 0.767, and 0.812,
respectively. The AUCs in the validation set were, respectively,
0.775, 0.711, and 0.777 (Figure 6D). Based on the median
value of riskScore in the training set, the patients with ccRCC
were divided into high- and low-risk groups. PCA displayed
distinguishable dimensions between the high- and low-risk
groups in the training set while it did not seem to be so perfect
in the validation set (Figure 6E).

Clinical Value of Risk Groups
To explore the clinical value of the risk groups, we plotted a
survival curve to evaluate the survival of patients in the low- or
high-risk groups. The outcomes showed that, relative to the
patients in the low-risk groups, the prognosis of patients in
the high-risk groups was worse in both the training and
validation sets (p < 0.001, Figure 6F). According to the
riskScore and survival status of patients, we noted an increase

in the mortality rate of patients with high riskScore (Figure 6G).
To explore whether the risk model was suitable for different
clinical groups, we merged the riskScore and clinical information
from the training and validation sets and sketched the survival
curves of grades and stages at different stages. The outcomes
showed that, compared to the patients in the low-risk groups, the
prognosis of patients in the high-risk group was worse regardless
of the grade and stage (p < 0.001, Figure 6H). Subsequently, we
explored the relationship between riskScore and clinical
characteristics. The heatmap displayed the distribution of age,
gender, stage, and grade in the training and validation sets. It
could be seen that riskScore was significantly correlated with the
grade, stage, T, and M in the training set (p < 0.05) and grade,
stage, and T in the validation set (p < 0.05, Figure 7A). The
boxplots presented the relationship between the clinical
characteristics and riskScore (Supplementary Figure S5A,B).
External validation on the GEO dataset also confirmed that
patients with stage III_IV had a higher riskScore
(Supplementary Figure S5C). The univariate Cox regression
analysis showed that risk groups based on riskScore were
essential risk factors for ccRCC (HR > 1, p < 0.001).
Furthermore, multivariate Cox regression analysis showed that
it was also an independent prognostic factor of ccRCC
(Figure 7B). The ROC curves indicated that, compared with
other factors, riskScore exhibited better prediction ability in
5 years (Figure 7C and Supplementary Figure S6A). It meant
that riskScore performed better in predicting long-term survival
of patients compared with various clinical indicators. These
outcomes indicated that the risk model could be applied as a
vital indicator for evaluating the prognosis of ccRCC, which was
confirmed in the validation set. Then we further investigated the
correlation with the immune microenvironment of the signature
which was based on PRlncRNAPs. Patients in the high-risk group
had lower tumor purity and higher immune score than the low-
risk group, but no difference in stromal score (Figure 7D). The
lollipop chart presented that riskScore was positively correlated
with Tregs, cancer-associated fibroblasts, T follicular helper cell,
memory-activated CD4+ T cell, and macrophage M0 and
negatively correlated with NK cell resting, mast cell activated,
etc. (Figure 7E). Differential analysis of immune checkpoints
suggested that the expressions of CTLA4, PDCD1, LAG3, and
TNFRSF4 were upregulated in high-risk patients, but JAK1 and
HAVCR2 were downregulated (Figure 7F). Vesteinn Thomson’s
study (Thorsson et al., 2018) indicated that tumors were divided
into six immune subtypes, including wound healing (C1), IFN-γ
dominant (C2), inflammatory (C3), lymphocyte depleted (C4),
immunologically quiet (C5), and TGF-β dominant (C6). Among
the six immune subtypes, C3 has the best prognosis. Although
there were many immune components, the prognosis of C1 and
C2 was still poor. C4 and C6 encompassed mixed immune
characteristics and underwent the worst prognosis. C3
accounted for the highest proportion of ccRCC patients,
accounting for 87%. Relative to the patients in the low-risk
group, the proportion of C3 subtypes with better prognosis
was notably decreased in the high-risk group (high-risk group
80%, low-risk group 94%, p < 0.05), and C1, C2, C4, and C6
subtypes with poor prognosis were increased (Figure 8A).
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Concerning drug treatment, the IC50 of sunitinib in the high-risk
group was lower (Figure 8B), while the IC50 of sorafenib was
higher (Figure 8C), but no difference in axitinib (Figure 8D).
Finally, the alluvial diagram presented the distribution of
pyroptosis subtypes, pyroptosis-score, and risk groups based
on riskScore (Figure 8E).

Construction of Nomogram to Predict
Survival
Considering the clinical practicability, we established a
nomogram combining risk groups based on riskScore and
clinicopathological parameters to predict 1-, 3-, and 5-year
survival (Figure 8F). The predictive parameters were the
results of our previous independent prognostic analysis,
containing risk, stage, grade, and age. The AUCs of the
nomogram were 0.847 and 0.837 (Figure 8G) and the
C-indexes were 0.784 and 0.795, respectively, in the training
and validation sets (Figure 8H). Time C-index showed that
C-index changed over time and was maintained at about 0.8
(Figure 8I). Therefore, our nomogram was dependable in
forecasting the prognosis of ccRCC (Figure 8J). Next, an ROC
curve was plotted to observe the predicted value of the nomogram
with or without the risk. The AUC displayed corresponding
improvements in the training and validation sets after adding
the risk to the predictive model (Supplementary Figure S6B).
DCA results illustrated the net benefit (NB) assessing the ccRCC
patients’ outcomes by employing the risk groups based on
riskScore, tumor stage, age, gender, grade, or a combination of
some features (clinicopathological parameters in nomogram).
The results showed that combining the risk groups based on
riskScore with tumor stage, grade, and age significantly increased
the NB (Figure 8K). Finally, based on the model built on the
training set, we integrated the data of the TCGA training set and
the validation set and compared it with the previous model. The
results showed that our model had higher AUC value
(Supplementary Figure S7A) and C-index (Supplementary
Figure S7B).

Validation of the Pyroptosis-Related
lncRNA
In our study, we established a prognostic model of eight
PRlncRNAPs for predicting the prognosis of ccRCC. To
further screen PRlncRNA targets, we intersected eight pairs
of lncRNAs (13 lncRNAs) with differential genes in ccRCC and
obtained five lncRNAs (Supplementary Figure S8A). The
heatmap showed the expression of five lncRNAs in ccRCC
and noncancerous tissues (Supplementary Figure S8B).
Subsequently, we performed co-expression analysis of the
above five lncRNAs with 19 DEPRGs, and got an lncRNA
with the highest correlation, AC002331.1, also called
LINC02195 (|correlation coefficient| > 0.6, p < 0.001,
Supplementary Table S6). Then, we analyzed the
expression of LINC02195 in different grades and stages of
ccRCC by UALCAN database. The results suggested that
compared to normal condition, all four stages and grades

highly expressed LINC02195, showing a statistical
significance except stage1 (p < 0.05, Supplementary Figure
S8C,D). In the subtype analysis of ccRCC, we found that the
expression level of LINC02195 was higher in ccB-type patients
than ccA (Supplementary Figure S8E). The survival curves
indicated that high expression of LINC02195 meant worse
survival (Supplementary Figure S8F). Pan-cancer analysis
displayed that LINC02195 was significantly upregulated in
multiple tumors (Supplementary Figure S9A). Then, we
detected the expression of LINC02195 in human renal
cortical proximal tubule epithelial cell line HK2 and human
renal clear cell carcinoma cell lines (786-O, 769-P, CAKI-2,
OS-RC-2), and we found that LINC02195 in renal clear cell
carcinoma cell line was significantly higher than that in HK2
(Supplementary Figure S9B). Finally, LINC02195 was highly
expressed in 32 renal clear cell carcinoma tissues than matched
adjacent tissues (Supplementary Figure S9C).

DISCUSSION

Pyroptosis is a kind of programmed cell death. Unlike apoptosis,
pyroptosis is an inflammatory death of cells. When pyroptosis
occurs, cells will release inflammatory mediators, which trigger
the body’s inflammatory response (Liu X. et al., 2021b). More and
more studies have proved that pyroptosis may perform a dual
function of stimulating or preventing cell growth or death in
different tumor cells (Xia et al., 2019). Pyroptosis can promote
tumor death to restrain the development of cancer. On the other
hand, cells will activate numerous signaling pathways and release
a large number of inflammatory mediators when pyroptosis
occurs, which are associated with the occurrence and drug
resistance of tumors (Zhou and Fang, 2019).

Previous studies have usually focused on a single pyroptosis
molecule or a single type of tumor microenvironmental cell.
Recently, attention has been paid to the effects of multiple
genes on multiple tumor phenotypes. For example, Ye’s study
investigated the roles of numerous PRGs in colorectal cancer,
and such analysis models allow to explore pyroptosis’ function
in cancer from a whole point of view (Song W. et al., 2021).
There have also been studies discussing the role of pyroptosis
in ccRCC, like Zhang’s research (Zhang X. et al., 2021). They
classified ccRCC into four types based on the expression of
PRGs. Both subtypes B and C with high PRG expression were
enriched in immune cells, but showed two different outcomes
of good prognosis and poor prognosis. Zhang speculated that
intricate cytokines secreted by cancer cells were the reason for
this difference. Different from Zhang’s study, we divided
ccRCC into three subtypes based on the PRG expression
after a comprehensive and systematic analysis. Among
them, immune cells were significantly enriched and many
immunosuppressive cells were activated in C2 and C3 with
high PRG expression, both of which showed poor prognosis.
The results of C1 with low PRG expression are opposite to C2
and C3. The results of our analysis were more uniform, which
better explained the role of pyroptosis in mediating immune
escape.
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Among the three subtypes of pyroptosis we identified, it was
found that activated dendritic cell, MDSC, macrophage, activated
CD4 T cell, activated CD8 T cell, T follicular helper cell, and
natural killer T cell were more infiltrated in C2 and C3 subtypes
with poor prognosis, and there were more Tregs in C3 subtype. It
has been reported that CD8+ T cells infiltrated in RCC are in a
state of disability and promote the formation of immune escape
(Dai et al., 2021). Treg is a type of T cell with a significant
immunosuppressive effect, which can inhibit the immune
response of other cells (Hatzioannou et al., 2021). Therefore, it
implied that pyroptosis may recruited immune cell infiltration
and established an interference and inhibition state in the TME
according to previous study and our results.

Immune checkpoints are a class of immunosuppressive
molecules that express in immune cells and regulate the
degree of immune activation, which prevents autoimmunity,
but at the same time may also be the cause of tumor immune
escape (Giraldo et al., 2015). Our results revealed that the
expression of CTLA4, PDCD1, and PDCD1LG2 in patients
with C2 and C3 subtypes was higher than that in C1.
Cytotoxic T lymphocyte-associated antigen 4 (CTLA4 or
CD152) is an immune checkpoint that negatively regulates
T-cell-mediated immune responses by intrinsic and extrinsic
mechanisms. CTLA4 delivers a negative signal to effector
T cells directly and was mainly associated with functions of
Tregs (Lisi et al., 2021). Both PDCD1 (also known as human
PD-L1) and PDCD1LG2 (also known as human PD-L2) are
ligands of PD-1 (also known as CD274), which inhibit the
function of T lymphocytes by binding with PD-1, thereby
inhibiting the autoimmune response (Nunes-Xavier et al.,
2019). The results of the above analysis showed that the
pyroptosis-activated state could regulate the expression of
various immune checkpoints, inhibit the functions of various
immune cells, and interfere with the clearance of tumors by
immune cells, which further indicated that pyroptosis can
mediate immune escape of tumors. In order to predict the
effect of drug treatment in patients with different subtypes, we
constructed the immunophenogram for forecasting anti- PD-1
therapy sensitivity of ccRCC, which presented that C3 patients
were in an activated state of pyroptosis and were sensitive to anti-
PD-1 therapy and a combination of anti-CTLA4 and anti-PD-1
therapy. However, the outcomes need further verification in the
future. The drug treatment response showed that patients in the
activated state of pyroptosis were more sensitive to sorafenib and
sunitinib. GSVA enrichment analysis, GO, and KEGG analysis of
common differential genes between pyroptosis subtypes
illustrated that the enrichments of immune-related biological
processes in the pyroptosis-activated state were more
significant. In a word, targeted pyroptosis may reverse the
immune interference and suppression state, thereby enhancing
the effect of immunotherapy.

In order to further analyze the regulation of pyroptosis on
immunity, we constructed a pyroptosis-score by performing PCA
on common differential genes associated with prognosis in the
three pyroptosis subtypes. We found that memory-activated CD4
T cell, T follicular helper cell, Tregs, and macrophage M0 cells
were more infiltrated in patients with high pyroptosis-score, and

pyroptosis-score was positively correlated with immune
checkpoints CTLA4, PDCD1, and PDCD1LG2. The above
results further illustrated that pyroptosis played an
indispensable role in regulating immune activity and
mediating tumor immune escape. Patients with high
pyroptosis-score were more responsive to sorafenib and
sunitinib, which indicated that patients with pyroptosis
activation may benefit more from these two targeted therapy
agents.

Nowadays, more and more functions of lncRNAs have been
discovered (Statello et al., 2021), such as regulating gene
expression, posttranscriptional modification, and splicing. It
was reported that lncRNAs could regulate the pyroptosis in
various tumors, and the researchers also tried to explore the
regulatory role of lncRNAs on pyroptosis in ccRCC. For example,
one study explored and established a prognosis model of
PRlncRNAs (Tang et al., 2021). However, owing to the
differences in data processing among different data sets, such
amodel cannot compare the absolute expression levels of lncRNA
well. Therefore, we established a PRlncRNAPs prognostic model
which can eliminate differences in data processing and explore its
ability to forecast the survival of ccRCC patients. We developed a
riskScore based on PRlncRNAPs and divided the patients into
high- and low-riskScore groups. Survival analysis indicated that
patients with higher riskScore have a worse prognosis. Clinical
correlation analysis showed that riskScore was correlated with
stage, grade, T, and M, which indicated that the riskScore has
perfect prognostic value and clinical value. There were more
immune cells infiltrated in patients with high riskScore, such as
Tregs, cancer-associated fibroblasts (CAF), T follicular helper
cell, memory-activated CD4+ T cell, and macrophage M0 cells,
which was consistent with pyroptosis subtypes and pyroptosis-
score. Concerning the three targeted drug treatments, patients
with high riskScore were more sensitive to sunitinib but less
sensitive to sorafenib than patients with low riskScore. However,
there was no difference with axitinib. Finally, we integrated
various prognosis-related indicators to establish a nomogram.
The ROC curve, calibration curve, DCA, and C-index were
applied to confirm that the prognostic model can faultlessly
forecast OS.

To further screen PRlncRNA targets, we found an lncRNA,
LINC02195, which was intensely associated with 19 DEPRGs
from eight pairs of lncRNAs related to prognosis by co-
expression analysis. Pan-cancer analysis and survival analysis
indicated that it was upregulated in various tumors and resulted
in poor prognosis. qRT-PCR confirmed that it was highly
expressed in ccRCC tissues and cells, providing a theoretical
basis for mechanism exploration.

In conclusion, we performed comprehensive and systematic
bioinformatics analysis to deeply analyze the function of
pyroptosis in ccRCC, distinguished three pyroptosis subtypes,
and constructed a PRlncRNAPs model. Pyroptosis activation
meant worse prognoses and infiltration of more
immunosuppressive cells that was conducive to tumor
immune escape and tumor progression. We also predicted its
response to current first-line treatment drugs, providing new
ideas for clinically guiding ccRCC patients’ personalized immune
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and targeted therapy strategies. In addition, we developed a
constructive and feasible prognostic model based on eight
PRlncRNAPs, which performed well in forecasting the
prognoses of ccRCC patients and assessing immune cell
infiltration in ccRCC. However, several unidentified
mechanisms remain to be explored for the interaction between
pyroptosis and lncRNAs. Finally, we hope that the analysis of
pyroptosis and lncRNAs in this study can provide new strategies
for individualized therapy and immunotherapy of ccRCC.
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