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A B S T R A C T   

Background: Early detection of Parkinson’s disease (PD) patients at high risk for mild cognitive impairment (MCI) 
can help with timely intervention. White matter structural connectivity is considered an early and sensitive 
indicator of neurodegenerative disease. 
Objectives: To investigate whether baseline white matter structural connectivity features from diffusion tensor 
imaging (DTI) of de novo PD patients can help predict PD-MCI conversion at an individual level using machine 
learning methods. 
Methods: We included 90 de novo PD patients who underwent DTI and 3D T1-weighted imaging. Elastic net- 
based feature consensus ranking (ENFCR) was used with 1000 random training sets to select clinical and 
structural connectivity features. Linear discrimination analysis (LDA), support vector machine (SVM), K-nearest 
neighbor (KNN) and naïve Bayes (NB) classifiers were trained based on features selected more than 500 times. 
The area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) were used to 
evaluate model performance. 
Results: A total of 57 PD patients were classified as PD-MCI nonconverters, and 33 PD patients were classified as 
PD-MCI converters. The models trained with clinical data showed moderate performance (AUC range: 0.62–0.68; 
ACC range: 0.63–0.77; SEN range: 0.45–0.66; SPE range: 0.64–0.84). Models trained with structural connectivity 
(AUC range, 0.81–0.84; ACC range, 0.75–0.86; SEN range, 0.77–0.91; SPE range, 0.71–0.88) performed similar 
to models that were trained with both clinical and structural connectivity data (AUC range, 0.81–0.85; ACC 
range, 0.74–0.85; SEN range, 0.79–0.91; SPE range, 0.70–0.89). 
Conclusions: Baseline white matter structural connectivity from DTI is helpful in predicting future MCI conversion 
in de novo PD patients.   

1. Introduction 

Cognitive impairment is one of the most common and important 
nonmotor symptoms of Parkinson’s disease (PD) (Aarsland et al., 2017; 
Weintraub and Burn, 2011). Mild cognitive impairment (MCI) is thought 
to be a transition stage between normal cognition and dementia (Cavi
ness et al., 2007). PD-MCI is a reported risk indicator for PD dementia 
(PDD), which occurs in nearly 80 % of de novo PD patients within 20 
years and severely affects the quality of life of patients (Hely et al., 2008; 
Pigott et al., 2015). Therefore, it is important to identify patients with a 

high risk of developing PD-MCI in the early stage of PD and elucidate its 
pathophysiology to enable timely intervention and delay cognitive 
decline. 

Although some clinical and imaging biomarkers for PD-MCI have 
been reported, the search for more reliable biomarkers is still ongoing 
(Delgado-Alvarado et al., 2016). Compared to other biomarkers, neu
roimaging biomarkers are more objective indicators that can provide a 
comprehensive view of changes in the structure and function of the 
brain and reveal some of the underlying pathophysiology mechanisms. 
Most previous studies have used neuroimaging indicators that reflect 
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baseline brain gray matter changes, including temporal, parietal, oc
cipital and hippocampal volumes, to predict PD-MCI, while fewer 
studies have used white matter indicators (Caspell-Garcia et al., 2017; 
Filippi et al., 2020; Foo et al., 2017; Zhou et al., 2020). 

Notably, several studies have reported that axonal degeneration 
occurs prior to cell death in patients with PD (Burke and O’Malley, 2013; 
Kurowska et al., 2016). Furthermore, some studies have shown that the 
integrity of the white matter (WM) is impaired prior to the thinning of 
the cortex, as evidenced by magnetic resonance imaging (MRI) results 
(Park et al., 2022; Rektor et al., 2018). Structural connectivity between 
brain regions from diffusion tensor imaging (DTI) is an important indi
cator of WM integrity and is thought to be associated with neuro
inflammation, α-syn propagation and neuronal loss (Yau et al., 2018; Yu 
et al., 2020a). According to a recent review, structural connectivity is 
crucial for preserving the integrity and function of remote brain regions 
(Thiebaut de Schotten and Forkel, 2022). Some studies have used 
structural connectivity to build cognitive-related diagnostic and pre
dictive models, achieving good performance (Huang et al., 2021; Lin 
et al., 2021; Yu et al., 2020a). However, no previous studies have used 
baseline structural connectivity to predict PD-MCI in newly diagnosed 
PD patients. 

In contrast to conventional statistical methods, machine learning- 
based approaches can handle highly dimensional and complicated 
data and be used to develop diagnostic and predictive models for dis
eases at the individual level (Mei et al., 2021; Yu et al., 2020a). The aim 
of this study was to develop a machine learning model to predict the 
conversion risk of PD-MCI among de novo PD patients using baseline 
WM structural connectivity from DTI data combined with clinical data. 

2. Methods 

2.1. Participants 

All data in this study were obtained from the Parkinson’s Progression 
Markers Initiative (PPMI) database (https://www.ppmi-info.org/). The 
PD patients chosen from the PPMI for the present study met the 
following inclusion criteria: (1) a diagnosis of PD for less than 2 years 

and (2) untreated. The exclusion criteria were as follows: (1) lack of DTI 
or T1-weighted imaging (T1WI) data; (2) errors in image processing or 
poor image quality; (3) diagnosis of PD-MCI or PDD at baseline; (4) lack 
of follow-up neuropsychologic tests; and (5) development of PDD at 
follow-up (Fig. 1). 

Ethical approval. 
The PPMI trial (NCT01141023) was filed at ClinicalTrials.gov. and 

was granted ethical committee approval at all participating sites. Writ
ten informed consent was obtained from all participants before partic
ipation in the study. 

2.2. Clinical assessment 

The baseline clinical assessment included: (1) demographic variables 
(age, sex, education years, age of onset, duration of PD from diagnosis to 
enrollment, and family history of PD); (2) variables related to motor 
symptoms (Hoehn & Yahr stage, MDS-UPDRS Part II score, MDS-UPDRS 
Part III score, MDS-UPDRS total score, rigidity score, tremor score, 
tremor dominant/postural gait instability disorder classification, and 
Modified Schwab & England ADL score); (3) variables related to 
cognition (the Montreal Cognitive Assessment (MoCA) for global 
cognition; the Benton Judgment of Line Orientation (BJLO) for visuo
spatial function; the Hopkins Verbal Learning Test (HVLT discrimination 
recognition, HVLT immediate/total recall, HVLT retention, HVLT false 
alarms, HVLT delayed recall, HVLT delayed recognition for verbal 
memory); letter number sequencing (LNS) for working memory; symbol 
digit modalities test (SDMT) for attention-processing speed; and se
mantic fluency test (SFT) for verbal fluency); (4) variables related to 
other nonmotor symptoms (MDS-UPDRS Part I score, geriatric depres
sion scale (GDS) score, STAI total score, SCOPA-AUT total score, 
Epworth sleepiness scale (ESS) score, REM sleep behavior disorder 
questionnaire score, and University of Pennsylvania Smell Identification 
Test (UPSIT) score). Patients were followed up for 5 years, and neuro
psychologic tests were conducted at baseline and at each 1-year follow- 
up visit. 

Fig. 1. Flowchart of patient inclusion. DTI, Diffusion tensor imaging; NP, neuropsychologic; PD-MCI, Parkinson’s disease with mild cognitive impairment; PDD, 
Parkinson’s disease dementia; PPMI, Parkinson’s progression markers initiative; T1WI, T1-weighted imaging. 
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2.3. Diagnosis of PD-MCI 

In this study, participants were classified as having PD-MCI accord
ing to the Movement Disorder Society (MDS) diagnostic criteria (Level I) 
(Litvan et al., 2012). Specifically, PD-MCI is defined as an MoCA score <
26 or 2 or more of the following cognitive tests with scores > 1.5 
standard deviation (SD) below the standardized mean (HVLT total recall 
score ≤ 35; HVLT recognition discrimination score ≤ 35; Benton Judg
ment of Line Orientation score ≤ 6; letter number sequencing score ≤ 6; 
semantic fluency test score ≤ 35; or symbol digit modality test score ≤
35). 

Definition of PD-MCI converters: PD patients with normal cognition 
at baseline who subsequently developed PD-MCI within a 5-year follow- 
up. 

Definition of PD-MCI nonconverters: PD with stable normal cogni
tion at baseline and 5-year follow-up visits. 

2.4. MRI acquisition and extraction of white matter features 

All MRI examinations were performed using 3.0 T MRI scanners 
(Siemens Healthcare, USA) following a standard protocol. 3D T1- 
weighted images were obtained using a magnetization prepared rapid 
gradient echo (MPRAGE) sequence with the following parameters: 
repetition time (TR) = 2300 ms, echo time (TE) = 2.98 ms, voxel size =
1 × 1 × 1 mm3, and flip angle = 9◦. The diffusion-weighted images were 
obtained using an echo plane sequence with the following parameters: 
number of b0 images = 1, b-value = 1000 s/mm2, number of directions 
= 64, TR/TE = 900/80 ms, voxel size: 2 × 2 × 2 mm3, and flip angle =
90◦. More details are available at https://www.ppmi-info.org/study- 
design/research-documents-and-sops/. 

We used a pipeline in the PANDA toolbox(Cui et al., 2013) (https:// 
www.nitrc.org/projects/panda) based on the FMRIB Software Library 
(FSL), Octave and MATLAB’s Pipeline System (PSOM), and Diffusion 
Toolkit and MRIcron to analyze DTI data in MATLAB, using T1-weighted 
magnetic resonance imaging (MRI) data as anatomical references. First, 
we preprocessed the DTI data, including correction of head motion and 
eddy current distortions and removal of nonbrain tissues. To construct 
the brain network, we first used the fiber assignment by continuous 
tracking (FACT) algorithm to perform deterministic fiber tracking, 
setting the streamline to be terminated when it reached a voxel with an 
FA value < 0.2 or turned at an angle < 45◦. We defined the 210 cortical 
and 36 subcortical subregions segmented by the Brainnetome Atlas(Fan 
et al., 2016) as nodes and defined the average fiber length (FL), the fiber 
number (FN), and the average FA of fibers between two regions as edges. 
We finally obtained three 246 × 246 connectivity matrices, including 
the FL-weighted connectivity matrix, FN-weighted connectivity matrix 
and FA-weighted connectivity matrix. Considering that the values on 
both sides of the diagonal of the matrix are equal, we only took the 
values of the upper right corner of the matrix. In summary, we obtained 
246 × 246/2 × 3 = 90774 WM features based on the DTI data. 

2.5. Feature selection 

A total of 32 clinical variables and 90,774 structural connectivity 
metrics were obtained with the above steps. We divided these features 
into three categories: (1) clinical variables; (2) white matter variables 
(structural connectivity); and (3) clinical and white matter variables. For 
the structural connectivity metrics, we used a 50 % threshold to elimi
nate false-positive structural connectivity (i.e., a structural connectivity 
was considered a false-positive structural connectivity if 50 % of the 
individuals do not have that structural connectivity). We normalized 
each variable to zero mean and unit variance using the z score to reduce 
the effect of different units. And t tests and elastic net-based feature 
consensus ranking (ENFCR) were used to select features. First, in the 
training set, we used t tests to remove features without significant dif
ferences (p > 0.01) between groups. Then, we used ENFCR to reduce the 

dimensionality of the features. The ENFCR algorithm includes multiple 
elastic nets, which can be used to identify features that contribute 
significantly to classification and rank the features according to the 
frequency with which they are selected (Yu et al., 2020b). Specifically, 
we randomly divided the PD patients into a training set (50 subjects, 
including 25 PD-MCI converters and 25 PD-MCI nonconverters) and a 
test set (40 subjects, including 32 PD-MCI converters and 8 PD-MCI 
converters). To test the robust, we also randomly divided the PD pa
tients into a training set (46 subjects, including 23 PD-MCI converters 
and 23 PD-MCI nonconverters) and a test set (44 subjects, including 34 
PD-MCI converters and 10 PD-MCI converters). In the training test, we 
applied the ENFCR algorithm to select features in resampled 
1000 training set with the “bootstrap” algorithm). At last, all features 
were sorted from the most frequent to the least frequent selection in 
1000 experiments. Features selected more than 500 times were 
considered as stable and important features for model construction(Shin 
et al., 2021). Overall, we believed that obtaining the frequency of each 
feature being selected in several repetitions of the experiment using the 
ENFCR algorithm to quantify the value of the feature can minimize data 
dependency and increase feature selection consistency. 

2.6. Model construction and performance 

To construct the model, we used four classifiers: linear discrimina
tion analysis (LDA), support vector machine (SVM with linear kernel), K- 
nearest neighbor (KNN) and naïve Bayes (NB). We again used the above 
retained features in 1000 resampled training sets with the bootstrap 
algorithm for the four classifiers and evaluated model performance 
based on the test set. The model performance was evaluated using the 
area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and 
specificity (SPE). We also extracted the mean weight of selected features 
from SVM classifiers in 1000 resampled data sets. 

2.7. Statistical analysis 

SPSS software (version 26.0) was applied for statistical analyses of 
the clinical variables. The normality of the distributions was assessed 
using the Shapiro-Wilk (SW) test. Continuous variables with normal 
distributions are represented as the mean (standard deviation), and in
dependent t tests were used to compare differences between groups. 
Continuous variables with abnormal distributions are represented as 
median (interquartile range), and Mann-Whitney U tests were used to 
compare differences between groups. Categorical variables are repre
sented as percentages, and Chi-squared test were used to compare dif
ferences between groups. Significance was set at two tailed p < 0.05. 

3. Results 

3.1. Clinical characteristics 

As shown in Fig. 1, in this study, 255 PD patients were excluded 
because of a lack of DTI and T1WI data, 18 PD patients were excluded 
because of image processing errors or poor image quality, 40 PD patients 
were excluded because of a diagnosis of PD-MCI or PDD, 14 PD patients 
were excluded because of a lack of follow-up neuropsychological (NP) 
tests, and 6 PD patients were excluded because of the development of 
PDD at follow-up, leaving 90 PD patients. 57 PD patients were identified 
as PD-MCI nonconverters, while 33 patients were identified as PD-MCI 
converters. The baseline clinical characteristics of the PD patients are 
listed in Table 1. The age, sex, MDS-UPDRS III score, HVLT discrimi
nation recognition score, HVLT immediate/total recall score, HVLT 
retention score, HVLT false alarm score, HVLT delayed recall score, 
HVLT delayed recognition score, letter number sequencing score, se
mantic fluency total score, symbol digit modality score and MoCA score 
of the PD-MCI nonconverters and PD-MCI converters differed signifi
cantly. No significant differences were found in the years of education or 
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the Benton Judgment of Line Orientation score between the different 
groups. 

3.2. Model performance 

The model performance is summarized in Fig. 2. The models trained 
using clinical data showed moderate performance (AUC range: 
0.62–0.68; ACC range: 0.63–0.77; SEN range: 0.45–0.66; SPE range: 
0.64–0.84). Structural connectivity-trained models (AUC range, 
0.81–0.84; ACC range, 0.75–0.86; SEN range, 0.77–0.91; SPE range, 
0.71–0.88) performed like models that were trained with clinical data as 
well as structural connectivity (AUC range, 0.81–0.85; ACC range, 
0.74–0.85; SEN range, 0.79–0.91; SPE range, 0.70–0.89). Additionally, 
the model performance of the division of training set and test set of 7:3 
of PD-MCI converters was only slightly reduced (Supplementary 
Table S1). 

3.3. Feature selection 

The features selected in the models are shown in Fig. 3 and Fig. 4. 
Whether clinical data alone or clinical data combined with structural 
connectivity data were used to construct PD-MCI prediction models, the 
MDS-UPDRS III score was selected among the clinical variables. Age was 
selected in the model trained with only clinical data. Nine structural 
connectivity features were selected in the models trained with structural 
connectivity data and the models trained with both clinical and struc
tural connectivity data, including the mean fiber length (FL) between 
caudal area 45 in the left inferior frontal gyrus (IFG.L.A45c) and oper
cular area 44 in the left inferior frontal gyrus (IFG.L.A44op), the mean 
FL between opercular area 44 in the right inferior frontal gyrus (IFG.R. 
A44op) and right dorsal agranular insula (INS.R.dIa), the mean FL be
tween area 1/2/3 (tongue and larynx region) in the right postcentral 
gyrus (PoG.R.A1/2/3tonIa) and right dorsal agranular insula (INS.R. 
dIa), the mean fractional anisotropy (FA) between postcentral area 7 in 
the left superior parietal lobule (SPL.L.A7pc) and medial area 5 (PEm) in 
the left precuneus (Pcun.L.A5m), the mean fiber number (FN) between 
medial area 11 in the right orbital gyrus (OrG.R.A11m) and the ventral 
caudate in the right basal ganglia (BG.R.vCa), the mean FN between the 
left caudal hippocampus (Hipp.L.cHipp) and left caudal temporal thal
amus (Tha.L.cTtha), the mean FL between rostrodorsal area 40 (PFt) in 
the right inferior parietal lobule (IPL.R.A40rd) and area 2 in the right 
postcentral gyrus (PoG.R.A2), the FL between the caudal cuneus gyrus in 
the left medioventral occipital cortex (MVOcC.L.cCunG) and medial 
superior occipital gyrus in the left lateral occipital cortex (LOcC.L. 
msOccG), and the FL between dorsal area 9/46 in the left middle frontal 
gyrus (MFG.L.A9/46d) and ventral area 9/46 in the left middle frontal 
gyrus (MFG.L.A9/46v). The mean FL between the occipital polar cortex 
in the right lateral occipital cortex (LOcC.R.OPC) and inferior occipital 
gyrus in the right lateral occipital cortex (LOcC.R.iOccG), the mean FL 
between the dorsal caudate in the left basal ganglia (BG.L.dCa) and left 
posterior parietal thalamus (Tha.L.Pptha) and the mean FA between 
rostral area 21 in the left middle temporal gyrus (MTG.L.A21r) and in
termediate lateral area 20 in the left inferior temporal gyrus (ITG.L. 
A20il) were selected only for the model trained with structural con
nectivity features. Feature weight in the SVM classifier are summarized 
in Supplementary Table S2. The MDS-UPDRS III score, age, the mean FL 
between the LOcC.R.OPC and LOcC.R.iOccG, the mean FL between the 
BG.L.dCa and Tha.L.Pptha showed positive weights, indicating that 
patients with higher values had higher possibilities of PD-MCI conver
sion. In contrast, other structural connectivity features showed negative 
weights, indicating that patients with lower values had higher possi
bilities of PD-MCI conversion. 

4. Discussion 

In summary, our research showed that by utilizing machine learning, 
baseline WM structural connectivity features could be used to predict 
future conversion to PD-MCI in de novo PD-NC patients at an individual 
level. The models trained using clinical data showed moderate perfor
mance (AUC range: 0.62–0.68; ACC range: 0.63–0.77; SEN range: 
0.45–0.66; SPE range: 0.64–0.84). Models trained based on structural 
connectivity features (AUC range, 0.81–0.84; ACC range, 0.75–0.86; 
SEN range, 0.77–0.91; SPE range, 0.71–0.88) performed similarly to 
models that were trained with clinical data and structural connectivity 
features (AUC range, 0.81–0.85; ACC range, 0.74–0.85; SEN range, 
0.79–0.91; SPE range, 0.70–0.89). Furthermore, our findings may reveal 
the pathophysiology of PD-MCI conversion by confirming the structural 
connectivity among various brain regions in the frontal lobe, parietal 
lobe, occipital lobe, temporal lobe, insula, and subcortical nuclei as 
important features. 

In line with previous studies (Schrag et al., 2017; Siciliano et al., 
2017), our study showed that the baseline MDS-UPDRS III score and age 
are important predictors of cognitive impairment in patients with PD. 

Table 1 
Demographic and Clinical Characteristics.  

Characteristic PD-MCI 
Nonconverters 
(n = 57) 

PD-MCI 
Converters 
(n = 33) 

P 
Value* 

Age(years)a 55.9 (9.5) 64.7 (6.8) < 0.001 
Gender(male/female)b 33/24 20/13 0.508 
Education(years)a 15.8 (2.6) 15.5 (3.2) 0.705 
Benton Judgment of Line 

Orientation scorec 
14.0 (2.0) 13.0 (2.0) 0.290 

MDS-UPDRS Part III scorea 17.4 (7.0) 25.1 (10.7) < 0.001 
Geriatric Depression Scale scorec 1.5 (2.3) 1.0 (3.0) 0.745 
HVLT discrimination recognitionc 11.0 (2.0) 10.0 (2.0) 0.001 
HVLT immediate/total recallc 28.5 (4.1) 24.0 (5.0) 0.002 
HVLT retentionc 0.9 (0.2) 0.8 (0.2) 0.007 
HVLT false alarmsc 1.0 (1.3) 1.3 (2.0) 0.070 
HVLT delayed recallc 10.0 (2.0) 9.0 (3.0) 0.002 
HVLT delayed Recognitionc 12.0 (1.0) 12.0 (1.0) 0.030 
letter number sequencing scorea 12.0 (2.7) 10.0 (2.3) 0.005 
semantic fluency total scorea 56.3 (9.7) 47.1 (8.9) 0.002 
symbol digit modalities scorea 45.7 (7.7) 41.7 (11.5) 0.025 
MoCA scorec 29.0 (2.0) 28.0 (2.0) 0.007 

*P values were calculated with the Mann-whitney U test, independent t test or 
Chi-squared test appropriately. 

a Values are expressed as mean, with standard deviation in parentheses. 
b Values are expressed as proportion of male to female. 
c Values are expressed as median, with interquartile ranges in parentheses. 

Fig. 2. Heat maps of areas under the receiver operating characteristic curve, 
accuracy, sensitivity and specificity from four machine learning models to 
predict Parkinson’s disease with mild cognitive impairment conversion. ACC, 
accuracy; AUC, areas under the receiver operating characteristic curve; cli, 
clinical data; KNN, k-nearest neighbor; LDA, linear discriminant analysis; NB, 
naive bayes; SC, structural connectivity; SEN, sensitivity; SPE, specificity; SVM, 
support vector machine. 
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Harvey et al. indicated that baseline cognitive-related scores are helpful 
for predicting cognitive state changes in patients with PD using PPMI 
data (Harvey et al., 2022). However, although some baseline cognitive 
variables ranked high according to the feature ordering in our study, 
these features were selected less than 500 times in 1000 experiments. 
We surmised that this is because Harvey’s study included both PD-MCI 
and PDD converters, whereas our analysis included only PD-MCI con
verters. Phongpreecha et al. also discovered that while cognitive testing 
was the most important predictor of future PDD conversion, it could not 
reliably predict PD-MCI conversion (Phongpreecha et al., 2020). More
over, larger sample sizes should be considered in the future to verify our 
findings. 

In our study, features were selected in the inferior frontal gyrus, 
middle frontal gyrus, orbital frontal gyrus, caudate nucleus, and thal
amus. The frontal lobe, caudate nucleus and thalamus are thought to be 
involved in a variety of important cognitive functions (Li et al., 2022; 
Manza et al., 2016; Suo et al., 2019). Moreover, previous studies have 
indicated that the cortico-striatal-thalamo-cortical loop plays an 
important role in executive functions (Shang et al., 2020). Furthermore, 
18F-fluorodeoxyglucose (18F-FDG) uptake in the inferior frontal gyrus is 
positively correlated with executive function (Han et al., 2021). The 
results of a longitudinal study showed that the cerebral blood flow (CBF) 
in the left lateral orbitofrontal cortex was significantly reduced in pa
tients that converted to PD-MCI compared to that in nonconverters, 
suggesting that reduced longitudinal CBF in the orbitofrontal lobe may 
affect cognitive function in patients with PD (Wang et al., 2022). 

The insula is highly connected to and interacts with several brain 
regions (e.g., the basal ganglia and frontal, parietal, and temporal 
cortices) and thus plays a central role in various cognitive processes (Li 
et al., 2022). The results of a longitudinal study showed that a significant 
reduction in gray matter density in the left insula at baseline could 
potentially be a predictor of eventual dementia in PD-MCI patients (Lee 
et al., 2014). Furthermore, 18F-FDG uptake and executive function in the 
insula were found to be significantly associated in PD patients (Han 

et al., 2021). The extent of Lewy body accumulation in the hippocampus 
is linked to the severity of cognitive impairment in patients with PD 
(Hall et al., 2014). The atrophy of hippocampal subregions may be an 
important biomarker for predicting PD-NC to PD-MCI conversion (Xu 
et al., 2023). Moreover, the MD value of the hippocampus, an important 
feature in identifying PD-NC and PD-MCI patients, is significantly 
negatively correlated with the MoCA score (Chen et al., 2023). 

The precuneus and inferior parietal lobule are critical nodes in the 
default mode network (DMN) that play essential roles in cognitive 
processing (Ruppert et al., 2021). Increased hypometabolism in the 
precuneus is associated with increased cognitive decline in patients with 
PD, and baseline precuneus gyrus cerebral fluorodeoxyglucose-PET 
(FDG-PET) data could be used to differentiate between PDD con
verters and stable PD-MCI patients (Booth et al., 2022). The IPL is 
engaged in a wide range of cognitive tasks, including spatial attention, 
language processing, and recall of situational memory (Xing et al., 
2021). Reduced functional connectivity in the bilateral inferior parietal 
lobule in PD patients is significantly correlated with various cognitive 
parameters (Tessitore et al., 2012). 

In addition, in our study, features were selected in the occipital and 
temporal areas, including the cuneus, superior occipital gyrus, inferior 
occipital gyrus, middle temporal gyrus and inferior temporal gyrus. The 
occipital lobe is critical for memory-related visuospatial information 
processing, and the MOG is an integral part of the visual cortex (Xing 
et al., 2021). Occipital cortical atrophy has been linked to hallucinations 
in patients with PD, and aberrant hallucinations may enhance suscep
tibility to cognitive impairment (Xia et al., 2013). The inferior temporal 
gyrus is the final part of the ventral visual pathway, and temporal lobe 
atrophy is associated with impaired visuospatial abilities in patients 
with PDD (Rektorova et al., 2014). 

Our study had some limitations. Firstly, the sample size of this study 
was limited due to the specificity of the subjects (new diagnosis, 5 years 
of follow-up), although we used 1000 times bootstrap and different 
classifiers to evaluate our findings. In future work, larger sample sizes 

Fig. 3. Bar charts show the frequency of features selected for classification of Parkinson’s disease with mild cognitive impairment converters and nonconverters. (a) 
Features of structural connectivity only. (b) Features of both clinical data and structural connectivity. L, left; R, right; IFG, inferior frontal gyrus; A45c, caudal area 
45; A44op, opercular area 44; INS, insular gyrus; dIa, dorsal agranular insula; PoG, postcentral gyrus; A1/2/3tonIa, area 1/2/3(tongue and larynx region); dIg, dorsal 
granular insula; SPL, superior parietal lobule; A7pc, postcentral area 7; Pcun, precuneus; A5m, medial area 5; OrG, orbital gyrus; A11m, medial area 11; BG, basal 
ganglia; vCa, ventral caudate; cHipp, caudal hippocampus; cTtha, caudal temporal thalamus; IPL, inferior parietal lobule; A40rd, rostrodorsal area 40; A2, area 2; 
MVOcC, medioventral occipital cortex; cCunG, caudal cuneus gyrus; LOcC, lateral occipital cortex; msOccG, medial superior occipital gyrus; MFG, middle temporal 
gyrus; A9/46d, dorsal area 9/46; A9/46v, ventral area 9/46; OPC, occipital polar cortex; iOccG, inferior occipital gyrus; dCa, dorsal caudate; Pptha, posterior parietal 
thalamus; MTG, middle temporal gyrus; A21r, rostral area 21; ITG, inferior temporal gyrus; A20il, intermediate lateral area 20. 
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should be used to validate these findings. Second, because the PPMI is a 
cohort of PD patients with de novo disease and that its cognitive scale 
differs from that used in other studies, there is no feasible external 
cohort similar to the PPMI to validate our findings. Third, the use of MDS 
level I scores instead of level II diagnosis criteria in the PPMI cohort to 
diagnose PD-MCI may result in incorrect diagnoses. Finally, patients 
received treatment during the follow-up period, which may interfere 
with the cognition diagnosis. 
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Fig. 4. The distribution of structural connectivity features according to different combinations. (a) Features of structural connectivity only. (b) Features of both 
clinical data and structural connectivity. L, left; R, right; IFG, inferior frontal gyrus; A45c, caudal area 45; A44op, opercular area 44; INS, insular gyrus; dIa, dorsal 
agranular insula; PoG, postcentral gyrus; A1/2/3tonIa, area 1/2/3(tongue and larynx region); dIg, dorsal granular insula; SPL, superior parietal lobule; A7pc, 
postcentral area 7; Pcun, precuneus; A5m, medial area 5; OrG, orbital gyrus; A11m, medial area 11; BG, basal ganglia; vCa, ventral caudate; cHipp, caudal hip
pocampus; cTtha, caudal temporal thalamus; IPL, inferior parietal lobule; A40rd, rostrodorsal area 40; A2, area 2; MVOcC, medioventral occipital cortex; cCunG, 
caudal cuneus gyrus; LOcC, lateral occipital cortex; msOccG, medial superior occipital gyrus; MFG, middle temporal gyrus; A9/46d, dorsal area 9/46; A9/46v, 
ventral area 9/46; OPC, occipital polar cortex; iOccG, inferior occipital gyrus; dCa, dorsal caudate; Pptha, posterior parietal thalamus; MTG, middle temporal gyrus; 
A21r, rostral area 21; ITG, inferior temporal gyrus; A20il, intermediate lateral area 20. 
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