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Abstract

Each individual experiences mental states in their own idiosyncratic way, yet perceivers can 

accurately understand a huge variety of states across unique individuals. How do they accomplish 

this feat? Do people think about their own anger in the same ways as another person’s anger? Is 

reading about someone’s anxiety the same as seeing it? Here, we test the hypothesis that a 

common conceptual core unites mental state representations across contexts. Across three studies, 

participants judged the mental states of multiple targets, including a generic other, the self, a 

socially close other, and a socially distant other. Participants viewed mental state stimuli in 

multiple modalities, including written scenarios and images. Using representational similarity 

analysis, we found that brain regions associated with social cognition expressed stable neural 

representations of mental states across both targets and modalities. Together, these results suggest 

that people use stable models of mental states across different people and contexts.
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1. Introduction

Every person – from a romantic partner to a complete stranger – has a unique mind with 

unique experiences, expressions, and behaviors. This poses a challenge: How do we 

understand any one person’s idiosyncratic mind? One possibility is that people rely on core 
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mental state concepts that are consistent across people. This approach would allow 

perceivers to generalize their understanding of mental states–including emotions and 

cognitive states–across people and situations, rather than laboriously constructing unique 

models for each mind. If people consistently apply the same core concepts when thinking 

about mental states, we should see this stable core across diverse targets. We should also 

observe stability regardless of how perceivers receive information about that person (e.g., 

through pictures or stories). Here, we explore this possibility by examining the stability of 

mental state representations in the brain across diverse contexts.

Do people approach each person anew, representing their emotional landscape 

idiosyncratically? This strategy might be appropriate, given that every person is unique. 

One’s best friend has a unique face, traits, behavioral patterns, and relationship history that 

differentiates them from every other unique individual in this world (e.g., Thornton et al., 

2018, Todorov et al., 2007, Trope and Liberman, 2010). Each person’s individuality shapes 

others’ understandings of that person’s mind and internal states (e.g., Epley, 2008, Harris 

and Fiske, 2011, Haslam and Loughnan, 2014, Thornton et al., 2019, Thornton et al., 2018). 

Indeed, we likely consider emotions differently depending on who is experiencing them. A 

close friend’s joy may be seen as much more positive than a stranger’s joy (Claypool et al., 

2007); an enemy’s joy may even be a negative experience (Cikara and Fiske, 2011). These 

differences in how people consider emotional experiences become particularly stark when 

comparing one’s own experiences to others’. People represent their own experiences more 

richly than others’ (Thornton et al., 2019). These differences in experience may arise, in 

part, due to the type of information available from each (e.g., interoceptive signals and 

introspection about one’s own mind versus only perceptible cues from others). Thus, when 

considering someone else’s mind, the uniqueness of that person may overwhelm any 

similarities in how states are experienced in general.

However, an alternative way to make sense of others’ unique minds would be to apply core 

concepts of mental states that generalize across people. That is, people may operate upon 

concepts of mental states that are largely universal (Thornton et al., 2020). Universality in 

this case does not mean that everyone has the same understanding of mental state concepts. 

Rather, it means that people have a similar framework they use to understand mental states; 

individuals’ idiosyncratic representations could still exist within this framework. For 

example, grief is intense and negative, no matter who is experiencing that grief. If someone 

tells a friend about a tragic loss, that friend, understanding the nature of grief, can empathize 

with their experience (de Vignemont and Singer, 2006). Despite any idiosyncrasies that the 

current situation may impose, both people have a core understanding of what grief is. This 

shared understanding of emotions has been the basis of much affective research, which 

implies that there are universal emotions that span age, race, and culture (e.g., Barrett et al., 

2007, Jackson et al., 2019, Thornton et al., 2020). It may be, then, that everyone uses stable, 

generalizable concepts of mental states when considering what someone else is 

experiencing. These concepts would define both the primary features of each state 

individually, as well as how two states relate to one another (e.g., how similar they are).

Functional magnetic resonance imaging (fMRI) provides a unique method for testing if 

people use a common mental state model across all targets. Specific regions of the brain, 
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including the medial prefrontal cortex (MPFC), anterior temporal lobe (ATL), and 

temporoparietal junction (TPJ), have been shown to encode and process information related 

to others’ minds, including representing others’ mental states (Schurz et al., 2020). FMRI 

allows us to compare neural representations of individual mental state concepts without 

having to ask the participant, who may not be able to provide an accurate response regarding 

their understanding of others’ minds (Nisbett and Wilson, 1977). By examining how the 

brain represents mental state concepts across individuals and modalities using these 

techniques, we can map the abstract representational space comprised of these mental states. 

These representations can be extracted for each target individual, and then compared across 

targets to test for commonalities and distinctions in the models.

Even if people use the same model for everyone’s mental states, each person offers insight 

into their state in different ways. For example, we can learn about friends experiencing grief 

through multiple channels. One friend may text you that they are having a rough day; 

another friend may look at you with sad, tired eyes; a third friend may cry to you over the 

phone. Past research using isolated expressions of emotion suggests that the human brain 

encodes affect similarly across auditory (e.g., voice inflection) and visual (e.g., facial 

expression, body language) modalities (Bedny et al., 2008, Chikazoe et al., 2014, Peelen et 

al., 2010). However, to date, much of neuroimaging research on mentalizing has relied 

primarily on lexical stimuli (e.g., Meyer et al., 2012, Mitchell et al., 2002, Saxe and 

Kanwisher, 2003, Skerry and Saxe, 2014, Tamir et al., 2016, Theriault et al., 2020, Thornton 

et al., 2019, Thornton et al., 2019). Since language and social cognition overlap significantly 

in the brain (and are both largely distinct from perceptual regions), this may contribute to 

findings that there is some stable structure to neural representations of mental states 

(Thornton et al., 2019). If humans do use generalizable core concepts of mental states across 

modalities, then we should see similar neural representations of each mental state across 

visual and lexical stimuli. That is, watching a friend in agony should generate the same 

neural representation as reading a description of it. However, since pictures and phrases 

necessarily contain different types of information, it is also possible that people process 

these mental states uniquely depending on how the information is presented. Here we test 

how people represent supramodal mental states to see if core mental state concepts 

generalize across modalities.

Here, we tested two specific hypotheses about how people represent mental state concepts. 

First, we expect that the structure of neural representations associated with mental states 

should remain consistent across multiple targets – from the self to dissimilar others. Second, 

we expect that neural patterns associated with mental states should remain consistent across 

modalities – including lexical and pictorial stimuli.

2. Material and methods

To test our hypotheses, we combined data from three fMRI studies in which participants 

considered different individuals experiencing a variety of mental states using either lexical 

or pictorial stimuli. By analyzing across studies, we can assess the stability of mental state 

representations across (a) target people and (b) stimulus modalities. Moreover, this approach 
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provides a severe test of the generalizability, since participants, fMRI scanners, time, and 

institutions differ between studies as well.

2.1. Use of published data

In this manuscript, we use datasets that have been analyzed and published in previous 

manuscripts. Each study’s materials and analyses are freely available on the Open Science 

Framework. Here, we refer to these as Study 1 (https://osf.io/3qn47/; Tamir et al., 2016, 

Thornton et al., 2018), Study 2 and Study 3 (studies 2 and 1 in https://osf.io/hp5wc/, 

respectively; Thornton et al., 2019).

2.2. Participants

Participants in Study 1 (N = 20; 16 female, 4 male; 18-27 years, M = 22.7 years) were 

recruited from the Harvard University Study Pool. The participants in Study 2 (N = 35; 23 

female, 12 male; 18-31 years, M = 21 years) and Study 3 (N = 30; 14 female, 15 male, 1 

nonbinary; 19-27 years, M = 20 years) were recruited from the Princeton University Credit 

and Paid Study Pools. The sample size in Study 1 was determined via Monte Carlo 

simulation parameterized based on effect sizes in previous studies of similar design (Tamir 

et al., 2016). The sample sizes for Studies 2 and 3 were determined a priori to be able to 

detect the smallest effect found in Study 1 (namely, the relationship between neural 

representations of mental state and behavioral ratings of valence) with 95% power (Thornton 

et al., 2019). All participants were right-handed or ambidextrous, fluent English-speakers, 

reported no history of neurological problems, had normal or corrected-to-normal vision, and 

were screened for standard MRI exclusion criteria. Participants were compensated with 

university credit or monetary payment. All data were collected in accordance with the 

Harvard University Committee on the Use of Human Subjects (Study 1) or Princeton 

University Institutional Review Board (Studies 2 and 3).

2.3. Experimental design

In all three studies, participants made judgments about a wide range of mental states. On 

each trial, participants were shown a prompt with a mental state word (e.g., “peacefulness”) 

at the top of the screen, followed by two scenarios pre-tested to elicit that mental state. 

Participants chose which of the two scenarios, presented in either lexical or pictorial form, 

would most likely elicit the current mental state in a particular target person.

There were four targets across all three studies. In Study 1, participants chose for a generic 

other (no target description was given beyond “another person”); in Studies 2 and 3, 

participants chose for a specific target individual (shown along with the mental state prompt) 

at various levels of psychological distance from the subject: self, close other, or far other 

(Fig. 1, Table 1). Self-trials were cued with the word “SELF ”; socially close and far targets 

were cued with the name of that person (e.g., “KATE”). Close targets were nominated by the 

participant to be likable, familiar, and similar to themselves (i.e., socially close). Far targets 

were introduced to the participant via a short biographical statement (see Supplement S9 for 

example bios). The experimenters created these fictional targets to be dissimilar to the 

participant in terms of their college major, religiosity, political party and attitudes, and 
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extracurricular activities. Thus, the far target was both unfamiliar and dissimilar to the 

participant, thereby maximizing the social distance between the target and the participant.

An initial list of 166 mental state words was reduced to an optimized set of 60 states (Tamir 

et al., 2016). These 60 states were selected for minimal redundancy and to uniformly cover 

the conceptual space of mental states along many different psychological dimensions (Tamir 

et al., 2016). All 60 states were used in Study 1; Studies 2 and 3 consisted of subsets of these 

60 (Table 1; see Table S1 for full list of state words) that sampled the entire space based on 

the variance observed in Study 1. Participants saw each target-mental state pair once per run.

Each mental state word and target cue (if applicable) was followed by two scenarios likely to 

elicit that state in the average person. The two scenarios were drawn from a unique set 

associated with that mental state. The modality of the scenario stimuli differed by study (Fig. 

1): In Studies 1 and 2, scenarios were presented as short text phrases (e.g., “watching the sun 

rise,” “engaging in meditation”). In Study 3, scenarios were presented as images. These 

images sometimes consisted of a person experiencing the mental state (e.g., a picture of a 

person meditating), and sometimes only showed the scenario (e.g., a picture of the sun 

rising). Participants’ task was to choose which scenario would most likely elicit the mental 

state in the target person.

There was no “correct” choice, and there were a large number of possible scenario 

combinations across studies. For this reason, we chose not to analyze scenario choice as 

related to neural responses in the current project. Response rates were used in the original 

studies to exclude participants (Tamir et al., 2016, Thornton et al., 2019, Thornton et al., 

2018). In the current datasets, response rates were very high (MStudy1 = 92.44%, SDStudy1 = 

9.19; MStudy2 = 96.31%, SDStudy2 = 4.24; MStudy3 = 96.71%, SDStudy3 = 4.78) participants 

chose the right-hand option approximately 50% of the time (MStudy1 = 51.43%, SDStudy1 = 

5.80; MStudy2 = 49.75%, SDStudy2 = 4.57; MStudy3 = 52.33%, SDStudy3 = 5.06), and 

participants had reasonable reaction times (MStudy1 = 2.35s, SDStudy1 = 0.35; MStudy2 = 

1.99s, SDStudy2 = 0.33; MStudy3 = 1.77s, SDStudy3 = 0.25), suggesting that participants were 

alert and focused on the task. We also examined how frequently participants chose the same 

scenario for different targets in Studies 2 and 3 (where more than one target was presented). 

We found that the similarity in which scenarios were chosen for different targets aligned 

with the psychological distance of the target. That is, when choosing which scenario would 

most likely elicit a mental state, people most often chose the same option for the self and 

close targets, while they were most likely to choose different scenarios for the self and far 

targets (see Supplement S8).

Each trial was followed by jittered fixation drawn from approximate Poisson distributions 

with intervals equal to the study’s TR and the following means: M1 = 1.67s, M2 = 1.53s, M3 

= 1.4 s. Study 1 included 0.25 s of fixation in addition to the jittered fixation time.

2.4. FMRI data acquisition and analysis

2.4.1. Preprocessing—fMRI data from each study were preprocessed similarly (Table 

2). Data from all studies underwent coregistration and normalization to the 2 mm isotropic 

ICBM 152 template with SPM8 (default implementation in Study 1, DARTEL in Studies 2 
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and 3). FSL’s slicetime correction and unwarping were applied in Studies 2 and 3. No 

explicit smoothing was applied at this stage.

2.4.2. General linear model contrasts—Preprocessed fMRI data were entered into 

general linear models (GLM) using SPM 8 and the wrapper package SPM8w (https://

github.com/ddwagner/SPM8w) in Study 1, and SPM12 via SPM12w (https://github.com/

wagner-lab/spm12w) in Studies 2 and 3. Boxcar regressors were created for each condition 

of interest (i.e., every target-state pairing). Note, while Study 2 trials were grouped by target 

person, no blocked regressors were included. In Study 2, the similarity matrices produced 

from the GLM contrasts were corrected for spurious correlations arising from the blocked 

design (Thornton et al., 2019). There were no other substantial correlations among the 

regressors of interest (Fig. S5). Trial onsets aligned with the presentation of the prompt, and 

a trial ended when the participant made a choice or when time maxed out (see Table 1 

Scenario Duration). These regressors were convolved with a canonical hemodynamic 

response function and entered into the GLM along with covariates of no interest, including 

run means and trends, and six head motion parameters. GLM analyses resulted in one 

contrast map per target-state pair (Study 1: 1 modality × 1 target × 60 states = 60 maps; 

Study 2: 1 modality × 3 targets × 25 states = 75 maps; Study 3: 1 modality × 2 targets × 30 

states = 60 maps) per participant. These maps represent how participants thought about each 

target person experiencing each state in each modality condition. These resulting patterns of 

contrast values were used in all subsequent analyses.

2.4.3. Representational, similarity analysis—Our primary analyses tested the 

stability of mental state representations in the brain. To do so, we used representational 

similarity analysis (RSA) and suppressed intercept linear mixed models, as follows. RSA 

reflects the overall structure of mental state representations by measuring how similar each 

mental state representation is to every other mental state representation. We can thus use 

RSA to compare neural representations (Kriegeskorte et al., 2008). Specifically, we can look 

at the structure people apply for each target, and compare these structures across targets. If 

people use similar representational structures across different targets, this would mean that 

they apply similar mental state concepts across targets. We tested whether these structures 

were significantly similar to each other using suppressed intercept mixed models. These 

models include a coefficient that reflects the extent of this structural similarity that is not 

dependent on individual neural patterns being consistent across participants.

All analyses were conducted across the entire brain using a functional whole-brain 

parcellation (https://identifiers.org/neurovault.collection:2099). The 200 parcels in this 

functional parcellation were defined based on meta-analytic coactivations in Neurosynth 

(neurosynth.org; de la Vega et al., 2016). This functional parcellation divides the brain into 

discrete regions using a data-driven approach to determine which voxels respond similarly 

throughout past research. As such, we avoid imposing artificial region shapes and sizes via 

the searchlight approach and reduce the number of multiple comparisons that we need to 

correct for. This, in turn, increases our statistical power and reduces the computational 

demand of running mixed models at every point in the brain. For each participant, within 

each parcel, we generated target-specific representational similarity matrices (RSMs) by 
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calculating the Pearson correlation between every pair of mental state patterns within a 

single target (Fig. 2b). This resulted in one 60 × 60 matrix for the one (generic) target in 

Study 1, three 25 × 25 matrices for the three (self, close, and far) targets in Study 2, and two 

30 × 30 matrices for the two (self and far) targets in Study 3, per parcel, per subject. These 

RSMs are a measurement of how people think about mental state concepts for each target.

Studies 2 and 3 included different subsets of the mental states included in Study 1. To allow 

for comparison across studies, we expanded all matrices to 60 × 60 with empty rows for 

mental states that were not shown in that study. This allowed us to calculate the Spearman 

rank correlation between each of these first-order RSMs (which consists of continuous 

correlation values) to create a single second-order RSM across all targets, participants, and 

studies (Fig. 2c; see Fig. S6 for the average second-order RSM). Note that, because mental 

states were imbalanced across the three datasets, Study 1 may have been driving the 

structure of these first-order mental state geometries. However, when we exclude Study 1, 

we found highly congruent results (Fig. S1). The final second-order RSM consisted of 185 

rows and columns: one per target per participant per modality/study (20 participants × 1 

target × 1 modality + 35 participants × 3 targets × 1 modality + 30 participants × 2 targets × 

1 modality = 185).

The first-order RSMs reflect the overall structure, or geometry, of the mental state 

representational space that a participant held for a particular target in a particular modality. 

The second-order RSM shows the similarity of these geometries across targets, participants, 

studies, and modalities. This second-order RSM thus allows us to answer the following 

questions: Did the same participant think about two different targets’ states similarly? Did a 

participant in Study 2 (lexical stimuli) think about the far target’s mental states similarly to 

how a participant in Study 3 (pictorial stimuli) thought about the far target’s mental states?

We conducted three analyses to test if neural representations of mental states remain stable 

across different (i) targets, (ii) modalities, and (iii) targets and modalities, respectively. Each 

analysis must be run separately rather than including them all into one model. This is 

because we use suppressed intercept models, which allows us to model similarity (rather 

than differences) across targets and/or modalities. If we were to combine all three analyses 

into one, the model would become rank-deficient.

All three stability analyses proceeded similarly. For example, for the target analyses, if 

people use the same mental state concepts when thinking about different targets, then we 

should see similar (i.e., correlated) first-order RSMs associated with different targets. Each 

correlation value between two targets’ first-order RSMs corresponds to a cell in the second-

order RSM (Fig. 2b–c). Thus, we can test how similarly people think about different targets’ 

mental states by looking at the mean of the cells in the second-order RSM that refer to first-

order RSMs from different targets. That is, we measure the average correlation value 

between first-order RSMs of different targets and test if that value is greater than 0. If so, 

this suggests a common structure to the mental state spaces (i.e., first-order RSMs) even 

across different targets.
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We implemented this test by applying suppressed intercept linear mixed effects models. In 

this analysis, we try to explain how similar the representational structure of mental states is 

based primarily on the target person. To test for this effect of interest–namely, if there is a 

similar structure across different target people–we included two binary fixed effect 

predictors for same-target vs. different-target data (Fig. 3a). The same-target predictor has 1 

s in cells that compare data from the same target and 0s in all other cells. The different-target 

predictor is the inverse of the same-target predictor and includes 1 s in cells that compare 

first-order RSMs from different targets and 0s elsewhere.

Unlike a typical linear (mixed) model, in which the beta reflects the difference between the 

levels of a categorical variable, our suppressed intercept model (i.e., the intercept is set to 0) 

coefficients represent the means of each condition. In other words, each beta corresponds to 

the mean of all cells (in the second-order RSM) that correspond with a 1 in that predictor 

RSM (rather than the difference between cells with a 1 and cells with a 0; Fig. 3d). Because 

we are not modeling the intercept, it is necessary to include both of these fixed effects in 

order to model the within-target similarity and the between-target similarity, and thereby 

also the overall mean of the data (see Supplement S7; Fig. S4). Thus, in this model, the beta 

value for the different-target predictor represents the average similarity in the structure of 

mental state representation between different target people. By running significance testing 

(ß > 0) on this value, we determined whether or not the overall structure of mental states was 

similar across different targets in a given parcel. The model also included random intercepts 

by participant and study, along with a random intercept to account for mental states in the 

same modality (Fig. 3a).

We tested this model across the entire brain. Specifically, we fit the model in each of the 200 

regions of our parcellation (see above for description of parcellation, Section 2.4.3) to map 

out where mental state representations are similar across different targets. The resulting p-

values were calculated via Satterthwaite approximation for degrees of freedom, and multiple 

comparisons across the 200 parcels were controlled via Holm correction.

To test the stability of mental state representations across modalities, we conducted the same 

type of analysis with slightly different predictors: as fixed effects, we included one same-

modality predictor, which indicates whether or not a cell compares data from the same 

modality (1 = same modality, 0 = different modalities; Fig. 3b). We also included one 

different-modality predictor that reflects whether or not a cell compares data from different 

modalities (1 = different modalities, 0 = same modality). As above, both terms are necessary 

to model both within-modality similarity and between-modality similarity. The beta value 

for the different modality predictor represents how similarly participants’ representational 

spaces of mental states (i.e., the first-order RSMs) are across studies that used different 

modalities. We also included random effects to account for mental states within the same 

target person, participant, and study (Fig. 3b). After fitting the model in every parcel, we 

performed significance testing (using the same procedure described above) on the different-

modality coefficient to determine where representations of mental states are stable across 

different stimulus modalities (Fig. 3b).
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Finally, we tested if there were regions with stable mental state representations across both 

targets and modalities using the same process. In this suppressed intercept linear mixed 

effects model, we included the following predictors: as fixed effects, we included one same-

target/modality predictor, which indicates whether or not a cell compares data from the same 

target or the same modality (1 = same target or same modality, 0 = different targets and 

different modalities). We also included one different-target/modality predictor that reflects 

whether or not a cell compares data from different targets and different modalities (1 = 

different targets and different modalities, 0 = same target or same modality). The beta value 

for the different-target/modality predictor represents how similarly participants think about 

mental state concepts across different targets and different modalities. We also included 

random effects to participant and study. After fitting the model in every parcel, we 

performed the same significance testing described above on the different-target/modality 

coefficient to determine where representations of mental states are stable across different 

target people and stimulus modalities.

3. Results

3.1. Stability of neural representations across targets

Do people think about mental states in the same way across different targets, or do people 

think about each target’s mind uniquely? To test this, we compared neural representations of 

states across different target people. We did so using representational similarity analysis 

(RSA) and a suppressed intercept linear mixed effects model to quantify the extent to which 

each parcel represented mental states similarly across target people. Significance testing on 

this coefficient showed robustly stable representations of mental states across different 

targets, specifically within regions associated with social cognition and mental state 

representation. These regions include the ventral medial prefrontal cortex (vMPFC), dorsal 

medial prefrontal cortex (dMPFC), precuneus, bilateral temporoparietal junction (TPJ), and 

anterior temporal lobe (ATL; Fig. 4a; Table 3). These regions represent others’ mental states 

in similar ways regardless of who is thought to be experiencing these states. We found 

convergent results when analyzing Studies 2 and 3 independently (see Supplement S4).

3.2. Stability of neural representations across modalities

Do people think about mental states in the same way whether they see the situation or read 

about it? To test for supramodal representations of mental states, we compared neural 

representations of states across modalities. We did so using a suppressed intercept linear 

mixed effects model with RSA to quantify the extent to which parcels represented mental 

states similarly across stimulus modalities. Similar to the target stability results, we found 

that large portions of the social brain network, including MPFC, ATL, and bilateral TPJ, 

showed robustly stable neural representations of mental states across modalities. These 

results further suggest that these areas encode generalizable representations of mental states 

(Fig. 4b; Table 3).

3.3. Stability of neural representations across targets and modalities

Are there brain regions that hold stable representations of mental state concepts across both 

targets and modalities? Once again, we used a suppressed intercept linear mixed effects 
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model with RSA to quantify the extent to which parcels represented mental states similarly 

across target people and stimulus modalities. Once again, we found areas of the MPFC, left 

dlPFC, and TPJ, as well as the dACC and left insula represented mental states similarly 

across both contextual changes (Fig. 4c; Table 3).

4. Discussion

Each individual experiences mental states in their own idiosyncratic way. Yet, perceivers are 

able to accurately understand this huge variety of states across the uniqueness of each 

individual and context. How do people accomplish this feat? Here we demonstrate that 

people do so by drawing upon a core model of mental state concepts. Across three studies, 

we find that people apply the same fundamental understanding of mental states, no matter 

who is experiencing a particular state or how they take in that state. Together, these findings 

suggest that people’s knowledge of mental states is encoded consistently across people and 

modalities.

We found robustly stable representations in a subset of the regions implicated in social 

cognition known as the default mode network (Mars et al., 2012, Mitchell, 2008, Schurz et 

al., 2020, Van Overwalle and Baetens, 2009). Specifically, the MPFC, ATL, and TPJ showed 

robust stability in mental state representations across both targets and modalities (Fig. 4; 

Table 3). All of these parcels are consistent with areas associated with mentalizing 

processes, suggesting that not only do these parcels support social cognition, they also 

support generalized mental state concepts across contextual specifics.

That said, the precuneus generalized across targets, but not modalities. Given that the two 

stimulus modalities we used were words and images, it makes sense that the precuneus, 

which supports mental imagery processes, might not represent mental states similarly across 

these different visual modalities. Similarly, a portion of the dorsal MPFC generalized across 

modalities, but not targets, and encoded target-specific mental state concepts (see 

Supplement S5; Fig. S2). The dMPFC has been shown to respond differently to similar and 

dissimilar others (Mitchell et al., 2006, Tamir and Mitchell, 2010). The current finding 

supports the idea that different regions play distinct roles in supporting social cognitive 

processes, and that the dMPFC in particular, may serve to help individualize targets. This 

and other regions across the social brain, however, respond similarly across modalities. This 

finding is particularly striking when considering the vast differences in informational cues 

that we have for understanding and experiencing our states of mind, compared to someone 

else’s. While we are the ultimate authorities on our own feelings, we must rely on entirely 

external cues to understand what another person is feeling, which will never provide enough 

information for us to understand their experience fully. Yet, our results suggest that we use a 

generalizable model of how mental states relate to one another across diverse modalities. 

These findings are congruent with past literature showing that our brain represents 

supramodal representations of emotions (Chikazoe et al., 2014, Peelen et al., 2010, Skerry 

and Saxe, 2014) and words (Marinkovic et al., 2003). This prior work specifically finds that 

portions of the MPFC, ATL, and TPJ encode mental states as core concepts, invariant across 

different contexts. Importantly, the current findings do not preclude the possibility that other 

regions also have generalized representations of mental state concepts that we could not 
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detect with the present design, or that regions associated with mental state representation can 

be modulated by contextual features. Rather, our results suggest that after filtering out the 

context-specific factors, brain regions spanning the default mode network encode a common 

core structure of how mental states relate to one another across a diverse range of modalities.

These findings suggest that people use a similar core model of emotions for the self and 

others. We suspect that people develop this generalizable amodal model of mental state 

representation through the convergence of knowledge about one’s own experiences with 

observations of others’ experiences. For example, if someone grew up in a place where 

everyone was quick to anger, then their mental state model would place anger in a more 

prominent node than someone who grew up in a more placid environment (Thornton and 

Tamir, 2021). That is, the landscapes of others’ emotions and the cultural norms in which 

one is embedded define each individual’s context-independent model. This model, in turn, 

constrains both one’s personal emotional landscape, as well as one’s perception of others’. 

Likewise, a person’s own experiences can constrain how they perceive others’ experiences. 

People are often egocentric in their social inferences, including their inferences about others’ 

emotions (Trilla et al., 2020). For example, an individual who is often quick to anger might 

overperceive anger in others. This bidirectional pathway between learning and inference has 

implications for both emotional contagion and clinical research. In clinical psychology, 

mood disorders affect how a person thinks about their own feelings (Leppänen, 2006). Since 

our results suggest that people use the same model to understand others’ mental states as 

their own, mood disorders may impact a person’s social perception of others in the same 

way.

Our results offer robust evidence for generalization across diverse targets and stimuli. 

However, we note at least three limitations to generalizability. First, our samples of all three 

datasets were not diverse in age, demographics, education, location, and more. As such, 

future researchers should practice caution before generalizing these results to other 

populations. Future research should explore if these results hold in different cultures, 

especially since recent research suggests large cultural variability in emotion concepts and 

expression (Jackson et al., 2019). Second, the stimuli used were relatively artificial (short 

phrases, static images) compared to the rich sources of information used in everyday life. 

We did not explore other modalities commonly used when making inferences about others’ 

minds, including speech and dynamic stimuli. These other types of information sources may 

provide further insight into when and why people use this generalizable framework. Finally, 

this project focused on the neural representations of mental state concepts. As such, our 

results cannot speak to how people think about mental state experiences. First-hand 

experiences of states may well show greater variation than the generalizable mental state 

concepts discussed here.

5. Conclusion

When interacting with others, we must consider their perspective, thoughts, and feelings. 

Here, we found that, while context may modulate processing of this information, we likely 

draw on core features of these mental states that provide a consistent generalizable amodal 
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model across the varying situations of our daily lives. This shared core can facilitate deeper 

understanding of each other’s internal lives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Sample trial from each study.
In all three studies, participants were shown a prompt with the current mental state (e.g., 

peacefulness) followed by two scenarios that elicit that mental state. On each trial, 

participants had to decide which of the two scenarios would most likely elicit the current 

state in the current target. In Study 1, they chose for a generic other; in Studies 2 and 3, 

participants chose for a specific target. Self trials were cued with the word “SELF”; socially 

close and far targets were cued with the name of that person (e.g., “KATE”). Close targets 

were nominated by the participant, while far targets were created by the experimenter to be 

unfamiliar and dissimilar to the participant. Scenarios were presented as a short phrase in 

Studies 1 and 2, and as images in Study 3.
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Fig. 2. Generating the second-order representational similarity matrix.
Within each participant and neural parcel, (a) neural response patterns elicited by each 

target-state pair were extracted and (b) compared via Pearson correlation. These correlation 

coefficients were then organized into target-specific RSMs. Each of these first-order RSMs 

was (c) Spearman correlated with every other RSM, within and across studies. These values 

were arctan transformed and organized into a second-order RSM. This second-order neural 

RSM was entered into suppressed intercept models (Fig. 3).
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Fig. 3. Statistical models.
In separate suppressed-intercept linear mixed effects models, we tested which brain regions 

hold stable representations of mental state concepts across (a) targets or (b) modalities. (c) 

The second-order neural RSM (Fig. 2c) was the dependent variable in each mixed-effects 

model with individual predictors for same and different targets/modalities, and random 

effects for subject, study, and modality/target. (d) Because we suppressed the intercept (set 

equal to 0), the different targets/modalities coefficient (blue with asterisk) reflected the mean 

correlation values of cells that compare first-order RSMs from different targets/modalities 
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(dark cells). That is, it measured the average similarity of mental state representations across 

targets/modalities. If this coefficient was significantly greater than 0, then the relevant brain 

region showed stable structures of mental state representation across targets/modalities.
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Fig. 4. Stable mental state representations across targets and modalities.
Participants showed stable neural representations of mental states across (a) target people 

and (b) stimulus modalities in parcels associated with social cognition. A subset of these 

regions (parts of the MPFC, dlPFC, and bilateral TPJ) showed stable representations across 

(c) both targets and modalities. In addition, the precuneus showed stable representations 

across targets. Only significant t-values (α = .05) after correcting for multiple comparisons 

are shown.
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