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Abstract
It is clear that biofilm formation causes many serious health-care problems. Interestingly, sub minimum inhibitory concentrations (sub-MICs)

of some biocides can induce biofilm formation in bacteria. We investigated whether sub-MICs of Savlon, chlorhexidine and deconex®, as

biocidal products, can induce biofilm formation in clinical isolates of Pseudomonas aeruginosa. To determine MICs and biofilm formation,

we performed microtitre plate assays. All three biocides induced biofilm formation at sub-MICs; Savlon was the most successful

antiseptic agent to induce biofilm formation among P. aeruginosa isolates. Deconex had the best inhibition effect on planktonic cultures of

P. aeruginosa isolates. We concluded that sub-MICs of Savlon and deconex could significantly induce biofilm formation.
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Introduction
Antiseptics have been extensively applied in domestic and
clinical settings as a convenient way of disinfection and pro-

tection against bacterial contamination for more than half a
century [1]. Pseudomonas aeruginosa, a human opportunistic

Gram-negative pathogen, is one of the most important noso-
comial pathogens and is a major health problem, primarily in
immunocompromised individuals. It causes a wide spectrum of

infections in multiple organs, such as the respiratory, urinary
and gastrointestinal tracts [2–4]. This organism is highly

tolerant of harsh conditions and has the ability to survive in
various environments, including hospital environments, on

medical equipment, such as mechanical ventilators, urinary or
This is an open access arti
dialysis catheters and endoscopes, and in sinks. Stability in these

environments causes contamination [5]. Biofilm formation by
P. aeruginosa increases morbidity and mortality through its

protection against the host immune system and antibiotic
treatment [6,7]. Bacterial biofilms are responsible for about
80% of all chronic human infections [8,9]. A biofilm comprises a

complex aggregation of microorganisms surrounded by a ma-
trix of extracellular polymeric substance [10], and is a mode of

life that helps bacteria to resist antibiotics and survive [11].
Unfortunately, biofilm structures cause many problems through

their formation on tissue and medically implanted devices [12].
Although most currently available antimicrobial agents cannot

eradicate biofilm infections, some antimicrobial agents can
induce their formation at sub-minimal inhibitory concentrations
(sub-MICs) [13]. To eradicate the bacterial biofilm, a combi-

nation of multiple strategies to boost both activity of conven-
tional antimicrobial agents and the host immune system is

necessary [9,14]. Therefore, the aim of the study was to
determine the in vitro effect of some conventional antiseptic

agents, including Savlon, chlorhexidine and deconex® in biofilm
formation by P. aeruginosa isolates.
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Materials and methods
Ethics statement
Written informed consent was obtained from all patients and

the study protocol was approved by the ethics committee of
the Ilam University of Medical Sciences.

Bacterial isolates
This cross-sectional study was conducted from May 2015 to
November 2016 in some of the hospitals in Ilam province,

western Iran. Fifty clinical P. aeruginosa isolates (obtained from
burn and urinary tract infections) were identified by standard

conventional microbiological and biochemical methods [15].

Sub-MIC determination
Three biocidal agents were used. Chlorhexidine 0.2% (Iran Najo

Pharmaceutical Co., Tehran, Iran) contains 0.2 g chlorhexidine
per 100 mL and is recommended for use without dilution. Savlon

(Behsa Pharmaceutical Co., Tehran, Iran) contains 1.5 g chlor-
hexidine gluconate plus 15 g cetrimide per 100 mL and is

recommended for use at a 1:30 dilution. 100 g Deconex® (Borer
Chemie AG, Zuchwil, Switzerland) contains 12 g ethanedial, 0.5 g

pentanedial, 7.5 g didecyldimethylammonium chloride and is
recommended for use at 1% and 2% dosages.

We investigated the MIC value of deconex in a total volume of

200 μL using the microtitre method from the Hengzhuang et al.
procedure [16]. In the case of chlorhexidine, the dilutions used

were 1:600, 1:500, 1:400, 1:200, 1:100, 1:66 and 1:50. For Savlon,
the dilutions used were 1:40 000, 1:16 000, 1:8000, 1:4000,

1:2640, 1:2000 and 1:1600. Finally, 1:60 000, 1:33 300, 1:20 000,
1:10 000, 1:6600, 1:500 and 1:400 were used for deconex.

Biofilm assay
We used the microtitre plates assay for biofilm assay in
Luria–Bertani medium (Merck, Darmstadt, Germany) [17].

Briefly, we added appropriately adjusted overnight bacterial
cultures (0.5 McFarland, including, 1.5 × 108 CFU⁄mL) into the

wells of 96-well plates (SPL,Gyeonggi-do, SouthKorea), followed
by incubation at 37°C for 48 hours. After washing three times in

phosphate-buffered saline, unattached bacterial cells were
removed. Biofilm was stained with 200 μL crystal violet 0.1%

(weight/volume) for 15 minutes and the wells were rewashed
with phosphate-buffered saline (pH 7.2). The dye bound to the
adherent cells was resolubilized with 200 μL of 95% ethanol.

Optical density (OD) was measured at 492 nm using an ELISA
reader (Synergy4; BioTek, Winooski, VT, USA). Each assay was

performed in triplicate. Negative control wells were also
included (uninoculated broth). Pseudomonas aeruginosa PAO1 (a

biofilm-producing isolate) was used as positive control [18].
© 2020 The Authors. Published by Elsevier Ltd, NMNI, 38, 100794
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The adherence capabilities of the test isolates were classified

into four categories; three standard deviations (SDs) above the
mean OD of the negative control (broth only) was considered

as the cut-off optical density (ODc). Isolates were classified as
follows: if OD � ODc, then the bacteria were non-adherent; if

ODc < OD � 2 × ODc, then the bacteria were weakly
adherent; if 2 × ODc < OD � 4 × ODc, then the bacteria were
moderately adherent; and if 4 × ODc < OD, then the bacteria

were strongly adherent.
In addition, for assaying the biofilm formation inducement,

we used different concentrations of biocidal agents at sub-MICs
in triplicate [19]. The biofilm value was estimated using the

following formula: Biofilm value = (Test OD492 nm – Control
OD492 nm).

Statistical analysis
SPSS 19.0 software was used for statistical analysis (SPSS Inc.,
Armonk, NY, USA). Categorical variables were compared using

the chi-squared test as appropriate. Student’s t-test was used to
compare the different biofilm categories. Values of p < 0.05

were considered as statistically significant.
Results
Our findings showed the high ability (86%) of biofilm formation

in clinical P. aeruginosa isolates (Table 1). Interestingly, the
ability of biofilm formation among isolates obtained from burn

skin samples was higher than isolates obtained from urine
samples (p 0.012). The results of the MIC assay showed that

chlorhexidine had a MIC range from 1:400 to 1:50
(mean z 1:225). The MIC range was 1:33 300 to 1:100
(mean z 1:16 700) for deconex and Savlon had a MIC range

from 1:400 to 1:8000 (mean z 1:2800).
Interestingly, the burn isolates were significantly more sus-

ceptible than the urinary tract infection isolates, especially they
were more susceptible to chlorhexidine (Table 2). Notably, we

observed that deconex had the best inhibition effect on
planktonic cultures of P. aeruginosa isolates.

In within-group comparisons, based on the results shown in
Table 3, proportions (95% CI) of biofilm inducement in
chlorhexidine, deconex and Savlon were 64% (49.2%–77.1%),

68% (53.3%–80.5%) and 76% (61.8%–86.9%), respectively. The
binomial test showed that proportion of biofilm inducement in

chlorhexidine was not significant, but in the deconex and Savlon
groups, the proportion of biofilm inducement was significant (p

0.015 and p < 0.001, respectively) (Fig. 1). Between-group
comparisons, as shown in Table 3, showed that the pro-

portions of biofilm inducement in the deconex and Savlon
nses/by-nc-nd/4.0/).
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groups were 6% and 19% more than chlorhexidine, but these

differences were not significant (p 0.673 and p 0.190,
respectively).
Discussion
In this study the effects of the commonly used antiseptics
Savlon, chlorhexidine and deconex at sub-MICs on biofilm

formation were determined using clinical P. aeruginosa isolates.
Several previous studies have demonstrated that biofilm

formation can be induced by sub-MICs of antibacterial agents
[20–22]. Biofilm formation is induced when bacteria are
exposed to a sub-MIC of antimicrobial agents during chemo-

therapy, by varying gradients of antimicrobial agents over the
course of the dosing regimen, or by bacterial location depth

within the biofilm structure, which causes diffusion gradients
[23]. We assessed whether the sub-MIC concentrations of

antiseptic agents were able to induce biofilm formation. Ac-
cording to MIC data, we found that deconex was the best

antiseptic agent against P. aeruginosa isolates (low concentra-
tion). Ogunniyi et al. [24] reported that MIC values of Savlon
were in the high dilution range (low concentration) of 1:400
TABLE 1. The results of biofilm formation in Pseudomonas

aeruginosa

Biofilm production producer Frequency %

No biofilm producer 7 14.0
Weak biofilm producer 5 10.0
Moderate biofilm producer 14 28.0
Strong biofilm producer 24 48.0

TABLE 2. The MIC range of Savlon, chlorhexidine and deconex®

Strain no.a

MIC range

Strain no.

MIC range

Chlorhexidine Deconex Savlon Chlorhexidine

1 1:200 1:33 300 1:4000 18 1:400
2 1:100 1:33 300 1:2000 19 1:200
3 1:400 1:10 000 1:2640 20 1:200
4 1:200 1:400 1:4000 21 1:400
5 1:100 1:6600 1:4000 22 1:200
6 1:200 1:33 300 1:2640 23 1:200
7 1:66 1:33 300 1:1600 24 1:200
8 1:50 1:60 000 1:1600 25 1:200
9 1:200 1:60 000 1:2000 26 1:66
10 1:66 1:60 000 1:1600 27 1:200
11 1:200 1:60 000 1:1600 28 1:400
12 1:100 1:6600 1:4000 29 1:100
13 1:200 1:6600 1:4000 30 1:66
14 1:100 1:6600 1:4000 31 1:66
15 1:200 1:500 1:4000 32 1:66
16 1:200 1:6600 1:2640 33 1:66
17 1:200 1:10 000 1:2640 34 1:66

aNumbers 1–25, burn infection Pseudomonas aeruginosa; numbers 26–50, urinary tract infec
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and 1:350, whereas Enterobacter aerogenes needed a low dilu-

tion (1:50) for total growth inhibition.
Although deconex was the best antiseptic agent to remove

pathogens from surfaces, it has been proved that this antiseptic
agent is toxic and unstable [25]. These three antiseptic agents

could induce biofilm formation at sub-MICs, and Savlon had
more ability in biofilm induction. Increasing antibiotic resistance
is one of the important problems related to biofilm formation

[26]. Aka and Haji reported that the antibiotic concentration
needed for eradicating the biofilm-forming bacteria is about

10 000 times greater than planktonic cells, and its formation can
be induced by some factors or environmental conditions [22].

They investigated the effects of sub-MIC concentrations of
antibiotics on the P. aeruginosa biofilm in the presence of

chlorhexidine.
They also showed that P. aeruginosa isolates that are incu-

bated in sub-inhibitory concentrations of chlorhexidine could

induce stronger biofilms in the presence of sub-MICs of anti-
biotics. The outer membrane of P. aeruginosa is responsible for

this resistance to chlorhexidine and many other antiseptics.
Lefebvre et al. [27] conducted a multistep strategy to

generate a combined antibiofilm treatment (various commercial
antiseptics, enzymes and EDTA) that could efficiently decrease

the biomass of dense biofilms (�6 × 107 CFU/cm2) in
P. aeruginosa and Staphylococcus aureus. The combination of

antiseptics, EDTA and proteases, all at low concentrations, has
shown a synergistic effect leading to total eradication of dense
biofilms in both P. aeruginosa and S. aureus.

Their findings showed that bacterial biofilm was enhanced by
chlorhexidine culture compared with chlorhexidine-free cul-

ture [22]. Moreover, a sub-MIC concentration of antimicrobial
agents has a strong effect on mutation rates and horizontal

antimicrobial resistance genes transfer [28].
Strain no.

MIC range

Deconex Savlon Chlorhexidine Deconex Savlon

1:33 300 1:8000 35 1:100 1:6600 1:1600
1:10 000 1:2640 36 1:50 1:6600 1:1600
1:10 000 1:4000 37 1:50 1:10 000 1:1600
1:6600 1:1600 38 1:100 1:10 000 1:1600
1:10 000 1:4000 39 1:100 1:10 000 1:1600
1:6600 1:2640 40 1:50 1:6600 1:1600
1:10 000 1:4000 41 1:50 1:6600 1:1600
1:10 000 1:4000 42 1:50 1:10 000 1:1600
1:33 300 1:4000 43 1:50 1:10 000 1:4000
1:10 000 1:4000 44 1:50 1:10 000 1:2000
1:10 000 1:4000 45 1:50 1:6600 1:1600
1:60 000 1:2000 46 1:50 1:6600 1:1600
1:60 000 1:1600 47 1:50 1:10 000 1:4000
1:10 000 1:4000 48 1:400 1:500 1:2640
1:6600 1:1600 49 1:100 1:10 000 1:4000
1:10 000 1:1600 50 1:50 1:60 000 1:4000
1:6600 1:1600

tion P. aeruginosa.

© 2020 The Authors. Published by Elsevier Ltd, NMNI, 38, 100794
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TABLE 3. Proportion of biofilm inducement in chlorhexidine, deconex and Savlon group

Biocides
Biofilm
inducement Proportion% (95% CI) p-value Proportion ratio (95% CI) p-value

Chlorhexidine (n = 50) Yes 32 64% (49.2–77.1) 0.065 Reference group —
No 18 36% (22.9–50.8)

deconex® (n = 50) Yes 34 68% (53.3–80.5) 0.015 1.06 (0.80–1.40) 0.673
No 16 32% (19.5–46.7)

Savlon (n = 50) Yes 38 76% (61.8–86.9) <0.001 1.19 (0.92–1.54) 0.190
No 12 24% (13.1–38.2)

FIG. 1. Proportion of biofilm inducement at sub-MICs of Savlon, chlorhexidine and deconex
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The current study could be useful to optimize antiseptic

concentrations. It is not necessary to use a higher than MIC
concentration of antimicrobial agents for eradicating the

bacterial pathogens. Ebrahimi et al. showed that benzalkonium
chloride at concentrations higher than the MIC have no

further effects on growth and biofilm formation of planktonic
cells [29]. Currently, there is limited evidence about biofilm

formation and its mechanism at sub-MICs of antimicrobial
agents. A global response to cell stress (by directly or
© 2020 The Authors. Published by Elsevier Ltd, NMNI, 38, 100794
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
indirectly inducing the SOS response) seems to play an

important role. However, the concentration of antimicrobial
agent and the mechanisms involved are different for each

bacterial species [23,30].
Our results displayed that they might be helpful to elabo-

rate the efficient strategies in elimination of biofilms in
P. aeruginosa and favour the healing process. However, the

results here may have a potential clinical impact in the area of
wound healing to eliminate the biofilm formation, such as local
nses/by-nc-nd/4.0/).
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disinfection in combination with antibiotics seems to be

essential in the case of urinary or skin infections. Finally, it
would be of interest to perform these tests routinely in case

of persistence of these strains in case of relapse or of thera-
peutic failure.
Conclusions
The clinical isolates of P. aeruginosa in sub-MICs of chlorhexi-
dine, Savlon and deconex exhibited induction of biofilm.

Furthermore, deconex had a powerful inhibitory effect against
P. aeruginosa isolates. However, there is little evidence about a
mechanism at sub-MICs of antiseptics and the concentration of

antiseptics; furthermore, the involved mechanisms differ for
each bacterial species.
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