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Objective: This study aims to explore the clinical value of machine learning-based
ultrasomics in the preoperative noninvasive differentiation between hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC).

Methods: The clinical data and ultrasonic images of 226 patients from three hospitals were
retrospectively collected and divided into training set (n = 149), test set (n = 38), and
independent validation set (n = 39). Manual segmentation of tumor lesion was performed
with ITK-SNAP, the ultrasomics features were extracted by the pyradiomics, and
ultrasomics signatures were generated using variance filtering and lasso regression. The
prediction models for preoperative differentiation between HCC and ICC were established
by using support vector machine (SVM). The performance of the three models was
evaluated by the area under curve (AUC), sensitivity, specificity, and accuracy.

Results: The ultrasomics signatures extracted from the grayscale ultrasound images
could successfully differentiate between HCC and ICC (p < 0.05). The combined model
had a better performance than either the clinical model or the ultrasomics model. In
addition to stability, the combined model also had a stronger generalization ability (p <
0.05). The AUC (along with 95% CI), sensitivity, specificity, and accuracy of the combined
model on the test set and the independent validation set were 0.936 (0.806–0.989),
0.900, 0.857, 0.868, and 0.874 (0.733–0.961), 0.889, 0.867, and 0.872, respectively.
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Conclusion: The ultrasomics signatures could facilitate the preoperative noninvasive
differentiation between HCC and ICC. The combined model integrating ultrasomics
signatures and clinical features had a higher clinical value and a stronger generalization ability.
Keywords: hepatocellular carcinoma, intrahepatic cholangiocarcinoma, machine learning, radiomics, ultrasonography
INTRODUCTION

Primary liver cancer (PLC) is the second most common cause of
cancer-related death worldwide (1, 2). The incidence andmortality
of PLC are steadily increasing (3), which is a great threat to global
public health. Histologically, PLC is divided into hepatocellular
carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and
rare types (less than 1%), such as mixed liver cancer (4). Although
HCC and ICC share some similar risk factors and clinical
manifestations, they differ in molecular features and carcinogenic
mechanism(5).Therefore, the therapeutic decision-making and the
prognosis alsodiffer between the two (6). ForHCCpatients, surgical
resection remains the first-line treatment (7). Early ICC is usually
asymptomatic and the appearance of clinical symptoms may
indicate the spread and metastasis of cancer. ICC generally
remains undetected until the late stage. These features of ICC
have limited the choices of surgery or liver transplantation for
ICC patients. According to international guidelines, accurate
differentiation between HCC and ICC is a prerequisite for
sufficient first-line therapy of patients (8–10). Also, the survival
and the prognosis of ICC patients are usually worse than those of
HCC patients (11). It is critical to differentiate between HCC and
ICC before surgery to make correct clinical decisions and
prognostic predictions.

Generally, HCC and ICC are diagnosed based on imaging and
serological and pathological evaluations (12). It was realized that
the naked eye could identify limited information, and the
conventional preoperative imaging evaluation could be highly
subjective and differed based on the radiologist’s experience. It
may fail to detect hidden metastases or determine the infiltration
scope of the tumor lesions (13). Also, in patients with liver
cirrhosis, the conventional imaging techniques can hardly
differentiate between small lesions of ICC and HCC. This is
because most ICC and HCC lesions share a similar enhancement
pattern (14). Given the facts above, the conventional imaging
techniques only have a limited application value in tumor
patients. Alpha-fetoprotein (AFP) and carbohydrate antigen
19-9 (CA19-9) are considered the ideal serum tumor markers
for HCC and ICC. However, these two tumor markers are
generally unsatisfactory in diagnostic sensitivity or specificity.
HCC, hepatocellular carcinoma; ICC,
, alpha-fetoprotein; ALT, alanine
transferase; TB, total bilirubin; CB,
bilirubin; DICOM, digital imaging

M, gray-level cooccurrence matrix;
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They may be unreliable if the diagnosis of tumors is made based
on them alone (15, 16). As the risk of cancers increases at the late
stage, tumor biopsy does not apply in most situations (17). At
present, it is urgent to look for a preoperative noninvasive
method to differentiate between HCC and ICC.

Radiomics is an emerging technology, which deals with the
extraction of a large bulk of information from medical images
with high throughput, for example, shape, grayscale, textures,
and wavelets. Radiomics involves deeper mining, prediction, and
analysis of the extracted information to make more accurate
diagnoses and tap into the full potential of medical imaging. In
recent years, radiomics has been widely applied to tumor
diagnosis (18–20), pathology grade (21, 22), vascular invasion
and therapeutic evaluation (23, 24), and prognostic prediction
(25, 26). Compared with other imaging techniques, ultrasound
has the advantages of low cost, easy operation, immediate result
interpretation after examination, and no radiation exposure (27,
28). Due to these advantages, the clinical application of
ultrasomics is worthy of further investigation. Ultrasomics has
been proven useful in the early diagnosis, preoperative grading
prediction, efficacy evaluation and prognosis evaluation of liver
tumor, breast tumor, thyroid tumor, gastrointestinal tumor,
glioma, and other common tumor diseases (29–32). However,
there are few reports on the preoperative differentiation between
HCC and ICC based on ultrasomics. Peng et al. applied
ultrasomics to preoperative noninvasive differentiation between
the histopathological subtypes of PLC (33). However, their study
was confined to a single center and lacked of further validation of
the findings. The present study was intended to investigate the
clinical value of ultrasomics signatures in preoperative
differentiation between HCC and ICC. The model performance
was also tested on an independent validation set.
MATERIALS AND METHODS

Study Population
A multicenter retrospective study involving three hospitals was
performed, whichwas approved by the ethics committee. Informed
consent was waived given the retrospective nature of the study.
Clinical data and ultrasound images were collected from 2,137
patients pathologically confirmed asHCC or ICC at three hospitals
from January 2019 to March 2021. Among them, 226 patients
(HCC = 176, ICC = 50) were included in the final analysis. The
inclusion criteria were as follows: (1) being pathologically
confirmed as HCC or ICC; (2) having received liver ultrasound
within 1 month before surgery and the ultrasound images
information being intact; (3) having not received antitumor
treatments before, including liver transplantation (LT),
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microwave ablation (MWA), radiofrequency ablation (RFA), and
transcatheter arterial chemoembolization (TACE); (4) the
ultrasound images satisfying the analytical requirements and the
target lesions being totally visible on the ultrasound images; and (5)
no history of concurrent malignancies. The flow chart of subject
inclusion and exclusion is shown in Figure 1.

Patients from two hospitals (Henan Provincial Peoples Hospital
and the First AffiliatedHospital of ZhengzhouUniversity) (n= 187,
HCC=146, ICC=41)weremixed anddivided into training set (n=
149,HCC=118, ICC=31) and test set (n=38,HCC=28, ICC=10)
by stratified sampling at a ratio of 8:2. The patients from a third
hospital (HenanCancerHospital) (n=39,HCC=30, ICC=9)were
used as an independent validation set.

Clinicopathological Characteristics of Patients
The clinical data were acquired from the electronic health
records, including: demographics (gender, age, history of
Frontiers in Oncology | www.frontiersin.org 3
hepatitis), laboratory tests (AFP, ALT, AST, TB, CB, and UCB)
and ultrasound features (size of lesion). The laboratory tests and
ultrasound imaging were examined within 1 month before
surgery. The patients’ pathology information (the pathological
diagnosis of HCC or ICC) was obtained from the pathology
information system.

Imaging Acquisition and Segmentation
Ultrasound images of liver tumors were collected using the Color
Doppler Ultrasound System with a convex array transducer
(frequency range 2.5–6 MHz), including GE Logiq E9, GE
Vivid E9, HI VISION Ascendus, HI ALOK ProSound A5,
Philips EPIQ 5, and Aloka EZU-MT28-S1. All ultrasound
scans were performed by ultrasound physicians who had over
5 years of experience in liver ultrasound. At least one original
ultrasound image showing the lesion and the same image
containing the measurement parameters were stored in the
DICOM format.

The open-source software ITK-SNAP v.3.6.0 was used to
manually delineate the region of interest (ROI) (34). First, an
ultrasound physician with over 9 years of experience loaded the
images into the ITK-SNAP software and manually annotated the
entire lesion. Another ultrasound physician with 30 years of
experience then delineated ROI in the lesions for all ultrasound
images. The reproducibility of feature extraction from ROI was
evaluated according to the delineation results. Both ultrasound
physicians had 4 years of working experience concerning ITK-
SNAP software. They were blinded to clinical history and
pathology results but were aware of the purpose and design of
the study. The ROI segmentation results for the representative
liver lesions are shown in Figure 2.

Feature Extraction and Selection
A researcher with 5 years of experience performed image
preprocessing to eliminate variability of the ultrasound images
arising from the use of different ultrasound equipment at
different hospitals and to improve the reproducibility of feature
extraction. First, the ultrasound images were normalized based
on the mean and standard deviation. Second, the images were
resampled by B-spline interpolation to 1 mm × 1 mm pixel.
Finally, gray-level discretization was performed for the
histogram with the bin width fixed at 25 (35).

The open-source Python package Pyradiomics v.2.1.2 was
used to extract ultrasound features from each patient. The
A B DC

FIGURE 2 | Example of delineating region of interest (ROI) on grayscale ultrasound images. (A, B) Patient with HCC. (C, D) Patient with ICC.
FIGURE 1 | The flowchart of inclusion and exclusion of the study population.
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extracted features were divided into the following seven
categories (36): (I) first-order statistical features; (II) two-
dimensional shape features; (III) gray-level cooccurrence
matrix (GLCM); (IV) gray-level run length matrix (GLRLM);
(V) gray-level size-zone matrix (GLSZM); (VI) gray-level
dependence matrix (GLDM); (VII) neighborhood gray-tone-
difference matrix (NGTDM). Fourteen filters were applied on
the original images to obtain the derivative images for each
patient. Except for the shape features, the features of all
categories were directly obtained from the original and
derivative images. Detailed information about the feature
extraction method, filters, and features is available in the
Supplementary Materials 1, 2.

Since the unit and value range varied for different extracted
features, the feature values were of varying scales. To cope with
this problem, we performed Z-score normalization before feature
selection to ensure a relatively uniform distribution of the image
features. However, all of the extracted features were high
dimensional. The use of high-dimensional features might have
the problems of low computational efficiency and overfitting
(37). First, the features with zero variance were excluded by using
the variance filtering method. Next, lasso method was performed
for further dimensionality reduction of the features and the most
valuable features were selected. The 10-fold cross-validation
process was repeated 1,000,000 times to obtain the optimal
value of parameter l, which was introduced into the lasso
method to calculate the regression coefficients of each feature.
Finally, the features with nonzero coefficient were selected. The
study workflow is shown in Figure 3.

Machine Learning Model Construction
and Evaluation
We invoked the Python scikit-learn 0.23.2 package for SVM
model training and performance evaluation. The patients from
two hospitals were randomly divided into training set and test set
by stratified sampling at a ratio of 8:2. The patients from a third
hospital were used as an independent validation set. The learning
curve and the grid search were used concomitantly to select the
Frontiers in Oncology | www.frontiersin.org 4
optimized parameter combination consisting of the kernel
function, coefficient of kernel function, penalty coefficient and
class_weight. The specific process of parameter tuning is available
in the Supplementary Material 3.

Three models were constructed in this paper. First, the
clinical model was constructed using the patients’ clinical data,
including gender, age, history of hepatitis, AFP, ALT, AST, TB,
CB, UCB, and the size of lesion. Second, an ultrasomics model
was constructed using the ultrasomics signatures extracted and
selected from the ROI delineated on the ultrasound images of the
HCC or ICC patients. Finally, the combined model was built by
integrating the clinical features and the ultrasomics signatures.
The details of the model construction process can be found in the
Supplementary Material 4.

The three models built upon the training set were evaluated
using the test set and the independent validation set. The
predictive performance of the three models was evaluated by
plotting the ROC and estimating the performance indicators,
including AUC (along with 95% CI), accuracy, sensitivity, and
specificity. An overview of the entire process is shown
in Figure 3.

Statistical Analysis
SPSS 25.0 software was used for statistical analysis. The
normality of continuous variables was tested using the
Kolmogorov-Smirnov test. Continuous variables obeying a
normal distribution were analyzed by the independent-samples
t-test. Otherwise, they were analyzed by Wilcoxon’s rank-sum
test. The relationships between the categorical variables were
tested by using the chi-square test. The continuous variables
obeying a normal distribution were expressed as mean ±
standard deviation. Otherwise, the continuous variables were
expressed by medians [interquartile range (IQR)]. Categorical
variables were expressed as n (%). p < 0.05 indicated a significant
difference. The Delong test was employed for a quantitative
comparison of the ROC among the three models (38).

The reproducibility of feature extraction was evaluated using
the intraclass correlation coefficient, which greater than 0.8
FIGURE 3 | Overall flowchart of the study, including image acquisition and segmentation, feature extraction and feature selection, and model construction and evaluation.
November 2021 | Volume 11 | Article 749137
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indicated high consistency, 0.5 to 0.79 moderate consistency, and
less than 0.5 low consistency (39).
RESULTS

Clinicopathological Characteristics
of Patients
The clinicopathological features in the training set, test set, and
independent validation set are shown in Table 1. The
percentages of ICC patients in the training set, test set, and
independent validation set were 20.8% (31/149), 26.3% (10/38),
and 23.1% (9/39), respectively. The percentages of ICC patients
with a history of hepatitis were 63.8% (95/149), 73.7% (28/38),
and 74.4% (29/39), respectively. The average age of patients was
57.2 ± 11.1, 58.7 ± 9.3, and 59.1 ± 11.2 in the training set, test set,
and independent validation set, respectively. The three sets did
not differ significantly in demographics, laboratory test results,
and ultrasound features (p > 0.05).
Feature Extraction and Selection
From each patient, 1,409 features were extracted from the
ultrasound images. Among the extracted features, fourteen 2D
shape features were obtained only from the original images.
Except for that, the features of all other six categories were
obtained from one original image plus 14 derivative images.
There were 18 first-order statistical features, 24 GLCM features,
16 GLRLM features, 16 GLSZM features, 14 GLDM features, and
5 NGTDM features. More information about the extracted
features is listed in the Supplementary Material 2.

Among these extracted features, 330 features with an intraclass
correlation coefficient below 0.8 were first excluded. Then 16
features with zero variance were excluded using the variance
Frontiers in Oncology | www.frontiersin.org 5
filtering method. Lasso was used to reduce the dimensionality,
which finally resulted in 14 features. The process of lasso feature
selection is illustrated in Figure 4, with detailed information
shown in the Supplementary Figures S1–S3.
Predictive Performance of the Clinical
Model and the Ultrasomics Model
The ROC curves of the clinical model and the ultrasomics model
on the training set, test set, and independent validation set are
shown in Figures 5A, B. On the test set, AUC (along with 95%
CI), sensitivity, specificity, and accuracy of the clinical model and
the ultrasomics model were 0.711 (0.541–0.846), 0.700, 0.714,
and 0.711 vs. 0.843 (0.688–0.940), 0.900, 0.750, and 0.790,
respectively. On the independent validation set, these
performance indicators were 0.800 (0.641–0.911), 0.889, 0.667,
and 0.718 vs. 0.730 (0.564–0.859), 0.667, 0.700, and 0.692,
respectively. According to the results above, the ultrasomics-
based model outperformed the clinical model in AUC and
accuracy on the test set. The situation was just the opposite on
the external validation set. The performance of the clinical model
and the ultrasomics model in differentiation between HCC and
ICC on the training set, test set, and independent validation set is
shown in Table 2.
Predictive Performance of the
Combined Model
Figure 5C displays the ROC curves of the combined model on
the training set, test set, and independent validation set. The
AUC (along with 95% CI), sensitivity, specificity, and accuracy of
the combined model on the test set and the independent
validation set were 0.936 (0.806–0.989), 0.900, 0.857, and 0.868
vs. 0.874 (0.733–0.961), 0.889, 0.867, and 0.872 (Table 2),
TABLE 1 | The clinicopathological features in the training set, test set, and validation set.

Training set (n = 149) Test set (n = 38) p-value Validation set (n = 39) p-value

Gender 0.55 0.70
Male 105 (70.5%) 29 (76.3%) 29 (74.4%)
Female 44 (29.5%) 9 (23.7%) 10 (25.6%)
Age (years)a 57.2 ± 11.1 58.7 ± 9.3 0.43 59.1 ± 11.2 0.35
Liver diseases 0.34 0.26
Hepatitis 95 (63.8%) 28 (73.7%) 29 (74.4%)
Other 54 (36.2%) 10 (26.3%) 10 (25.6%)
AFP (ng/ml)b 13.5 (4.0–764.8) 7.2 (3.4–97.9) 0.13 35.8 (2.9–1137.0) 0.99
ALT (U/L)b 29.0 (20.0–51.0) 25.5 (18.5–56.3) 0.73 40.3 (21.3–59.0) 0.23
AST (U/L)b 36.0 (26.0–52.3) 35.0 (22.0–55.7) 0.67 42.1 (25.0–80.0) 0.18
TB (µmol/L)b 12.5 (9.6–19.0) 16.1 (10.8–22.2) 0.20 12.7 (9.7–18.5) 0.70
CB (µmol/L)b 5.4 (4.0–8.1) 6.8 (4.6–11.0) 0.06 4.8 (3.5–9.8) 0.62
UCB (µmol/L)b 7.1 (5.1–10.9) 7.9 (5.8–13.6) 0.26 8.1 (5.4–11.3) 0.19
Dmax (mm)b 49.0 (32.0–76.0) 39 (20.0–77.3) 0.17 43.0 (32.0–67.0) 0.40
Pathological subtype 0.51 0.83
HCC 118 (79.2%) 28 (73.7%) 30 (76.9%)
ICC 31 (20.8%) 10 (26.3%) 9 (23.1%)
N
ovember 2021 | Volume 11 | Article
Except where indicated, data are numbers of patients, with percentages in parentheses.
aData are expressed as mean ± standard deviation.
bData are medians, with interquartile range in parentheses.
p < 0.05 indicates there are significant differences in clinicopathological features of patients in the training set vs. test set and training set vs. validation set.
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respectively. Thus, the combined model integrating ultrasomics
signatures and clinical features had a better performance in
differentiation between HCC and ICC than the other two
models. The combined model had more stable performance
and higher generalization ability (p < 0.05).
DISCUSSION

In clinical practice, physicians depend heavily on clinical
symptoms, tumor serum markers, and imaging examination to
differentiate between PLC subtypes before surgery. Since HCC
and ICC share similar risk factors and clinical manifestations, the
routine examination methods may lead to diagnostic mistakes.
In the present study, ultrasomics signatures were generated using
normalization, variance filtering, and lasso regression, and the
prediction models were established by using SVM. The results
showed that the ultrasomics signatures were successfully used to
differentiate between HCC and ICC on the training set, test set,
Frontiers in Oncology | www.frontiersin.org 6
and the independent validation set (p < 0.05). The combined
model outperformed the ultrasomics model on the test set, while
the performance of clinical model was worse, the AUC of which
was 0.936, 0.843, and 0.711, respectively. On the independent
validation set, the performance of the combined model was still
the best (p < 0.05). However, the performance of the ultrasomics
model was worse than that of the clinical model (p < 0.05). The
AUC was 0.874, 0.730, and 0.800, respectively. This was probably
due to the differences in the type of equipment at diverse
hospitals and different habits of using the ultrasound
equipment among the physicians.

Medical imaging is an important diagnostic tool and plays an
increasingly vital role as precision medicine continues to develop
(40). It has been shown that imaging method based on
multimodal imaging techniques can preoperatively differentiate
between HCC and ICC to varying degrees. Ichikawa et al.
determined the imaging hallmarks for distinguishing
intrahepatic mass-forming biliary carcinomas (IMBCs) from
HCC, and the diagnostic value was further verified by Bayesian
A B C

FIGURE 5 | The ROC curves of the modes in the training dataset, test dataset, and validation dataset. (A) The ROC curve of the clinical model based on clinical
factors. (B) The ROC curve of the radiomics model based on radiomics signature. (C) The ROC curve of the combined model based on clinical factors and
radiomics signature.
FIGURE 4 | Radiomics feature selecting using the absolute shrinkage and selection operator (LASSO) regression model in the training dataset. In the LASSO model,
the 10-fold cross-validation process was repeated 1,000,000 times to generate the optimal penalization coefficient lambda (l). Finally, a l value of 0.02848036 was
chosen, which resulted in 14 nonzero coefficients.
November 2021 | Volume 11 | Article 749137
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statistics (AUC is 0.960) (41). However, only the radiographic
manifestations of patients with good liver function and receiving
surgical treatment were investigated, and such a selection bias
might influence the results. Lewis et al. evaluated the ability of
quantitative apparent diffusion coefficient (ADC) histogram
analysis parameters and LI-RADS category in differentiating
between HCC and other subtypes of PLC (42). In the two
independent observers, the combined AUC of sex and LI-
RADS and ADC at the fifth percentile for the diagnosis of liver
cancer was 0.90 and 0.89, respectively. The result showed that
HCC can be better distinguished from ICC and cHCC-ICC by
combination of the ADC histogram parameters and LI-RADS
categorization. However, there were a small number of samples
and extracted features in their study. None of the studies above
proceeded to deep mining and utilization of the radiographic
images. As a result, a large number of tumor features and
heterogeneity information of the tumor went unheeded.

As a branch of radiomics, ultrasomics has been proven
helpful for liver fibrosis evaluation (43), differential diagnosis
of liver tumors, and microvascular invasion assessment of HCC
(44, 45). However, there have been few reports on the use of
ultrasomics signature for the differentiation between HCC and
ICC. Peng et al. applied ultrasomics analysis for noninvasive
differentiation between the histopathological subtypes of PLC
(33). The features were selected by using the Spearman
correlation and lasso regression. Then the HCC-vs-non HCC
radiomics model was constructed using a logistic regression
algorithm. The AUC of which on the test set was 0.775.
However, their findings were not subjected to multicenter
validation. In our study, the AUC of the combined model for
preoperative differentiation between HCC and ICC was 0.936
and 0.874 on the test set and the independent validation set,
respectively, which were higher than those reported in the
existing literature. It was indicated that ultrasomics seems to
be potentially used clinically in the future.

However, there were also certain limitations in our study.
Firstly, different grayscale ultrasound imaging systems were used
to acquire the ultrasound images. Although the images were
preprocessed before feature extraction, the use of different
equipment for the imaging might affect the feature extraction
results. Therefore, whether the established models are robust and
universal remains to be further verified by incorporating more
Frontiers in Oncology | www.frontiersin.org 7
data. Secondly, all of the data were collected from consecutive
cases in a retrospective manner, leading to inevitable selection
bias. Therefore, it is necessary to increase the sample size in
future studies. Moreover, the differentiation performance of the
ultrasomics signatures and the established models remains to be
further verified by a prospective study. Thirdly, only two
subtypes of PLC, namely, HCC and ICC, were covered in our
study, but the rare subtypes, such as the mixed liver cancer, were
not. The data of other subtypes of liver cancer should be included
in future studies for optimized universality and clinical value of
the models.

Taken together, the clinical value of machine learning-based
ultrasomics was confirmed for the preoperative noninvasive
differentiation between HCC and ICC. The combined model
not only had a better performance in differentiation between
HCC and ICC than either the clinical model or the ultrasomics
model alone but also had a higher generalization ability.
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TABLE 2 | Performance of training set, test set, and validation set.

Dataset Model Sensitivity (%) Specificity (%) Accuracy (%) AUC (95%CI) p-value

Training set Clinical 77.42 68.64 70.47 0.840 (0.771–0.895) <0.0001
Ultrasomics 80.65 74.58 75.84 0.860 (0.793–0.911) <0.0001
Combined 96.77 87.29 89.26 0.975 (0.936–0.994) <0.0001

Test set Clinical 70.00 71.43 71.05 0.711 (0.541–0.846) 0.0757
Ultrasomics 90.00 75.00 78.95 0.843 (0.688–0.940) <0.0001
Combined 90.00 85.71 86.84 0.936 (0.806–0.989) <0.0001

Validation set Clinical 88.87 66.67 71.79 0.800 (0.641–0.911) 0.0001
Ultrasomics 66.67 70.00 69.23 0.730 (0.564–0.859) 0.0044
Combined 88.87 86.67 87.18 0.874 (0.733–0.961) <0.0001
Novem
ber 2021 | Volume 11 | Article
p-value < 0.05 indicates a significant difference in the discrimination of HCC and ICC.
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