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Review

Introduction

One of the main features of the animal kingdom is the 
ability to move. This requires that the nervous system 
must learn how to move and have the ability to modify 
appropriate motor commands to lead to the desired out-
come. Humans are capable of acquiring the knowledge 
necessary to perform new motor behaviors through dis-
tinct forms of learning. Recent behavioral studies have 
provided insights into distinct learning processes under-
lying motor learning, including error-based learning, 
reinforcement learning, use-dependent learning, and cog-
nitive strategies. Each of these processes is thought to 
involve different neuronal substrates and computations 
(Haith and Krakauer 2013; Krakauer and Mazzoni 2011; 
Shadmehr and Krakauer 2008; Taylor and Ivry 2014; 
Wolpert and others 1995). Indeed, learning new skills or 
adjusting previously learned policies require the engage-
ment of several plastic mechanisms in the cerebral cortex, 
cerebellum, and striatum (Caligiore and others 2017; 
Dayan and Cohen, 2011; Penhune and Steele, 2012).  

A current challenge in the motor learning field is to con-
fidently be able to disentangle each of these forms of 
learning and their respective physiological mechanisms 
involved in acquiring a new behavior.

To study motor learning, scientists have developed a 
number of laboratory motor learning tasks and manipula-
tions to weight differently the contributions of error-
based learning, reinforcement learning, use-dependent 
learning, and cognitive strategies. In other words, depend-
ing on the task studied, the relative contributions of each 
of these distinct forms of learning are likely to change 
due to the different demands each task requires for learn-
ing to occur (Fig. 1). Additionally, the relative weights of 
how much each of these forms of learning contributes to 
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the overall learning process within the same task (i.e., 
temporal scale of learning) also changes. Importantly 
though, despite the best efforts to manipulate behavioral 
tasks to weight one learning process more than the other, 
it is unlikely that complete, pure isolation occurs. This is 
because these distinct forms of learning are not function-
ally independent and their neural substrates cannot get 
turned off.

Using behavioral manipulations to isolate as much as 
possible specific learning processes, different research 

teams have used noninvasive brain stimulation tech-
niques to assess their underlying neurophysiological 
mechanism. In this manner, transcranial magnetic stimu-
lation (TMS) and transcranial direct current stimulation 
(tDCS) have been able to help dissect the neurophysio-
logical mechanisms underlying motor learning, as well as 
modulate distinct learning processes.

Applying TMS over predetermined areas of the brain 
we can induce currents, allowing the assessment of brain 
excitability, as well as disrupt the function of that region 

Error-Based Use-Dependent Reinforcement Strategy

Motor Learning

Error-Based Use-Dependent Reinforcement Strategy Error-Based Use-Dependent Reinforcement Strategy

A

B

Error-Based Use-Dependent Reinforcement Strategy

Early Skill Learning

Error-Based Use-Dependent Reinforcement Strategy

Late Skill Learning

C

Motor Skill A Motor Skill B

Relative
Contribution

High

Low

Figure 1. Processes underlying motor learning. (A) Motor learning is constituted by several different processes all involved 
in acquiring novel behaviors or calibrating already known ones. This includes error-based, reinforcement, use-dependent 
plasticity, and strategy-based forms of learning. Error-based is a type of learning based on sensory-predictions errors where 
the intended movement outcome is compared with the actual executed movement. In other words, a type of learning 
driven by a mismatch between what you think you are doing and what you perceive you are doing. Reinforcement learning 
refers to a success-based process in which actions leading to a successful outcome are reinforced, whereas those leading 
to unsuccessful outcome are avoided. Use-dependent learning is used to describe a phenomenon where behavioral changes 
are induced through the simple repetition of movements, regardless of whether errors are present or not. Strategy-based 
learning simply refers to utilizing cognition or explicit knowledge to solve motor problem. Each of these forms of learning 
are continuously involved in guiding the performance of our movements toward the correct solution. (B) Although these 
mechanisms work to achieve a common goal (i.e., learning a skill), it is important to consider that the relative contributions 
of these forms of learning maybe weighed differently throughout the time course of the same motor skill training (i.e., 
initially picking up a new task vs. after several attempts at the same task; heat map panel: red = more, yellow = less). (C) 
Similarly, the contributions of these forms of learning may also shift depending on the specific component of the motor task 
that one is asked to learn. For example, to successfully hit a tennis ball, our brain must develop an understanding of how 
to interact with a racket/environment/ball (e.g., weight of the racket and ball, type of court), as well as to coordinate an 
appropriate sequence of movements (i.e., fluid serve).
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Box 1. Transcranial Magnetic Stimulation to Study Motor Learning.

Transcranial magnetic stimulation (TMS) provides the ability to noninvasively stimulate cortical tissues from various regions 
of the brain. During a TMS procedure, a short current pulse (~100 µs) applied to the coil of wire induces a magnetic field that 
passes perpendicular to the current flow in the coil. The magnetic field (~1.5-2 T) penetrates through the scalp and induces 
an electric field perpendicular to the magnetic field. When applied over the primary motor cortex (M1) representation of a 
particular muscle, TMS evokes a series of descending corticospinal volleys that activate spinal motor neurons, which in turn 
activate the desired muscle contralateral to the hemisphere stimulated. The effects induced by TMS are measured in the form 
of motor-evoked potentials (MEPs), which are easily recorded with electromyography, providing a simple way to investigate 
changes in the state of M1 before, during and after learning motor tasks. What makes TMS an attractive method for scientific 
research is that it can be used to either assess or modulate cortical excitability, inhibition, connectivity between distinct brain 
regions, and plasticity. In particular, connectivity of pathways between different brain areas and M1 has been extensively stud-
ied due to the simple readout of MEPs and the critical role M1 plays in a wide-range of motor behaviors (Dayan and Cohen 
2011; Penhune and Steele 2012).

To study connectivity with TMS, two coils are required: (1) used to deliver a conditioning pulse of the area of interest 
and (2) a test pulse applied over M1 (Fig. 3). For instance, measuring the connectivity between the cerebellum and M1 is 
highly relevant to understand motor learning physiology. Ugawa and others (1995) were the first group to study this 
connectivity by delivering a conditioning TMS pulse over the cerebellum 5 to 7 ms prior to applying another TMS pulse 
over M1 resulting in a reduced MEP amplitude relative to trials with no cerebellar stimulation (Daskalakis and others 
2004; Pinto and Chen 2001; Ugawa and others 1995). This effect of cerebellar stimulation, known as cerebellar inhibition 
(CBI), has been suggested to result from TMS activation of Purkinje cells inhibiting the dentate nucleus, which in turn has 
excitatory projections through ventrolateral thalamus to M1 (Celnik 2015; Daskalakis and others 2004; Pinto and Chen, 
2001). This interpretation is supported by work done in patients with lesions in the cerebellar-thalamic-cortical pathway 
or patients with atrophy of the cerebellar hemisphere showing no CBI (Iwata and Ugawa 2005; Kikuchi and others 2012). 
A double-cone TMS coil, designed to stimulate deeper tissue, is the most reliable coil to elicit CBI (Hardwick and others 
2014; Spampinato and others 2019). Thus, the presence of CBI can reflect cerebellar excitability, at least when M1 excit-
ability does not change or is accounted for during the measurement. Specifically, when measuring CBI at different time-
points following behavior, it is critical to adjust the intensity applied over M1 such that the test pulse MEP amplitudes are 
matched for a fair comparison.

Beyond using TMS to understand the connectivity between two brain regions, previous studies have also made use of 
paired-pulse techniques to examine excitatory and inhibitory mechanisms within the primary motor cortex during different 
motor tasks. For instance, short intracortical inhibition (SICI), thought to reflect GABA-A (γ-aminobutyric acid A) receptor 
neurotransmission has been shown to change in different motor learning tasks (Stagg and others 2011). However, there are 
some inconsistent results indicating that these changes might not reflect specific motor learning process, but rather the 
consequence of motor execution (Spampinato and Celnik 2017).

Finally, TMS has been used to disrupt neural processes in a time specific manner during a behavioral performance. In this 
manner, TMS permits the assessment of causality between specific brain activity (or region) and behavior, complimenting the 
correlative nature of imaging (e.g., magnetic resonance imaging), magnetoencephalography or electroencephalography 
methods.

in order to explore casual relations to behavior (Box 1). 
Moreover, TMS paired pulses, where a conditioning 
pulse is applied over a brain region (e.g., cerebellum; CB) 
and a test stimulus is delivered over the primary motor 
cortex (M1), permits assessing the connectivity between 
two regions, in this case CB-M1 connectivity, critically 
involved in motor learning. In this manner, TMS, as 
opposed to imaging methods such as magnetic resonance 
imaging, has excellent temporal resolution and allows 
accurate identification of the type of excitability change 
(i.e., excitatory vs. inhibitory changes). On the other 
hand, other studies have used tDCS not only to alter 
learning rates but also combined with TMS before and 
after motor learning to understand cortical excitability 

changes resembling long-term plasticity phenomena 
(Box 2). In this article, we review studies that have inte-
grated these stimulation techniques when humans learn 
different motor behaviors in order to understand the rela-
tive contributions of distinct learning mechanisms and 
their neurophysiological substrates.

Error-Based Learning

One of the most basic forms of learning is the ability to 
perform accurate movements by accounting for changes 
to our body or environment through predictive mecha-
nisms. For instance, the ability of a tennis player to adjust 
to different surfaces, the tension of the rackets, or the 
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weight of the tennis balls (e.g., when raining) requires a 
feedforward flexible control process to hit the next ball. 
This short-term form of learning (i.e., within minutes to 
hours) known as error-based learning refers to the modi-
fication of behavior based on an error signal that com-
pares the sensory outcomes of expected and realized 
movements (Mazzoni and Krakauer 2006; Tseng and oth-
ers 2007). Instead of providing information about move-
ment success, sensory prediction errors provide details as 
to how the past movement has failed (Bastian 2011). 
Thus, sensory prediction errors are vectorial as they indi-
cate details (e.g., direction, force, etc.) about how subse-
quent movements should be modified to result in a 
successful action. Sensory prediction errors can be used 
to calibrate the internal representations of body dynamics 
and the environment (i.e., developing forward models) 
and recalibrate for changes in either (Shadmehr and 
Krakauer, 2008; Schlerf and others 2012b). Therefore, 
this type of learning consists of developing sensory-
motor maps (forward internal models) to reduce sensory 
prediction errors.

Error-based processes are known to heavily contribute 
to learning the many well-studied adaptation behavioral 
tasks. In these paradigms, participants gradually account 

for a perturbation (e.g., modification of sensory feedback; 
see Fig. 2A) introduced to the task workspace. Several 
studies have shown that learning these paradigms are 
mainly driven by the reduction of sensory prediction 
errors caused by perturbations via trial-by-trial modifica-
tions of a forward model (Bastian 2011; Tseng and others 
2007). Behaviorally, this is characterized by a gradual 
improvement in performance to an altered condition (e.g., 
perturbation) of a previously known behavior, where per-
formance returns to baseline levels. Importantly, learning 
from an error can occur on a single trial, thus movement 
adaptation is evident even when perturbations are intro-
duced in a random fashion (Donchin and others 2003; 
Thoroughman and Shadmehr 2000). Several theoretical 
and experiential studies have highlighted a critical role of 
the cerebellum in error-driven, forward internal models, 
including the generation of predictions (Miall and others 
2007) and encoding of sensory prediction errors for 
updating forward models (Blakemore and others 2001; 
Diedrichsen and others 2005b; Wolpert and others 1998). 
Indeed, individuals with cerebellar pathology exhibit sig-
nificant impairments in a wide range of sensorimotor 
adaptation tasks which can be attributed to a failure of 
learning via sensory prediction errors (Martin and others 

Box 2. Transcranial Direct Current Stimulation to Study Motor Learning.

Transcranial direct current stimulation (tDCS) is another commonly used noninvasive brain stimulation technique, which 
involves a weak current (~1-2 mA) delivered through the skull via two small electrodes. Unlike the application of TMS, tDCS 
does not directly induce neuronal firing of action potentials; however, it is capable of modulating cortical excitability in a rela-
tively short bout (>10 minutes). Animal works have demonstrated that tDCS can alter the resting membrane potential of 
neurons and induce excitability changes in spontaneous neuronal discharges and evoked potential amplitudes for up to 5 hours 
(Creutzfeldt and others 1962; Purpura and McMurtry 1965). In humans, current-induced excitability changes in M1 are depen-
dent on stimulation intensity and duration, but have been reported to last for up to 90 minutes post-stimulation (Liebetanz and 
others 2002; Nitsche and Paulus 2000, 2001;).

The lasting effects on cortical excitability changes following tDCS application are thought to involve synaptic plasticity 
mechanisms similar to long-term potentiation (LTP). Indeed, a recent study demonstrated that in vivo tDCS induced a robust 
enhancement in synaptic plasticity, including LTP changes in the hippocampus (Rohan and others 2015). In humans, antagoniz-
ing N-methyl-d-asparate (NMDA) receptors prevents the induction of long-lasting after-effects (Nitsche and others 2003), 
while agonists increase the duration of the aftereffects (Nitsche and others 2004). Animal studies have confirmed the depen-
dency of NDMA receptors (Rohan and others 2015) and extended this knowledge by showing that direct current stimulation 
LTP was absent in BDNF and TrkB mutant mice (Fritsch and others 2010). Although it is assumed that anodal tDCS can 
effectively produce changes in cortical excitability, it is important to note that evidence of large inter- and intraindividual vari-
ability responses to stimulation (Ammann and others 2017; Guerra and others 2017), which can be attributed to many factors 
(Polanía and others 2018), including biological (i.e., age, anatomy, brain state, time of day, etc.) and methodological factors (i.e., 
stimulation protocols and outcome measures). Nevertheless, numerous studies in humans have demonstrated that combining 
motor practice with anodal tDCS (AtDCS) over M1 augments learning (Cantarero and others 2015; Reis and others 2009; 
for review, see Ammann and others 2016) and the amount of GABA reduction induced by M1 tDCS has been found to cor-
relate to the degree of motor learning (Stagg and others 2011). Of note, while other brain regions have been targeted with 
anodal tDCS to enhance motor learning, a similar response cannot be assumed to what has been described with M1 stimula-
tion. For example, the mechanisms of action of cerebellar tDCS are different from those described for M1 (Grimaldi and 
others 2016). Together, these findings provide a strong rationale for using tDCS over M1 as an LTP-like inducing protocol, with 
the potential to either assess LTP-like plasticity changes or modulate motor behavior (Fig. 4).
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Figure 2. Behavioral studies over the past several years have used several forms of motor adaptation tasks (e.g., rotations, 
prisms, force-field, split-belt walking) to elucidate the learning processes responsible for calibrating the mapping between desired 
outcomes and motor commands. This process is critical for our ability to adjust our daily movements to environment demands, 
such as walking over different surfaces (i.e., concrete, sand, ice). In adaptation tasks, a perturbation is suddenly introduced, 
altering the relationship between a movement and its resulting sensory feedback in the task workspace. (A) This figure depicts 
a commonly used visuomotor reaching adaptation task. In this setup, participants are asked to make “shooting” reaches toward 
a visual target by moving an on-screen cursor (yellow dot). The cursor represents the position of their hand (i.e., participants 
vision of the arm is blocked), therefore perturbations can be applied to the cursor (i.e., visuomotor transformations). The 
“shooting” action does not allow participants to correct movements within a trial, but rather only for learning via through 
endpoint feedback error to adjust movements on the next trial (i.e., feed-forward sensory prediction errors). Participants are 
capable of performing accurate reaches to targets within the workspace when there is no visuomotor manipulation (baseline). 
When a rotation is applied to the cursor unknowingly to the participants, they initially execute and observe large errors (early 
adaptation). The goal of the task for the participant then becomes to minimize the movement error between the cursor and 
target (i.e., minimize sensory prediction errors). This can be accomplished over multiple reaches. If the cursor perturbation is 
then removed, participants execute errors in the opposite direction, depicting the retention of the previously acquired sensory-
motor map. (B) By providing only binary feedback about task performance (i.e., success or failure), participants can also learn a 
cursor rotation using reinforcement learning. In this example, if the participants land in the correct zone (highlighted in yellow) 
a “success” visual feedback is provided (green). However, if the participant does not land in this zone, they are given a “failure” 
feedback (red). Unlike learning from sensory prediction errors, learning via reinforcement does not lead to sensorimotor 
recalibration. Explicit processes (i.e., aiming strategies; not shown) also influences visuomotor learning, in particular when large 
rotations are introduced.

1996; Maschke and others 2004; Smith and Shadmehr 
2005; Tseng and others 2007). This reveals that the activ-
ity of the cerebellum is critical during the feedforward 
process that is needed for successful motor adaptation.

Animal works have also provided evidence that the 
activity of Purkinje cells in the cerebellar cortex is 
engaged during forward model learning utilizing sensory 
prediction (Herzfeld and others 2018; Nixon and 
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Passingham 2000; Pasalar and others 2006; Roitman and 
others 2005). Of particular interest, Purkinje cell simple 
spike activity recorded in monkeys were found related to 
the kinematics of the arm movement rather than the motor 
command responsible for the actual arm movement kine-
matics (Pasalar and others 2006), suggesting that the out-
put of the cerebellum is more linked to predictions about 
the consequences of movement, rather contributing 
directly to the motor command.

Human Neurophysiological Studies 
of Error-Based Learning

Studies using TMS have provided neurophysiological 
evidence for the involvement of the cerebellum when 
learning tasks rely on error-based learning. To study 
physiological contributions of the cerebellum, research-
ers have used a paired-pulse TMS protocol to measure 
changes in the connectivity between the CB-M1 connec-
tivity (also known as “cerebellar inhibition” or CBI) 
before and after learning (Fig. 3A). In this protocol, a 
TMS pulse is applied over a cerebellar hemisphere (3 cm 
from the inion). This stimulation is thought to activate 
Purkinje cells in lobules VII and VIII of the targeted cer-
ebellar cortex, which in turn inhibits the deep cerebellar 
nuclei which have excitatory connections to M1. Thus, if 
a second TMS pulse is delivered over M1 5-7ms follow-
ing the cerebellar stimulation the MEP amplitude will be 
reduced. Therefore, it is thought that CBI reflects the nor-
mal inhibitory tone the cerebellum exerts over M1 via the 
thalamus (Celnik 2015). This interpretation is supported 
by patient work, as no CBI is found when there are lesions 
to the cerebellar-thalamic-cortical pathway or atrophy of 
the cerebellar hemisphere (Shirota and others 2010; 
Ugawa and others 1997).

Neurophysiological studies in animal models have 
shown a link between the amount of error-based learning 
and the subsequent activity in Purkinje cell firing (Gilbert 
and Thach 1977; Medina and Lisberger 2008; Yang and 
Lisberger 2014). Mechanisms resembling long-term 
depression (LTD), in which the response of Purkinje cells 
to sensory information (mossy fiber inputs) is decreased 
following an error signal (climbing fibers), appears as a 
dominant neurophysiological process that underlies cer-
ebellar contributions to learning (Yang and Lisberger 
2014). Thus, assessing CBI changes following human 
motor learning presents as a potential marker for this 
physiological process. Specifically, if CBI were to reflect 
aspects of Purkinje cell activity, one would predict the 
overall CBI effect to be reduced in humans following 
error-based learning (Fig. 3B). A reduction of CBI is pre-
cisely what occurs following several error-based depen-
dent tasks, including split-belt adaptation (Jayaram and 
others 2011), visuomotor adaptation (Schlerf and others 

2012a; Uehara and others 2018) and in recalibrating new 
visual-force mappings (Spampinato and Celnik, 2017, 
2018; Spampinato and others 2020). The reduced CBI 
response is most prominently found at the initial phase of 
learning, where sensory prediction errors are largest. 
Interestingly, Jayaram and colleagues found that partici-
pants experiencing a larger magnitude of adaptation (i.e., 
a greater degree of learning) expressed a greater reduc-
tion in CBI, therefore suggesting a link between error-
based motor learning and changes in human cerebellar 
excitability. As such, changes in CBI following learning 
have been interpreted as LTD-like changes occurring in 
the Purkinje cell–parallel fiber synapses (Celnik 2015) 
consistent with the neurophysiological studies of animal 
models (Gilbert and Thach 1977; Medina and Lisberger 
2008; Yang and Lisberger, 2014). This is supported by 
recent work in humans showing that modulation of cere-
bellar activity by means of theta-burst stimulation, accel-
erates the error reduction process in visuomotor adaptation 
(Koch and others 2020). Interestingly, theta-burst pat-
terns in animal models have shown to induce plasticity 
changes in both mossy fiber–granule cells synapses and 
at Purkinje cell–parallel fiber synapses (D’Angelo 2014). 
Together, the evidence from human studies suggests that 
changes in CB-M1 connectivity following learning repre-
sents the involvement of the cerebellar-dependent, error-
based form of learning.

Reinforcement

The central nervous system is capable of learning and 
selecting appropriate motor actions based on simple feed-
back of whether a movement was successful or a failure. 
This behavioral process termed reinforcement learning 
(RL), explains how we learn to choose and repeat actions 
that maximize reward (i.e., lead to success). RL requires 
individuals to “explore” which actions lead to successful 
outcomes without caring about how the movement was 
done. For instance, the tennis player explores different 
grips, different body postures or different wrist motions 
to hit the ball more successfully. Thus, learning behaviors 
via reinforcement rely on exploration of different actions 
which are reinforced (either repeated or avoided) based 
on the outcome.

Rather than using a prediction error that arises from the 
differences between the actual versus predicted sensory 
consequences of a movement as a learning signal, rein-
forcement learning is driven by a prediction error that 
encodes the probability of an action resulting in a success 
(Sutton and Barto 1998). That is, if an individual’s out-
come of particular action resulted in something they did 
not expect (i.e., reward or punishment), an error signal 
(positive or negative, respectively) will update expecta-
tions about that action. This will lead to either repeating or 
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Figure 3. (A) Paired-pulse transcranial magnetic stimulation (TMS) configuration for assessing cerebellar-M1 connectivity 
(cerebellar-inhibition or CBI). A figure-of-eight coil is placed over the left M1 (test stimulus; TS), whereas a double-cone coil 
is placed over the right cerebellum, 3 cm inferior and lateral to the inion (conditioning stimulus; CS). CBI refers to the ratio 
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between the motor-evoked potential (MEP) amplitudes after applying the conditioned test stimulus (CS + TS; magenta) and the 
MEP amplitudes produced following the unconditioned test stimulus (TS alone; dark blue). (B) Schematic representation of the 
interpretation illustrating how cerebellar-M1 connectivity changes following learning. Although the physiology of stimulating this 
region are not completely understood, double cone coil stimulation is thought to result in the parallel-fiber-mediated activation 
of Purkinje cells, which in turn inhibit the deep cerebellar nuclei (Celnik 2015) that have a disynaptic excitatory connection to M1 
via the thalamus. Prior to learning, a test pulse over M1 combined with a cerebellar conditioning pulse on highly active Purkinje 
cells (marked in red) results in a decreased activation of M1. This is depicting by smaller MEP amplitudes as a result of combined 
stimulation (magenta trace) when compared to the MEPs elicited by just stimulating over M1 (blue trace). CBI has been found to 
reduce following a variety of motor learning tasks (Jayaram and others 2011; Schlerf and others 2012a; Schlerf and others 2015; 
Spampinato and Celnik 2017; Spampinato and others 2017), which has been interpreted as resulting from long-term depression 
like changes in the activity of parallel fiber–Purkinje cell synapses, as shown in animal studies (Medina and Lisberger 2008). Thus, 
following learning, stimulation of less active Purkinje cells (marked in yellow) is not as likely to inhibit M1. Further evidence of this 
interpretation has been provided by studies utilizing transcranial direct current stimulation (tDCS) to modulate cerebellar activity. 
One study showed that anodal cerebellar tDCS effects were consistent with the concept of increased excitability of Purkinje cells, 
since the authors were able to elicit a stronger CBI effect at low conditioned stimulation intensity following tDCS stimulation (Galea 
and others 2009). Following this logic, the authors also showed that cathodal tDCS resulted in a reduced CBI effect. Together, this 
collection of results indicates that cerebellar stimulation, to a degree, reflects the state of Purkinje cells and how they respond to 
both behavioral and brain stimulation interventions.

Figure 3. (continued)

avoiding the prior action. Unlike the vector feedback a 
sensory prediction error provides, a reinforcement signal 
failure does not provide information about how (direction-
ally) a behavioral should be adjusted (Izawa and Shadmehr 
2011; Therrien and others 2016). In other words, in con-
trast to supervised learning, the reward we see only tells us 
whether the action we chose was good or bad, not what 
would have been the “correct” action.

Several studies have highlighted key differences 
between learning via reinforcement versus error-based 
that yield different behavioral outcomes. For instance, 
via reward prediction errors it is possible to learn a new 
motor behavior that is identical to actions learned via 
error-based learning in a motor adaptation task present-
ing a perturbation (Galea and others 2015; Izawa and 
Shadmehr 2011; Wu and others 2004). Interestingly, 
when a motor action is learned via success-based feed-
back, participants do not realign their proprioceptive 
estimates of limb position to match vision (i.e., no recali-
bration of proprioception), a phenomenon that is present 
when learning via sensory-prediction errors (Izawa and 
Shadmehr 2011). Although learning via reinforcement is 
a slower process than error-based learning, participants 
exhibit longer retention with success-based feedback 
(Abe and others 2011; Izawa and Shadmehr 2011; 
Therrien and others 2016).

It is widely accepted that the basal ganglia plays a key 
role in selecting appropriate actions and in reinforcement 
learning. Both action selection and reinforcement are 
facilitated by dopaminergic neuron activity, which 
encodes reward prediction errors when reward outcomes 
are higher or lower than expected (Schultz 2016). The 
basal ganglia are thought to use reward prediction errors 
in order to encourage the selection of wanted movements 
and inhibition of unwanted ones (Albin and others 1989). 

This indicates that connections between the basal ganglia 
and M1 are critical for motor-related reinforcement learn-
ing (Doyon and others 2009). M1 is a primary output tar-
get of basal ganglia–thalamo-cortical circuits that shows 
degeneration after diseases of basal ganglia (Dumas and 
others 2012) and also receives dopaminergic inputs that 
are capable of modulating M1 synaptic plasticity (Hosp 
and Luft 2013; Hosp and others 2011; Molina-Luna and 
others 2009). Stimulation of ventral tegmental area dopa-
minergic cells enhanced motor-map reorganization and 
recovery following motor cortex lesions (Castro-
Alamancos and Borrel 1995). Blocking M1 dopamine 
receptors or lesioning cortical dopaminergic pathways 
impairs both LTP (Guo and others 2015; Molina-Luna 
and others 2009) and motor skill acquisition (Hosp and 
Luft 2013; Hosp and others 2011), indicating the role of 
dopamine receptors in learning skilled movements. 
Interestingly, human studies on Parkinson’s patients have 
also described impaired M1 plasticity due to massive loss 
of dopaminergic neurons, including a loss of LTP indirect 
pathways and a replacement of LTD with LTP on the indi-
rect pathway, which are only capable of producing after-
effects if patients are given l-dopa (Kishore and others 
2012; Kishore and others 2014; Morgante and others 
2006; Suppa and others 2011). Together these results sug-
gest that dopamine-driven reinforcement mechanisms 
might be mediate, in-part, by the expression of learning-
related M1 LTP-like plasticity.

Human Neurophysiological Studies 
of M1 Plasticity and Reinforcement 
Learning

Combining the application of TMS with tDCS (see Box 2) 
can also provide scientists with a powerful approach to 
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study physiological mechanisms contributing to human 
motor learning. Classical animal studies have demon-
strated that motor learning leads to LTP in M1 and results 
in a reduced capacity to artificially induce more LTP-like 
changes (Rioult-Pedotti and others 1998; Rioult-Pedotti 
and others 2000; Rioult-Pedotti and others 2007). 
Evidence for this phenomenon—termed occlusion—is 
consistent with homeostatic mechanisms of plasticity, 
which is thought to stabilize the overall synaptic weight 
and firing rates of a neuronal network within a physiolog-
ically reasonable dynamic range (Karabanov and others 
2015). Homeostatic plasticity can be assessed in humans 
by applying interventions such as paired associative stim-
ulation (PAS; Rosenkranz and others 2007; Stefan and 
others 2006; Ziemann and others 2004) and anodal tDCS 
(Cantarero and others 2013; Siebner and others 2004) 

following motor learning (Fig. 4). In this technique, TMS 
is applied prior to and after the application of these proto-
cols, to assess whether M1 is capable of responding and 
the magnitude of change following PAS or tDCS. This 
quantification is done twice, before and after a motor task 
is trained. The rationale for this is that if the training leads 
to learning using LTP resources, then introducing a plas-
ticity protocol that relies (at least in part) on LTP-like 
mechanisms (i.e., tDCS; Fritsch and others 2010; Nitsche 
and others 2003) should result in a reduced response after 
learning relative to a baseline state, consistent with prin-
ciples of homeostatic metaplasticity.

Consistent with animal research, humans show occlu-
sion to plasticity-inducing protocols following motor 
learning tasks, in particular to those tasks in which suc-
cessful actions were reinforced (Cantarero and others 
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2013; Spampinato and Celnik 2017, 2018; Uehara and 
others 2018). Interestingly, occlusion of M1-LTP like 
plasticity has been associated with the amount of motor 
skill learning retention (Cantarero and others 2013) and is 
only prominent when a substantial amount of successful 
actions are performed (Spampinato and Celnik 2017). 
The link of occlusion and reinforcement learning is 
supported by recent behavioral studies showing that pro-
viding additional positive feedback during learning trials 
enhances motor retention (Galea and others 2015; 
Shmuelof and others 2012; Spampinato and others 2019). 
Moreover, as animal models have shown that successful 
motor learning and M1 synaptic plasticity in M1 requires 
dopaminergic signaling (Rioult-Pedotti and others 2015), 
the occlusion effect seen in humans likely reflects the 
influences of the basal ganglia on M1 plasticity during 
motor learning.

Disentangling Error-Based and 
Reinforcement Learning

It could be argued that attributing the occlusion effect to 
a particular form of learning is difficult as skill tasks by 
nature are complex and thus require the engagement of 
multiple forms of learning. However, recent behavioral 
experiments have been able to dissect error-based and 
reinforcement learning components within a visuomotor 
adaptation task (Izawa and Shadmehr 2011; Therrien and 
others 2016). This was achieved by giving participants 
success-based binary feedback instead of vector error 
feedback during perturbation trails (see Fig. 2B). More 
recently, Uehara and colleagues designed a study that uti-
lized this manipulation of feedback presented to partici-
pants when learning the same motor actions to understand 
the distinct physiological markers associated with rein-
forcement and error-based learning (Uehara and others 
2018). In one experiment, participants were given vector 
feedback in order to adapt motor commands (i.e., stron-
ger reliance on error-based learning; Fig. 5A), while in 
another experiment only binary feedback (i.e., weighing 
more reinforcement) was provided (Fig. 5B). The authors 
showed that learning the motor behavior relying on 
binary feedback led to occlusion of M1 LTP-like plastic-
ity, but not cerebellar excitability changes. On the other 
hand, when participants relied on error-based mecha-
nisms to learn the same motor behavior the investigators 
found cerebellar excitability changes (modulation of 
CBI), but not for M1 LTP-like plasticity, especially early 
on during the training. In this double dissociation, the 
authors elegantly showed that learning-induced changes 
in M1 LTP-like plasticity are a marker of the involvement 
of reinforcement form of learning, while also providing 
further evidence that cerebellar excitability changes are 
associated to error-based learning processes.

Use-Dependent Learning

The ability for the world’s top athletes to consistently 
execute quality movements surely relates to the countless 
hours of practice they perform. However, repeating 
movements does not necessarily lead to desirable out-
comes. This is because motor behaviors are shaped not 
only by sensory signals (error and reward) but also by the 
history of previous motor actions. The tennis player who 
practices the motions of a swing multiple times right 
before the actual play is in part invoking use-dependent 
learning mechanisms that have been shown to reduce 
reaction time and variability. In other words, the repeti-
tion of the same movement is capable of altering perfor-
mance, even when no information about the movement 
outcome is provided. This form of learning, known as 
use-dependent learning (UDL), is a simple and goal-inde-
pendent process that forms motor memories by changing 
movements to become more similar to the previous 
movement (Reinkensmeyer and others 2016; Wolpert 
and others 2011). For example, repeating point-to-point 
curved movements around an obstacle led to a distinct 
curved trajectory of movements on subsequent trials, 
even when the obstacle was removed (Jax and Rosenbaum 
2007). This also illustrates that UDL can lead to nonopti-
mal or energetically favorable solutions when adapting to 
environmental changes in redundant tasks (Diedrichsen 
and others 2010). While UDL results in directional biases 
in subsequent movements, behavioral studies have dem-
onstrated that repetition reduces the variability of move-
ments (Huang and others 2011; Verstynen and Sabes, 
2011). Furthermore, recent studies showed that repetition 
also produces faster movements (Hammerbeck and oth-
ers 2014) by facilitation of movement planning (Mawase 
and others 2018).

Human Neurophysiological Studies of Use-
Dependent Learning

Using TMS, past studies demonstrated that the repetition-
dependent biases originate in M1 since transcranial elec-
trical stimulation (TES) cannot elicit biased-evoked 
movements (Classen and others 1998) and movement 
repetition leads to plastic reorganizational changes in M1 
(Butefisch and others 2000; Dayan and Cohen 2011). For 
instance, when individuals repeatedly perform thumb 
movements in a particular direction, TMS of M1 follow-
ing training is more likely to elicit responses in the trained 
direction (Classen and others 1998). This classic study 
was the first to show that a brief amount of repetitive 
training alters the TMS responses, indicating that even a 
small bout of repetition is capable of enhancing the excit-
ability of cortical representations of particular move-
ments. The short-term changes in representations have 
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been interpreted to be mediated by Hebbian-like plastic-
ity or synaptic alterations within M1 (Butefisch and oth-
ers 2000; Orban de Xivry and others 2011), as these 
changes by TMS are disrupted when individuals are 
given lorazepam, a GABA agonist (Butefisch and others 
2000). This concept is supported by animal literature, 
where repetitive movements (especially when rewarded) 
strengthen horizontal cortical connections through LTP 
mechanisms (Rioult-Pedotti and others 1998), induces 
functional map reorganization (Kleim and others 1998), 
and leads to the formation of postsynaptic dendritic 
spines (Fu and others 2012; Xu and others 2009; Yang 

and others 2009). Interestingly in humans, atDCS applied 
over M1, which has been shown to modulate excitability 
via NMDA-related activity (Fritsch and others 2010) and 
decrease GABA (Stagg and others 2011) enhances the 
initial formation and retention of new motor memories 
assimilated via repetitive training (Galea and Celnik, 
2009; Koyama and others 2015; Rroji and others 2015). 
However, it is important to note that plastic changes 
observed during these TMS studies, do not necessarily 
mean motor learning has occurred since there is no 
behavioral expression of the learning; the new directional 
biases are elicited by TMS-evoked movements. Because 
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Figure 5. Learning a visuomotor cursor rotation via different forms of learning (i.e., via sensory prediction errors vs. 
reinforcement) relies on different physiological mechanisms. (A) Visuomotor task version relying on error-based learning. 
Participants performed a center-out reaching task in which they controlled the movement of a yellow computer-cursor from 
a central starting position to a target (eight possible locations) while receiving online and endpoint cursor feedback (light blue 
dot). (B) Behavioral reach angle data. Positive values indicate counterclockwise deviation. Solid lines and shaded areas show 
the mean and standard errors of the mean (SEM) for each 8-trial epoch for the constant perturbation (blue; i.e., a constant 30° 
rotation was administered in “Perturb” section) and the random perturbation sessions (gray). Only the Constant group shifted 
the reaching direction when exposed to the constant perturbation, but not when exposed to the random perturbation. (C) 
Cerebellar inhibition (CBI) results. Bar graphs and vertical error bars indicate the mean CBI ratio (the ratio of the conditioned/
unconditioned test stimulus [TS] motor-evoked potential [MEP] amplitude) for the constant and the random sessions at 
each time point. The authors found that CBI selectively reduced after participants of the Constant group accounted for the 
perturbation (i.e., reduced CBI at “Post” time-point). (D) The AtDCS effects on M1 excitability for the Constant and Random 
groups. MEP amplitudes normalized to that of preAtDCS are presented for each time point (Pre, P0, . . ., P15). No significant 
occlusion was found for either group after training and adapting via sensory-motor prediction errors. (E) Motor task version 
relying on reinforcement learning. Here, participants reached from a central starting position to one target. Only binary feedback 
(success or failure) was presented (in the form of target colors) instead of vector cursor feedback. (F) Reach angle. Solid lines 
and shaded areas indicate the mean and SEM of each 8-trial epoch for the Learner (light blue) and the Non-Learner groups (gray). 
(G) The AtDCS effects on M1 excitability and (H) CBI results for the Learner and the Non-Learner groups. Here, the authors 
showed learning via binary feedback elicited changes in M1 LTP-like plasticity (i.e., occlusion), but did not modulate cerebellar 
excitability changes. This study elegantly showed that we can learn the same motor behavior via different forms of motor 
learning engaging distinct neurophysiological mechanisms (Uehara and others 2018). Figure used with permission from Oxford 
University Press https://doi.org/10.1093/cercor/bhx214).

https://doi.org/10.1093/cercor/bhx214
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of this subtle difference, the TMS literature has referred 
to this TMS paradigm as use-dependent plasticity (UDP), 
rather than UDL.

The long-term involvement of UDL that is necessary 
for executing complex motor skills can also be realized 
with TMS. Indeed, TMS can show functional map reor-
ganization following substantial training (Pascual-Leone 
and others 1995). This is done by conducting corticomo-
tor mapping, which consists of delivering TMS pulses 
with the same intensity to different sites over M1. The 
resulting MEPS responses and direction of hand move-
ments induced by TMS can be compared before and after 
extensive motor training. For example, the unimanual 
practice of a piano piece of a naïve individual enlarges 
specifically the hand representation of the trained motor 
cortex, whereas expert piano players do not enlarge their 
motor cortical representations due to years of training on 
this skill (Pascual-Leone and others 1995). Rather, TMS 
applied to well-trained musicians is more likely to evoke 
muscle activity patterns that resemble features of trained 
movements (i.e., piano playing–like movements, violin 
grasping; Gentner and others 2010). Moreover, action 
observation via the engagement of mirror neuron activity 
has been shown to facilitate motor learning (Mattar and 
Gribble 2005). Interestingly, these effects might be medi-
ated by UDP-related mechanism, as prior studies have 
shown action observation can elicit directional changes in 
the likelihood of TMS-evoked movements to follow the 
observed movements (Stefan and others 2005). This 
effect of action observation on UDP has also been shown 
to enhance the effects of motor training in healthy older 
adults and stroke patients (Celnik and others 2006; Celnik 
and others 2008).

Given that motor behaviors in daily life are complex 
and not constrained by laboratory manipulations it is 
likely that the different forms of learning interact with 
each other when acquiring these skills. In this manner, it 
is likely that when training a motor task over time, perfor-
mance repetition is facilitated by UDL mechanisms 
resulting in less variability and reduction of the motor 
planning time. While this occurs, motor errors become 
smaller increasing the likelihood of engaging reinforce-
ment learning mechanisms (Diedrichsen and others 
2010). Indeed, animal works have shown the existence of 
dopamine receptors in M1, suggesting a candidate mech-
anism for reward-based modulation of use-dependent 
plasticity (Hosp and others 2011; Huntley and others 
1992; Luft and Schwarz 2009). The interaction between 
RL and UDL was investigated by a recent study. 
Movement repetition leading to the correct solution of a 
visuomotor motor transformation resulted in an increased 
use-depending learning rate, but only if the repetitions 
were associated with successfully achieving the target 
(Mawase and others 2017). Although previous behavioral 

studies have demonstrated that successful repeated move-
ments elicit larger changes in movement direction biases 
than non-reward repetition (Huang and others 2011), the 
physiological effects of learning (i.e., improved perfor-
mance) on UDP have only recently been investigated. In 
a series of experiments, Mawase and others used TMS to 
assess plasticity changes in M1 after individuals learned 
a repetitive motor skill with reinforced and nonreinforced 
movements (Fig. 6). Here they assessed UDP, TMS 
applied over M1 representation of the trained muscle 
(flexor brevis polis) before and after the behavioral inter-
vention (see Fig. 6 caption for further details). They 
found that movement repetition in the context of learning 
a motor skill enhanced UDP (i.e., a greater shift of 
involuntary TMS-induced responses of the thumb after 
training). This effect was mediated by success-based 
reinforcement of the trained skill. The results of this study 
indicated that the performance of motor tasks likely 
engages different learning mechanisms that interact with 
each other leading to faster learning, as tested in this 
study, but theoretically, they could also interfere or com-
pliment across mechanisms.

Cognitive Strategies

Recent behavioral works have reinvigorated interest in 
the role of cognitive strategy during motor learning 
(Mazzoni and Krakauer 2006; Taylor and Ivry 2014; 
Taylor and others 2014). Indeed, although often over-
looked as motor learning mechanism, cognition plays an 
undeniable role in motor learning as ability to follow 
instruction and to develop new strategies is critical for 
individuals to execute successful actions. For example, 
the tennis player will listen to instructive strategies from 
a coach to improve the serve.

Classic models of motor learning proposed an initial 
learning phase that required considerable cognitive 
demands before new behaviors becoming fluid and 
autonomous (Fitts and Posner 1967). During the cogni-
tive phase, individuals begin to develop an understanding 
of the task goals, including the objective of the task and 
the environmental factors that may influence their ability 
to perform. Learning these components likely requires 
the use of explicit knowledge, working memory and stra-
tegic implementation. While cognition plays an impor-
tant role in learning new tasks, behavioral studies have 
only recently begun to address how employing cognitive 
strategies affect motor learning.

One behavioral study was able to disentangle the dis-
tinct roles for implicit error-based learning and explicit 
strategy to account for a perturbation (Taylor and others 
2014). The authors developed a method to assess the 
explicit process by having participants report their reach 
aiming direction prior to executing them. They found that 
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explicit learning fluctuated early in training (i.e., variability 
in the first few movements). In contrast, implicit learning 
(i.e., learning via sensory prediction errors, or error-based 
learning) occurred slowly throughout learning and was 
not sensitive to changing task instructions. The results 
from this study, and others, critically demonstrates that 
overall performance reflects the joint operation of both 
processes (Mazzoni and Krakauer 2006).

The prefrontal cortex has been associated with cogni-
tive processes, including planning, goal representation, 
and performance monitoring (Miller and Cohen 2001). 
The dorsal lateral prefrontal cortex (dlPFC) is thought to 
play an important role in explicit learning, especially in 
scenarios that require participants to develop a cognitive 
strategy to resolve task demands (Taylor and Ivry 2014). 
Indeed, several motor adaptation studies have consis-
tently shown the activation of dlPFC during visuomotor 
learning tasks (Anguera and others 2010; Floyer-Lea and 
Matthews 2005; Shadmehr and Holcomb 1997). The con-
tributions of the dlPFC appear critical to the initial stages 
of learning given that greater activation levels in dlPFC 
are proportional to initial adaptation rates (Anguera and 
others 2010) and patients with prefrontal damage are par-
ticularly impaired during the early stages of adaptation, 
often showing lack awareness of the perturbations 
imposed (Slachevsky and others 2001).

To date, there are no studies that have directly tested 
neurophysiological mechanisms related to strategy in the 
context of motor learning. However, there are a few 
investigations that have attempted to use brain stimula-
tion to modulate cognitive performance during simple 
procedural tasks. For example, 5-Hz rTMS administered 
over the dlPFC impaired performance of serial reaction 
time task (SRTT) (Pascual-Leone and others 1996), 
whereas silencing dlPFC with intermittent theta-burst 
stimulation can disrupt the negative influence of declara-
tive memory processes during motor learning (Galea 
and others 2010), thus overall facilitating offline motor 

sequence learning in humans. Furthermore, cerebellar-
cortical interactions also appear to play an important role 
in this type of learning. Indeed, prominent changes in 
CBI are found following the observation and execution of 
the SRTT (Torriero and others 2011) and cerebellar rTMS 
has been shown to interfere with procedural skill acquisi-
tion (Torriero and others 2004). One study has success-
fully studied the interactions between the dlPFC and M1 
using paired-pulse TMS, which changes depending on 
the task demands (Hasan and others 2013). Future studies 
could utilize this paired-pulse technique to further under-
stand the connectivity between frontal brain regions and 
M1 during learning. Additionally, future studies could 
study the interactions between dlPFC and the cerebellum 
given the reciprocal connections between these areas 
(Kelly and Strick 2003) and the recently highlighted 
importance of the cerebellum in cognition (Stoodley and 
Schmahmann 2011).

Neurophysiological Changes 
throughout the Time Course of 
Learning and Distinct Components 
of a Motor Skill

As evident from the previous section, different processes 
contribute to the overall learning of a new motor behav-
ior. For instance, error-based, reinforcement, use-depen-
dent learning and strategic learning are all capable of 
affecting how individuals perform motor adaptation tasks 
(Haith and Krakauer 2013; Krakauer and Mazzoni 2011; 
Shmuelof and others 2012; Taylor and Ivry 2014). 
However, in this section, we will argue that the relative 
weights of how these forms of learning (and their associ-
ated brain regions) contribute to the overall learning 
changes throughout the course of the acquisition of a 
new behavior. For instance, disrupting M1 with TMS 
only impairs a motor adaptation task once performance 

Figure 6. (continued)

movements before and after training. The direction of TMS-evoked thumb movements was recorded and the proportion of 
TMS-evoked thumb movements falling in the training direction zone (TDZ; magenta) are measured. (B) Representative subject 
data displaying TMS-evoked thumb movements before (gray, left) and after (blue, middle) training. Mawase and others calculated 
the group average depicting the probability distribution of the thumb directions before and after task performance. Individuals 
who trained on this paradigm showed a significant increase in the proportion of TMS-evoked thumb movements within the TDZ. 
(C) The study design and setup of experiment 2 used in Mawase and others (2018) in which the authors showed that explicit 
rewards modulate UDP. In short, participants were randomly assigned to either a reward-group or random-reward group. 
Importantly, only the reward-group (blue) received explicit reward coinciding with task success, whereas the random reward 
group (red) received an explicit reward randomly throughout performance, independent of task success. TMS-evoked thumb 
movements were assessed before and after training for both groups. (D) A 2-dimensional histogram showing the total number 
of TMS-evoked movements for all participants, separated by group. Here, only the reward-group significantly benefited from 
receiving meaningful reward as they showed a dramatic change in TMS-evoked thumb movement direction, whereas the random-
reward group did not show a significant change from baseline. Figures adapted from Mawase and others 2017; https://dx.doi.
org/10.1523/jneurosci.3303-16.2017.

https://dx.doi.org/10.1523/jneurosci.3303-16.2017
https://dx.doi.org/10.1523/jneurosci.3303-16.2017
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plateaus (Orban de Xivry and others 2011), indicating 
that repetition of the same motor command plays a sig-
nificant role in how much M1 contributes to motor 
adaptation.

Two recent studies in humans have investigated neu-
rophysiological changes throughout the time course of 
learning. Spampinato and Celnik (2017) assessed cere-
bellar excitability and M1 LTP-like plasticity changes 
before, during and after healthy individuals learned a new 
skill, the sequential visual isometric pinch task or SVIPT 
(Fig. 7). The SVIPT requires participants to simultane-
ously learn how to control a new device in a novel envi-
ronment (sensorimotor map), along with performing a 
sequence of isometric movements. The authors reasoned 
that learning this skill would rely more heavily on a cere-
bellar-dependent error-based learning mechanism early 
on, to learn the dynamics of the skill task, prior to shifting 
the weights to M1 (and basal ganglia), which can incor-
porate other forms of motor learning such as reinforce-
ment and use-dependent (Spampinato and Celnik 2017). 
Consistent with this hypothesis, the authors found 
changes in cerebellar excitability early, but not late in 
skill learning, whereas M1 LTP-like plasticity was pres-
ent only during the later stages of motor skill learning. 
These results were the first to demonstrate a temporal dis-
sociation in the neurophysiological role the cerebellum 
and M1 play during skill learning, suggesting that the 
relative contributions of the different forms of motor 
learning may shift as learning occurs. Similarly, Uehara 
and others (2018) used the same physiological markers as 
the previous study, but while healthy participants per-
formed a reaching visuomotor adaptation task known to 
engage error-based learning early on and reinforcement 
mechanisms as participants account for the perturbation 
(Shmuelof and others 2012). The authors showed that 
CBI changed early, but not in the later phase of adapta-
tion, whereas occlusion of M1 LTP-like plasticity was 
present only late, but not early in learning. Collectively, 
the results from these studies using very different motsor 
tasks indicate that early on in learning, the cerebellar-
dependent error-based process is weighted strongly to 
learn the task dynamics before the weight shifts to M1, 
incorporating other forms of learning (i.e., reward-based 
or use-dependent).

Interestingly, the neurophysiological findings follow 
similar results from several neuroimaging studies. For 
instance, changes in cerebellar activity with learning 
were described in the early stages of learning (Diedrichsen 
and others 2005a; Doyon and others 2003; Floyer-Lea 
and Matthews 2005; Hardwick and others 2013; Steele 
and Penhune 2010), whereas other studies have docu-
mented increases in the activity of striatum and motor 
cortex with extended training (Dayan and Cohen 2011; 
Floyer-Lea and Matthews 2005; Penhune and Steele 

2012; Steele and Penhune 2010; Wiestler and Diedrichsen 
2013). However, while examining the role and interac-
tions of distinct brain regions throughout the different 
stages of motor skill learning is of great relevance, it is 
important to consider that many of the imaging studies 
mentioned above may have engaged many motor learn-
ing processes in order to master the skill. In other words, 
beyond considering the different stages of learning a 
motor skill, decomposing a particular skill into its differ-
ent subcomponents (i.e., sensorimotor map and sequence) 
is critically important to disentangle the role of different 
motor learning processes and their respective neurophys-
iological mechanisms.

Consider the scenario of learning how to shoot a bas-
ketball. A coach may first have a trainee grip and hold the 
ball in a shooting position (i.e., understand how to control 
the ball/learn the weight of the ball) before instructing the 
sequence of movements to shoot the ball (e.g., the entire 
shooting motion and follow-through stroke). One recent 
study assessed the distinct physiological contributions of 
the cerebellum and M1 when participants learned distinct 
components of a motor skill. Here the investigators broke 
down the SVIPT into its two components: learning the 
sensorimotor map (or internal model) versus learning a 
sequence of movements (Spampinato and Celnik 2018). 
The authors found that acquiring the de novo map only 
modulated cerebellar excitability and not in M1. In con-
trast, learning a sequence of movements elicited changes 
in both CBI and LTP-like plasticity in M1; however, the 
cerebellar changes were only found during the early 
stages of learning (Fig. 8). These results suggest that the 
makeup of different motor skills and its components 
determine what the relative contributions of different 
brain regions are when learning the new skill. Moreover, 
the combined results of this section clearly show that the 
cerebellum, striatum, and motor cortical regions are all 
engaged in motor sequence learning, but that their contri-
butions are not always confined to particular stages of 
learning depending on what specifically participants are 
asked to learn.

Can We Use These Different 
Forms of Learning to Enhance 
Motor Recovery in Patients with 
Neurological Disease?

As previously discussed, learning and performing every-
day tasks likely involves all the forms of learning dis-
cussed in this review. Therefore, if any of these forms of 
learning and their neural substrates remain intact after 
illness or neurological damage, they could be targeted 
to facilitate motor relearning in patients. For example, 
patients with cerebral stroke maintain the ability to adapt 
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Figure 7. Results from Spampinato and Celnik (2017), which investigated the temporal dynamics of two physiological mechanisms 
during motor skill learning. (A) The experimental design where individuals performed a sequence of movements by squeezing a 
pinch-force transducer to control the movement of an on-screen computer cursor. Individuals were split into three separate groups: 
Long (blue), Short (light blue), and Random (red). The Long and Random groups completed a total of 150 trials (5 blocks), whereas 
the Short group completed 1 block of 30 trials. Importantly, only the Long and Short groups had a consistent sensorimotor mapping 
between cursor movements and pinch-force production. Cerebellar inhibition (CBI) was assessed throughout training (Black arrows; 
Pre, P1, P2, P3), while occlusion was measured at the end of each day. (B) The skill performances for the Long (blue), Short (light 
blue), and Random (red) groups are presented for each block and day of training. Importantly, no learning is present in the random 
group (C) Cerebellar-M1 connectivity (CBI) changes throughout learning a de novo skill. The bar graphs show the mean CBI ratio on 
the y-axis for groups where learning occurred (blue and light blue) and for a random movement scenario (red). The x-axis represents 
different stimulation time points: before training (Pre), during (P1, P2) after the training session (P3). The authors show that only the 
training group (individuals capable of learning a new sensorimotor relationship) had a reduction in CBI (i.e., less inhibition). Specifically, 
the cerebellar physiological changes were prominent at the beginning of learning, which progressively returned toward baseline levels 
despite further skill improvement. (D) The AtDCS effects on M1 excitability for the long (blue), short (light blue) and random groups 
(red). The average MEP amplitude (standardized to the pretDCS MEP amplitude) is depicted on the y-axis and the x-axis represents 
successive TMS measurements taken prior to application of AtDCS (Pre), immediately after AtDCS (Post 1, P1) and repeated every 
5 minutes up to 25 minutes post-AtDCS (P2, . . ., P6). Here, the authors show that in comparison to baseline (dark gray) occlusion 
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Figure 8. Results from a study in which a motor skill task was broken down into distinct motor components (a sensorimotor mapping 
vs. sequence) while physiological changes were assessed. (A) The experimental design where individuals learned a logarithmic mapping 
between the movement of an onscreen cursor and pinch-force production. Participants were trained on this mapping for three days 
prior to introducing a skill version (i.e., integration of the logarithmic map and a sequence of movements). Cerebellar inhibition (CBI) was 
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Overall, participants were able to learn the sensorimotor map as shown by a reduction in the time to reach successfully a target and 
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results indicate that a complex skill is learned by different forms of learning engaging distinct and specific neurophysiological mechanisms 
(Spampinato and Celnik 2018). Figure used with permission from Elsevier; https://doi.org/10.1016/j.cortex.2018.03.017.

only occurs after significant amount of learning occurs following a training session (i.e., Long group, blue and light gray). Overall, these 
results indicate that learning a new skill involves cerebellar-dependent processes early in learning; and as learning proceeds, M1-
LTP-like plasticity can be observed, suggesting that other forms of learning are incorporated (e.g., reinforcement or use-dependent). 
Figures adapted from Spampinato and Celnik (2017); https://doi.org/10.1038/srep40715.

Figure 7. (continued)
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to environmental changes, likely through error-based 
learning, and are capable of showing aftereffects from 
adaptation leading to improved gait step-symmetry 
(Reisman and others 2007). Similarly, providing success- 
and failure-based reinforcement feedback to stroke patients 
enhances the rate of motor learning (Quattrocchi and oth-
ers 2017). Specifically, patients who learned via reinforce-
ment conditions were also faster to adapt their movements 
when exposed to a similar perturbation on a subsequent 
day, suggesting that reinforcement can have lasting benefi-
cial effects on the rate of motor learning after stroke. 
Results from studies utilizing tDCS to modulate specific 
forms of learning have also provided some promising evi-
dence for this technique to be implemented as a rehabilita-
tion co-adjuvant aimed at enhancing motor function 
following cerebral stroke. For example, depending on the 
polarity applied to the cerebellar cortex, tDCS leads to 
changes in the rate of motor adaptation in locomotor 
(Jayaram and others 2012), visuomotor (Galea and others 
2011), and force-related perturbations tasks (Herzfeld and 
others 2014). Importantly, these effects have also been 
described in older adults (Hardwick and Celnik 2014). 
Recent clinical studies have shown that targeting the cere-
bellum with brain stimulation improves gait and balance 
control in both stroke and ataxic patients (Benussi and oth-
ers 2015; Koch and others 2019), providing an encourag-
ing outlook for future translational research. While these 
results provide promising evidence for modulating specific 
brain regions, or learning mechanisms, during the training 
of clinically relevant tasks, future studies will need to 
address whether this approach results in substantial, mean-
ingful gains. For example, while numerous studies have 
shown that it is possible to augment a specific learning pro-
cess of constrained, reductionist tasks, this effect might 
have little impact when modulating a complex motor 
behavior that engages multiple forms or learning.
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