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Introduction

Microvascular leak caused by compromised vascular barrier 
function plays an important role in the pathogenesis and dis-
ease progression for a range of infectious syndromes, including 
sepsis,1 acute lung injury,2 dengue hemorrhagic fever and shock 
syndrome,3 viral hemorrhagic fevers,4 and hantavirus pulmonary 
syndrome.5 The main component of the vascular barrier is the 
endothelial cell monolayer, which is comprised of endothelial 
cells themselves and associated endothelial cell–cell junctions, 
including both adherens junctions and tight junctions, as well as 
a variety of extracellular components (e.g., the glycocalyx and the 
basement membrane).

Tight junctions, also referred to as zonula occludens, are pre-
dominantly composed of occludins and claudins, and are com-
monly located at the apical surface of the inter-endothelial cell 
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Recent evidence suggests that loss of endothelial barrier 
function and resulting microvascular leak play important 
mechanistic roles in the pathogenesis of infection-related 
end-organ dysfunction and failure. Several distinct 
therapeutic strategies, designed to prevent or limit infection-
related microvascular endothelial activation and permeability, 
thereby mitigating end-organ injury/dysfunction, have 
recently been investigated in pre-clinical models. In this 
review, these potential therapeutic strategies, namely, 
VEGFR2/Src antagonists, sphingosine-1-phosphate agonists, 
fibrinopeptide Bβ15–42, slit2N, secinH3, angiopoietin-1/tie-2 
agonists, angiopoietin-2 antagonists, statins, atrial natriuretic 
peptide, and mesenchymal stromal (stem) cells, are discussed 
in terms of their translational potential for the management of 
clinical infectious diseases.
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cleft. Vascular surfaces that require tight regulation of endothelial 
cell permeability, such as the blood–brain barrier, are typically 
comprised of well-developed tight junctions. Adherens junctions 
are predominantly composed of vascular endothelial cadherin 
(VE-cadherin). VE-cadherin contains an extracellular domain 
that connects to adjacent endothelial cells and an intracellular 
domain that connects to the actin cytoskeleton via a family of 
catenins (α-, β-, γ-, and p120 catenins).6 VE-cadherin is regu-
lated by the Rho family of GTPases, including Rho1, Rac1, and 
Cdc42. Specifically, Rho mediates endothelial cell permeability 
and junction disassembly, while Rac enhances vascular endothe-
lial cell barrier integrity.7

The semipermeable endothelial barrier allows for transport of 
fluids and solutes from blood vessels into tissues. However, in 
pathological states, increased endothelial cell permeability results 
in excess transit of proteins and solutes between endothelial cells 
(paracellular leak), thereby causing edema. Such gaps in the vas-
cular barrier are predominantly regulated by VE-cadherin,8,9 but 
may also be regulated by additional components of the adherens 
junctions, as well as modification of tight junctions and distortion 
of the endothelial cell structure due to cytoskeletal remodeling. 

Recent evidence suggests that preventing microvascular leak 
may represent a viable therapeutic strategy to decrease infection-
related end-organ injury/dysfunction in infectious diseases, 
thereby improving clinical outcome. A number of therapeutic 
strategies have emerged that are intended to strengthen vascular 
barrier integrity (Table 1 and Fig. 1). The focus of this review is 
to summarize these emerging therapeutic strategies and highlight 
their reported effects in pre-clinical models of infectious diseases.

VEGFR2/Src Antagonists

Vascular endothelial growth factor (VEGF) is a glycoprotein that 
is generated and released by endothelial cells, lung epithelial cells, 
platelets, and leukocytes. VEGF is a well-established regulator 
of vascular permeability and exerts its effects through binding 
endothelial cell-specific membrane tyrosine kinase receptors, 
VEGFR1–3.10 Upon activation by its cognate ligand, VEGFR2 
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VEGFR2 antibody decreased hantavirus-directed endothe-
lial cell permeability in vitro19 via inhibition of VEGF-induced 
VE-cadherin internalization.5 Similarly, pazopanib and dasat-
inib, FDA-approved inhibitors of VEGFR2 and Src family 
kinases, respectively, decreased endothelial permeability induced 
by pathogenic hantavirus in vitro, via inhibition of VE-cadherin 
internalization.20 These results suggest the possibility that tar-
geting the VEGF pathway may be a therapeutic strategy for 
multiple infectious diseases characterized by endothelial barrier 
disruption.

Sphingosine-1-Phosphate (S1P) Agonists

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid that 
is released from platelets and binds to G-protein-coupled S1P 
receptors, S1P

1–5
 (formerly known as Edg

1–5
).21-25 Plasma S1P 

contributes to the maintenance of microvascular integrity by sig-
naling through SIP

1
 on endothelial cells.26 S1P

1
 signals through 

increases vascular permeability by promoting dissociation of 
VE-cadherin from the adherens junction through a VEGFR2-
Src-VE-cadherin signaling pathway.11,12

In sepsis, elevated plasma soluble VEGFR1 (sVEGFR1) levels 
have been reported to predict 28-d mortality and multi-organ 
dysfunction.13 It has been hypothesized that increased produc-
tion of sVEGFR2 promotes binding and neutralization of VEGF, 
thereby strengthening the endothelial barrier. However, the pre-
cise function of VEGF in sepsis is controversial, with studies 
implicating contrasting roles for VEGF in the pathophysiology 
of sepsis.13-17 An ongoing clinical trial evaluating the effects of a 
neutralizing anti-VEGF antibody (bevacizumab) in patients with 
septic shock should provide further insight regarding the poten-
tial use of VEGF-targeted therapeutics in sepsis.18

Targeting the VEGF pathway has also been of interest in 
the treatment of viral hemorrhagic fever syndromes, including 
hantavirus-induced hemorrhagic fever with renal syndrome and 
hantavirus pulmonary syndrome. Administration of inhibitory 

Table 1. Emerging microvascular barrier-enhancing agents

Agent Mechanism of action

VEGFR2/Src 
antagonists

• Decrease activation of Src family kinases

• Inhibit VEGF-induced VE-cadherin internalization

• Regulate αvβ3 integrins

Sphingosine-
1-phosphate 

agonists

• Bind endothelial receptor S1P1 to activate Rho and enhance cadherin expression

• Activate αvβ3 integrins through Rac to stabilize the endothelial cytoskeleton

• Block thrombin-activated PAR-1 signaling

• Block VEGF induced VE-cadherin internalization

• Downregulate IFN-α thereby dampening innate immune responses

Fibrinopeptide 
Bβ15–42

• Binds VE-cadherin to stabilize interendothelial junctions

• Increases binding of the Src kinase Fyn with p190RhoGAP in parallel with decreasing Fyn association with VE-cadherin

Slit2N • Binds to Robo4 to reduce p120-catenin phosphorylation and increases p120 catenin association with VE-cadherin at the cell 
surface

• Inhibits ARF6 and VEGF signaling

• Attenuates endothelial cytoskeletal elements via Rac1

SecinH3 • Inhibits guanine nucleotide exchange factors such as ARNO to increase cell surface VE-cadherin

Angiopoietin-1/
Tie2 agonists

• Bind Tie2 to downregulate VCAM-1 and E-selectin

• Decrease NFκB-dependent gene expression

• Block VEGFR2 signaling thereby decreasing VE-cadherin internalization

Angiopoietin-2 
antagonists

• Decrease Ang-2 antagonism of Ang-1-induced endothelial stabilization

• Inhibit Ang-2 induced activation of endothelial cell adhesion molecules and proinflammatory cytokines

Statins • Downregulate P-selection and ICAM-1

• Decrease NFκB-dependent gene expression

Atrial 
natriuretic 

peptide

• Attenuates p38 MAPK, NFκB and Rho-dependent signaling

• Increases Rac-dependent p21-activated kinase (PAK1) phosphorylation, resulting in endothelial cell barrier enhancement

• Stabilizes VE-cadherin at the adherens junction

Mesenchymal 
stromal (stem) 

cells

• Increase expression of genes involved in tightening gap junctions, calcium signaling, and focal adhesions

• Secrete endothelial stabilizing factors including Ang-1 and KGF

• Restore β-catenin, VE-cadherin, occludin-1 and claudin-1 by producing soluble paracrine factors

• Decrease activation of innate immunity

Abbreviations: VEGFR2, vascular endothelial growth factor receptor 2; S1P, sphingosine-1-phosphate; PAR-1, protease activated receptor 1; ARF6, ADP 
ribosylation factor 6; ARNO, ARF nucleotide binding site opener; VCAM-1, vascular cell adhesion protein 1; Ang-1/2, angiopoietin-1/2; ICAM-1, intercel-
lular adhesion molecule 1; KGF, keratinocyte growth factor.
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demonstrated in several pathological conditions associated with 
vascular barrier dysfunction and microvascular leak, including 
cerebral malaria in children.29

the Rho family GTPase Rac, which activates α
v
β

3
 integrins, to 

increase cortical actin formation, thereby enhancing stability of 
the endothelial cytoskeleton.27,28 Decreased plasma S1P has been 

Figure 1. (A) Endothelial cell barrier dysfunction. During severe infections, endothelial activation and dysfunction may lead to the loss of microvas-
cular endothelial barrier integrity, resulting in edema, multiple organ failure and death. Phosphorylation of adherens junction protein p120 catenin 
precipitates VE-cadherin internalization/junction disassembly. Endothelial integrity may also be compromised by rearrangements/degradation of 
the actin cytoskeleton. Molecular pathways implicated in this response include MYD88-ARNO binding that results in enhanced ARF6 signaling and 
decreased VE-cadherin localization at the cell surface. Endothelial activation may also cause an increase in the Ang-1 antagonist, Ang-2. Ang-2 binds to 
its cognate receptor, Tie2, and impedes the vascular stabilizing effects of Ang-1 by promoting proinflammatory endothelial responses and upregulat-
ing cell surface adhesion molecules. Vascular permeabilizing VEGF binds to VEGFR2 resulting in increased dissociation of VE-cadherin from the adhe-
rens junction through a VEGFR2-Src-VE-cadherin signaling pathway. (B) Endothelial cell barrier enhancement. SecinH3, a GEF (e.g., ARNO) inhibitor, 
inhibits ARF6-induced VE-cadherin internalization. Ang-1/Tie2 agonists activate Tie2 resulting in increased vascular quiescence via strengthening of 
endothelial cell junctions, downregulation of surface adhesion molecules and transdominate blockade of VEGR2 signaling. Fibrinopeptide Bβ15–42 pro-
vides barrier protection via maintenance of membrane VE-cadherin and inhibition of actin degradation via RhoA signaling inhibition. Upon binding 
its receptor Robo4, Slit2N reduces p120 catenin phosphorylation and inhibits ARF6, thereby increasing VE-cadherin retention at the cell surface. ANP 
administration decreases microvascular permeability via inhibition of RhoA-induced actin degradation and NFκB/P38 MAPK inhibition. S1P agonist 
administration reinforces the endothelial barrier via Rac1 and αvβ3 integrin signaling, resulting in formation and stabilization of cortical actin. Adminis-
tration of S1P agonist enhances cortical actin formation (via Rac1 and αvβ3 integrin signaling) and downregulates IFN-α, thereby decreasing cytokine/
chemokine production and enhancing endothelial cell barrier stability.
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excessive cytokine/chemokine production by the host, an immu-
nopathological feature of severe influenza disease, in response 
to decreased IFN-α production, an upstream regulator of early 
cytokine production.46 In a murine model of cerebral malaria, 
FTY720 was also shown to improve clinical outcome when 
administered therapeutically, either alone or as an adjunctive 
therapy in combination with the anti-malarial drug artesunate.29 
This effect was attributed to increased integrity of the blood-
brain barrier and enhanced endothelial stability, demonstrated 
by decreased Evans blue extravasation in the brain, reduced 
plasma sICAM-1 (a marker of endothelial activation), and 
increased angiopoietin-1 (a marker of endothelial stability).29

In contrast, Puneet et al.47 reported that blockade of sphingo-
sine kinase 1 (sphk1) protected mice from experimental sepsis by 
enhancing bacterial clearance without altering systemic S1P lev-
els required to maintain vascular barrier integrity. Intriguingly, 
because S1P receptor stimulation can lead to subsequent recep-
tor downregulation, S1P agonists can potentially serve as func-
tional S1P

1
 antagonists in certain circumstances.48 Thus, it is 

likely that S1P-targeted agents can exert both deleterious and 
beneficial effects depending on the contextual pathophysiologi-
cal state. Taken together, current pre-clinical evidence warrants 
further evaluation of Sphk1/S1P modifying therapeutic agents 
in the treatment of infectious disorders associated with excessive 
cytokine production and consequent microvascular leak, such as 
influenza and sepsis.

Fibrinopeptide Bβ15–42

The fibrin N-terminal peptide Bβ
15–42

 is a 28 amino acid cleav-
age product of fibrin that binds VE-cadherin and stabilizes 
interendothelial junctions.49,50 Because of its endothelial bar-
rier stabilizing properties, the therapeutic use of fibrinopeptide 
Bβ

15–42
 (also known as FX06) has recently been investigated. 

In murine models of vascular leak, including pneumonitis and 
shock (intranasal LPS and intravenous LPS administration, 
respectively), FX06 administration attenuated capillary leak in 
the lungs.51 In addition, FX06 administration improved survival 
by approximately 40% in a murine model of dengue shock.51 
These effects were mediated by FX06-induced dissociation of the 
Src kinase Fyn from VE-cadherin, in parallel with Fyn associa-
tion with p190RhoGAP, a RhoA antagonist. In a murine model 
of polymicrobial sepsis (cecal ligation and puncture), treatment 
with FX06 attenuated leukocyte infiltration and reduced proin-
flammatory cytokines in the lung, liver, and blood.52 Decreased 
tissue inflammation was attributed to FX06-sustained vascular 
integrity, thereby suppressing vascular leakage and subsequent 
inflammatory cell trafficking into the lungs. In support of this 
hypothesis, FX06 pretreatment of macrophages and endothelial 
cells was unable to reduce TLR2- and TLR4-induced inflam-
mation; however, microvascular permeability was not specifically 
investigated in this study.52 These data suggest that FX06 therapy 
may represent a novel and effective adjunctive therapy to increase 
vascular stability, thereby preventing end-organ inflammation, 
edema, and dysfunction in disorders associated with vascular 
activation/dysfunction and microvascular leak.

Protease-activated receptor-1 (PAR-1) is an important media-
tor of S1P

1
 signaling that contributes to both endothelial barrier 

stability and dysfunction.30 PAR-1 activation by the serine protease 
thrombin can lead to increased endothelial cell permeability, while 
conversely, PAR-1 activation by activated protein C (APC) can 
lead to endothelial cell barrier protection.30 This finding suggests 
that APC may serve as an effective endothelial stabilizing thera-
peutic agent. However, in a murine model of hyperoxic lung injury, 
prophylactic or therapeutic administration of recombinant murine 
APC was unable to ameliorate lung injury.31 More importantly, 
several clinical trials in patients with severe sepsis or septic shock 
failed to demonstrate a therapeutic benefit of recombinant human 
APC on 28-d mortality, including one study in which recombi-
nant human APC administration was associated with a higher 
risk of bleeding.32-36 These studies precipitated the withdrawal of 
recombinant human APC (drotecogin alfa) from the worldwide 
market.36 A modified APC variant with minimal anticoagulant 
activity but preserved cell signaling functionality (5A-APC) was 
capable of reducing mortality by approximately 40% after bacterial 
infection or LPS challenge in murine models of sepsis,37 suggesting 
further testing of anticoagulant APC variants may be of interest.

Administration of S1P or pharmacological analogs has been 
demonstrated to preserve or enhance vascular integrity in a num-
ber of infectious diseases in which microvascular leak plays an 
important pathologic role. In vitro, addition of S1P to Andes 
virus (hantavirus)-infected cells blocked VE-cadherin inter-
nalization in response to VEGF, thereby increasing endothelial 
integrity.20 S1P administration has also been shown to stabilize 
the microvascular endothelium in several pre-clinical animal 
models. In a murine model of ventilator-induced lung injury 
and a canine model of LPS-induced ventilator associated acute 
lung injury, S1P administration attenuated lung vascular leak as 
documented by decreased Evans blue dye extravasation in the 
lung, decreased protein level in bronchoalveolar lavage fluid and 
decreased lung tissue volume (i.e., decreased “wet-to-dry” lung 
weight).38 Furthermore, S1P antagonism has been reported to 
increase vascular leak in vivo under physiological conditions.39

Recently, the pharmacologic agent FTY720, a potent S1P 
receptor agonist40,41 licensed as an experimental drug (Gilenya™) 
by the FDA, was evaluated in phase III clinical trials of mul-
tiple sclerosis.42,43 Phosphorylated FTY720 (FTY720-P) and its 
analog (R)-AAL ([R]-AFD) exert similar effects to S1P. In vitro, 
both agents induced β-catenin and localization of VE-cadherin 
to adherens junctions, as well as antagonized VEGF-induced 
endothelial cell permeability.44 Similar effects were confirmed in 
vivo in a murine model of VEGF-induced vascular leak.44

In a murine model of influenza, (R)-AAL administration 
one hour after influenza virus inoculation decreased pulmo-
nary edema and inflammation.45 Notably, (R)-AAL therapy 
exerted a greater therapeutic benefit than oseltamivir, the most 
widely used antiviral drug for the specific treatment of influenza. 
Furthermore, administration of (R)-AAL in combination with 
oseltamivir provided additional benefit over (R)-AAL adminis-
tration alone. A follow-up study by the same group demonstrated 
that the benefits of S1P agonist administration ([R]-AAL, 
CYM-5442, or RP-002) were due to its ability to downregulate 
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cell junctions and downregulation of surface adhesion mol-
ecules, such as vascular cell adhesion molecule-1 (VCAM-1) and 
E-selectin.59-62 The Ang-1/Tie2 axis also transdominantly blocks 
VEGFR2-mediated microvascular permeability.63 A variety of 
Ang-1/Tie2 targeted strategies have been investigated in pre-clin-
ical models to reduce complications of infectious diseases. Both 
cell- and viral vector-based Ang-1 gene therapeutic strategies, 
including Ang-1 specifically engineered to potently induce Tie2 
phosphorylation,64 have been reported to reduce microvascular 
leak in murine models of acute lung injury and acute kidney 
injury.2,64-67

A synthetic Tie2 agonist peptide known as vasculotide (VT) 
has been shown to protect against vascular leak and mortality, 
with subsequent improvement in end-organ function, when 
administered in either a prophylactic or therapeutic regimen in a 
murine model of polymicrobial sepsis.68 VT has also been shown 
to prevent lung vascular leak and improve survival by 30–40% in 
a murine model of LPS-induced lung injury (intraperitoneal LPS 
administration).69 Another study by Alfieri et al.70 evaluated the 
effects of an Ang-1 mimetic, MAT.Ang-1, in experimental LPS-
induced sepsis in mice. Therapeutic administration of a single 
dose of MAT.Ang.1, 20 h after LPS administration, decreased 
vascular leak without altering vascular resistance. A growing 
number of Ang-1/Tie2 agonists represent promising agents for 
the prevention or amelioration of infection-induced endothelial 
activation/dysfunction and consequential microvascular leak.

Angiopoietin-2 Antagonists

Angiopoietin-2 (Ang-2), a functional Ang-1 antagonist that 
binds to Tie2, counterbalances the vascular stabilizing effects 
of Ang-1 by promoting proinflammatory endothelial responses 
and disrupting endothelial barrier function.71,72 Current evidence 
suggests that the overall status of Tie2 phosphorylation is largely 
controlled by the relative ratio of Ang-1:Ang-2. Elevated Ang-2 
levels have been reported in septic patients and have been associ-
ated with increased vascular leak, severity of illness and adverse 
outcomes.71,73-75

In both cecal ligation and puncture (CLP)- and LPS-induced 
murine models of sepsis, Ang-2+/− heterozygous mice were rela-
tively protected against vascular leak, acute lung injury, acute 
kidney injury and death compared with wild-type littermate 
controls.75 Notably, this study also reported elevated circulat-
ing levels of Ang-2 in a cohort of patients with sepsis within one 
hour of their presentation to the emergency department. The 
level of Ang-2 elevation correlated with disease severity and pre-
dicted subsequent development of shock or death. Serum from 
affected patients disrupted endothelial barrier function in vitro, 
via a mechanism inhibited by treatment with an antagonistic 
Ang-2 monoclonal antibody. These findings suggest that Ang-2 
upregulation occurs early in the course of sepsis and precedes the 
development of end-organ dysfunction. In contrast, recombinant 
Ang-2 increased survival when administered two hours prior to 
Escherichia coli-induced murine experimental sepsis or 30  min 
after Pseudomonas aeruginosa-induced murine experimental 
sepsis.76 However, it is possible that circulating Ang-2 levels in 

Slit2N

Binding of the ligand Slit to its cognate endothelial receptor 
Robo4 inhibits inflammation-induced endothelial permeability 
by strengthening adherens junctions and modulating cytoskeletal 
dynamics.53-56 Endothelial cell monolayer permeability induced 
by several mediators in vitro, including VEGF, LPS, TNF, and 
IL-1β, was counteracted by treatment with Slit2N, the active 
fragment of Slit.54,55 This effect correlated with increased cell 
surface expression of VE-cadherin. Specifically, Slit2N increased 
p120-catenin-VE-cadherin association by reducing p120-catenin 
phosphorylation.55 Slit2N-Robo4 signaling may also increase 
cell surface VE-cadherin via inhibition of ARF6 signaling.54,57 
These findings were substantiated in several experimental mod-
els of infectious diseases characterized by microvascular activa-
tion/dysfunction, including sepsis, LPS-induced lung injury, 
and H5N1 avian influenza. In each of these pre-clinical mod-
els, administration of Slit2N enhanced microvasculature integ-
rity and improved survival without dampening inflammation 
(or altering viral load in H5N1 experimental avian influenza).55 
These findings suggest that therapeutic targeting of Robo recep-
tors represents a promising strategy to improve clinical outcome 
in infectious diseases associated with endothelial dysregulation 
and microvascular leak.

SecinH3

Recently, Zhu et al.57 described a novel cytokine-mediated 
pathway involved in endothelial barrier stability that functions 
independently of MYD88-induced NFκB signaling. In vitro, 
various NFκB pathway inhibitors failed to rescue IL-1β-induced 
endothelial permeability or endothelial cell surface VE-cadherin 
internalization. The results from a series of elegant experiments 
demonstrated a requirement for the adaptor protein MYD88 in 
IL-1β induced endothelial permeability, suggesting that MYD88 
mediates a distinct NFκB-independent pathway involved in 
endothelial activation/dysfunction.57 The investigators impli-
cated a pathway involving MYD88 activation of the ARF guanine 
nucleotide-exchange factor inhibitor (GEF) ARNO, based on the 
observations that ARNO-ARF6 signaling decreased cell surface 
VE-cadherin and increased vascular permeability. Furthermore, 
administration of SecinH3, a GEF inhibitor, restored endothe-
lial barrier function in murine models of inflammatory arthri-
tis and acute inflammation, without affecting global cytokine 
expression.57 SecinH3 administration has also been shown to 
decrease endothelial leak in a murine model of vascular eye dis-
ease.54 Therapeutic agents that target the ARNO-ARF6 pathway, 
such as Slit2N and SecinH3, are emerging as important potential 
therapies for conditions associated with vascular destabilization.

Angiopoietin-1/Tie-2 Agonists

Angiopoietin-1 (Ang-1) is a ligand for the endothelial-specific 
receptor tyrosine kinase Tie2,58 a potent mediator of angiogen-
esis that functions post-development to prevent vascular leakage 
and promote vascular quiescence via strengthening of endothelial 
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severe LPS-induced lung injury and vascular leak compared with 
wild-type mice,87 suggesting a potential mechanistic role for 
ANP in sepsis and acute lung injury. Experimental acute lung 
injury-associated pulmonary edema induced by multiple stim-
uli—including thrombin, VEGF, LPS, peptidoglycan, and lipo-
teichoic acid—is reduced by concomitant or prophylactic ANP 
administration.87,88,91-94

Evaluation of therapeutic ANP administration in patients with 
lung injury is limited. In a cohort of 40 individuals with acute 
lung injury requiring mechanical ventilation with positive end-
expiratory pressure (PEEP), ANP administration improved lung 
injury and oxygenation.95 In contrast, Bindels et al.96 observed 
no difference in pulmonary gas exchange in ten patients with 
acute respiratory distress syndrome who received ANP. Large, 
randomized controlled trials are warranted to evaluate the use of 
exogenous ANP as a potential therapeutic agent for the treatment 
of infection-induced lung injury.

Mesenchymal Stromal (Stem) Cells

Mesenchymal stromal (stem) cells (MSCs) represent a heterog-
enous subset of non-hematopoeitic pluripotent stromal cells with 
multi-lineage potential that can be isolated from various tissues 
(e.g., adult bone marrow).97 While initial interest in MSCs was 
focused on their potential in regenerative medicine, a growing 
interest in their potential in immunomodulatory therapy has 
evolved based on their capacity to modulate the host response 
in diseases and syndromes associated with inflammation. It has 
been recently recognized that MSCs secrete an array of growth 
factors, cytokines, and lipid mediators that modulate host 
inflammation, improve pulmonary alveolar fluid clearance, and 
strengthen endothelial integrity thereby improving organ func-
tion and decreasing mortality in pre-clinical models of infectious 
diseases including LPS-induced acute lung injury and sepsis fol-
lowing cecal ligation and puncture.2,98-106

MSC-mediated effects on the vascular endothelium have 
been investigated in vitro and in vivo. VEGF-treated pulmonary 
endothelial cells exposed to MSC-conditioned media preserved 
adherens junctions (β-catenin and VE-cadherin) leading to 
increased endothelial barrier stability.106 This finding was con-
firmed in a rat model of mild hemorrhagic shock (removal of 
2 ml/100 g of blood over 10 min followed by resuscitation 1 h 
post-shock), where MSC administration decreased pulmonary 
edema, in part, by increasing adherens junction and tight junc-
tion protein expression, including VE-cadherin, claudin-1, and 
occludin-1.106 A network analysis of experimental sepsis-induced 
MSC-mediated effects on common transcriptional responses in 
major target organs identified coordinated expression of tran-
scriptional programs involved in preserving endothelial/vascular 
integrity, including upregulation of genes associated with gap 
junction tightening, calcium signaling, focal adhesion, and the 
Ang-1/Tie-2 pathway.107

Ang-1 and keratinocyte growth factor (KGF) are thought to 
play important roles in the induction of MSC-mediated thera-
peutic effects.2,102,108 In vitro, MSC-mediated alveolar cell per-
meability was attributed to Ang-1 production.108 Moreover, in 

experimental mice exceeded the physiological concentration of 
Ang-2 in patients with septic shock, a finding which has previ-
ously been associated with increased Tie2 phosphorylation.77 
Overall, these studies suggest that Ang-2 inhibition strategies 
merit further investigation for the treatment of sepsis.

Statins

HMG-CoA reductase inhibitors, commonly known as statins, 
are widely used for the treatment of hyperlipidemia and isch-
emic heart disease.78 Based on recently recognized anti-inflam-
matory properties, statins have received increasing interest for 
their potential role(s) in the treatment of inflammation-related 
diseases.79-81 These effects include modulation of endothelial 
cell adhesion molecule expression (including downregulation of 
P-selectin82 and ICAM-183), downregulation of NFκB-dependent 
gene expression84 and decreased mononuclear inflammatory cell 
infiltrates in target tissues.85

Preliminary evidence suggests that prolonged statin use 
may decrease endothelial activation and improve outcomes in 
experimental bacterial pneumonia.85 Mice receiving high dose 
simvastatin for several weeks prior to infection developed less 
bacteremia and inflammatory cell infiltrates in the lung, which 
were associated with decreased expression of MCP-1 and ICAM-
1.85 However, overall mortality was similar between simvastatin-
treated animals and controls.

Atrial Natriuretic Peptide

Atrial natriuretic peptide (ANP) plays an important physi-
ological role in the maintenance of arterial blood pressure and 
volume. These effects are mediated by binding to natriuretic 
peptide receptors (NPR) A–C. NPRs are guanylyl cyclase-
linked, regulated by cGMP synthesis, and are highly expressed in 
the vascular endothelium. Vascular endothelial-specific NPR-A 
knockout mice developed systemic hypertension and cardiac 
hypertrophy, yet maintained a direct vasodilatory response to 
ANP.86 Pre-treatment with ANP reduced paracellular endothe-
lial gaps and stabilized VE-cadherin in TNF-activated endo-
thelial cells.87 These observations suggest that ANP moderates 
arterial blood pressure and volume via its effects on vascular 
permeability.

ANP modulates signaling pathways important for the produc-
tion of proinflammatory cytokines and remodeling of the endo-
thelial cell cytoskeleton. In vitro, endothelial cells pre-treated 
with ANP followed by LPS stimulation displayed significantly 
attenuated p38 MAPK, NFκB, and Rho-dependent signaling 
6 h post-LPS stimulation.88 In a murine model of LPS-induced 
lung injury, ANP modulated vasculature stability via increased 
Rac-dependent p21-activated kinase (PAK1) phosphorylation, 
resulting in increased endothelial cell barrier integrity.87 PAK1 is 
a cytoskeletal Rac effector protein that initiates peripheral actin 
polymerization.89

Increased levels of ANP have been observed in patients 
with septic shock,90 and in murine models of lung injury.87 
Moreover, ANP−/− mice have been reported to develop more 
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therapeutic efficacy by targeting the infectious agent and the 
deleterious host responses in concert. For example, endothelial-
stabilizing agents may be more effective when antimicrobial rep-
lication is diminished.

Given the failure of multiple therapeutic strategies showing 
promise in pre-clinical testing to yield positive results in clini-
cal trials for the treatment of sepsis,35,36,112 one must remain cau-
tious when considering the therapeutic potential of endothelial 
stabilizing agents. It is also important to recognize that murine 
models, such as experimental sepsis, may fail to replicate impor-
tant pathophysiological features of human disease.113,114 Well-
designed, controlled clinical trials will be necessary to determine 
whether endothelial stabilization strategies will be effective in 
reducing infection-related morbidity and mortality associated 
with endothelial activation/dysfunction and associated microvas-
cular leak.
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a murine model of LPS-induced lung injury, Ang-1 transfected 
MSCs were more effective at restoring lung/vascular integrity 
than non-transfected MSCs.2 KGF production by MSCs was 
implicated in the restoration of alveolar fluid clearance in LPS-
treated ex vivo-perfused human lungs.102

Future Directions and Limitations

Emerging pre-clinical therapeutic strategies that target micro-
vascular endothelial barrier activation/dysfunction represent 
promising approaches to prevent and/or limit end-organ dys-
function/injury in infectious diseases (summarized in Table 2). 
In addition to the strategies discussed in this review, α

v
β

3
 integ-

rin regulators such as Fibulen5, NRP1, and Syndecan1 warrant 
pre-clinical evaluation for possible applications to limit infection-
related microvascular leak.109-111

Given that a variety of viral infections may mediate endo-
thelial dysregulation, therapeutic agents that target the host 
endothelium could potentially have relatively broad utility in 
the management of serious viral infections. It will also be impor-
tant to assess new barrier-enhancing agents in combination with 
established therapeutic modalities (e.g., in combination with 
oseltamivir for the specific treatment of influenza). This comple-
mentary and robust treatment approach should allow for optimal 
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Table 2. Experimental results of selected pharmacological agents that have been investigated for their ability to enhance endothelial barrier integrity 
and reduce vascular leak

Infectious disease/
infectious agent/
model of vascular 

leak

Agent Results

Sepsis Bevacizumab (VEGF antagonist) Ongoing clinical trial18

APC Failed to demonstrate therapeutic benefit in several clinical trials32-36

5A-APC (APC variant) ~40% reduction in mortality in murine LPS-induced endotoxemia model of sepsis 
and S. aureus or E. coli infection model of sepsis37

Bβ15–42 (FX06) Attenuated capillary leak in the lungs in murine model of sepsis (I.V. LPS 
administration),51 reduced leukocyte infiltration and proinflammatory cytokines in 

the lung, liver and blood in a murine CLP model of sepsis52

Slit2N Enhanced microvasculature integrity and improved survival in a murine CLP sepsis 
model55

Angiopoietin-1 Decreased vascular leak in murine model of LPS-induced sepsis70

Vasculotide Protected against vascular leak, improved end-organ function and increased survival 
(~40%) in a murine CLP model of sepsis68

Mesenchymal stromal (stem) cells Improved organ function and decreased mortality in murine CLP model of sepsis104,105

Acute lung injury 1. SIP agonist Decreased pulmonary edema and attenuated vascular barrier dysfunction in 
murine and beagle dog lung injury models induced by LPS and high tidal volume 

mechanical ventilation38

Bβ15–42 (FX06) Attenuated capillary leak in the lungs in a murine pneumonitis model (intranasal 
LPS-administration)51

Slit2N Enhanced microvasculature integrity and improved survival in a murine LPS model 
of ALI55

Angiopoietin-1 Decreased microvascular leak in murine models of ALI2,66,67

Vasculotide Prevented lung vascular leak and improved survival by ~30–40% in a murine LPS-
induced (I.P. administration) model of ALI69

Statins Decreased ICAM-1 and no effect on survival in a murine model of bacterial 
pneumonia85

ANP Improved endothelial cell barrier integrity in murine LPS-induced lung injury model87

Mesenchymal stromal (stem) cells Improved pulmonary alveolar fluid clearance in ex vivo perfused lung102 and 
strengthened endothelial integrity, resulting in improved organ function and 

decreased mortality in murine models of ALI2,98,99,101

Influenza S1P agonist ([R]-AAL) Decreased pulmonary edema and inflammation in murine model of influenza, 
effective as adjunctive therapy in combination with oseltamivir45
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avian influenza (H5N1)55

Dengue shock 
syndrome

Bβ15–42 (FX06) Improved survival by ~40% in a murine model of dengue shock syndrome51
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malaria model, effective as adjunctive therapy in combination with artesunate29

Hantavirus Pazopanib and dasatinib (VEGFR2 and 
Src family kinase inhibitors)

Increased endothelial integrity in vitro5,19

S1P Increased endothelial integrity in vitro20

Agents are categorized by infectious disease/infectious agent/model of vascular leak. Abbreviations: VEGF, vascular endothelial growth factor; APC, 
activated protein C; S1P, sphingosine-1-phosphate; LPS, lipopolysaccharide; I.V., intravenous; CLP, cecal ligation and puncture; ALI, acute lung injury; I.P., 
intraperitoneal; ICAM-1, intercellular adhesion molecule 1.
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