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Abstract: An antimicrobial supramolecular assembly (ASA) is conspicuous in biomedical appli-
cations. Among the alternatives to overcome microbial resistance to antibiotics and drugs, ASAs,
including antimicrobial peptides (AMPs) and polymers (APs), provide formulations with optimal
antimicrobial activity and acceptable toxicity. AMPs and APs have been delivered by a variety of
carriers such as nanoparticles, coatings, multilayers, hydrogels, liposomes, nanodisks, lyotropic
lipid phases, nanostructured lipid carriers, etc. They have similar mechanisms of action involving
adsorption to the cell wall, penetration across the cell membrane, and microbe lysis. APs, however,
offer the advantage of cheap synthetic procedures, chemical stability, and improved adsorption (due
to multipoint attachment to microbes), as compared to the expensive synthetic routes, poor yield, and
subpar in vivo stability seen in AMPs. We review recent advances in polymer−based antimicrobial
assemblies involving AMPs and APs.

Keywords: cationic peptides and polymers; structure–function relationship; hydrophobic–hydrophilic
balance; mechanism of cell lysis; multidrug−resistant microbes; ESKAPE pathogens; MRSA; quater-
nized biopolymers; antibiofilm and thromboresistant activity

1. Introduction

Antibiotic−resistant pathogens have been considered a major menace to humans [1]
so that a variety of combinatory anti−pathogenic therapies have emerged [2–4]. Antibiotics
have been combined with bacteriophages [5], photodynamic light therapy yielding reactive
oxygen species (ROS) [6], antimicrobial peptides (AMPs) [7–9], nanoparticles (NPs), cationic
antimicrobial polymers (APs), and cationic lipids assembled as bilayer disks, vesicles, or
micelles [10,11]. In general, alternative/novel therapies against multidrug−resistant (MDR)
pathogens have shown promising in vitro results, but overcoming their in vivo drawbacks
has remained a central challenge. Figure 1 illustrates some limitations in the way of
alternative approaches.

An antimicrobial supramolecular assembly (ASA) has been opening new horizons in
terms of allowing for optimal as well as broad antimicrobial activity [1,12–20]. Compo-
nents in ASA materials can be organic, inorganic or hybrid, acting as antibacterial agents
themselves and/or as carriers for timed−release of the antibacterial agent(s). ASA formu-
lations have included coatings [21–24], functionalized surfaces [25,26], NPs [14,17,27–32],
surfactant and/or lipid dispersions such as vesicles, liposomes, lipid disks [12,13,20,33],
hydrogels [34–36], wound dressings [37], dentistry materials [38], etc.

Several ASA modes of action have been described in the literature, such as leaching of
the antibacterial agent from the material [39], killing upon contact [25,40–44], or preventing
microbial adhesion [22,45,46]. Several ASA−delivered AMPs or APs act by penetrating
the cell wall, reaching bacterial cell membranes and causing their disruption [25,47].

In this review, recent developments in ASAs employing AMPs or APs were discussed
in regards to their structure, activity, and applications.
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Figure 1. Alternative approaches to overcome multidrug−resistant (MDR) microbes and their possible shortcomings. 
Reprinted from [1]. 

In this review, recent developments in ASAs employing AMPs or APs were dis-
cussed in regards to their structure, activity, and applications. 

2. ASA with AMPs 
2.1. Structure and Antimicrobial Activity of ASA with AMPs 

AMPs have been considered as amphipathic, cationic polymers with less than 50 
amino acid residues, often displaying secondary structures such as α−helix [7–9,48]. Their 
main role in the innate immune system as an indispensable line of defense against 
pathogens in different body parts of mammals, plants, and other animals has been well 
documented [9]. In humans, AMPs present in oral and nasal mucosae could activate an-
ti−inflammatory cells to sites of damaged tissue [49]. In fish, constant exposure to various 
types of pathogens has led to an immune system based on AMPs [50]. The cationic 
character determined AMPs’ interactions with the oppositely charged bacteria cell wall 
and penetration in the cell membrane. Destabilization of the membrane electrochemical 
potential allowed AMP insertion in the plasmatic membrane of the bacteria, its rupture 
and bacterial cell death [7,9,51,52]. Major issues against AMPs applications have been 
related to AMPs’ toxicity to eukaryotic cells, poor stability in vivo with eventual degra-
dation during transportation to their target cells and organs [32,51,53,54]. 

AMPs have been classified according to their origin [8]. When they were extracted 
from bacteria or fungi, they belong to the nonribosomal synthetized peptides (NRAMP) 
class. When extracted from eukaryotic cells, they belong to the ribosomal synthetized 
peptides (RAMP) class. Gramicidin, vancomycin and polymyxin B are examples of 
NRAMPs, while nisin and melittin are RAMPs [8,55]. AMPs usually have one or more 
secondary structures such as α−helix, β−sheet, αβ, and non−αβ [56]. A huge structural 
diversity of AMPs have the common feature of positive charge and amphipathic nature 
[57]. Figure 2 illustrates AMPs structures. In Figure 2a, gramicidin A incorporated in bi-
layer membranes can be seen as a peptide dimer traversing the bilayer with four tryp-

Figure 1. Alternative approaches to overcome multidrug−resistant (MDR) microbes and their possible shortcomings.
Reprinted from [1].

2. ASA with AMPs
2.1. Structure and Antimicrobial Activity of ASA with AMPs

AMPs have been considered as amphipathic, cationic polymers with less than 50
amino acid residues, often displaying secondary structures such as α−helix [7–9,48]. Their
main role in the innate immune system as an indispensable line of defense against pathogens
in different body parts of mammals, plants, and other animals has been well documented [9].
In humans, AMPs present in oral and nasal mucosae could activate anti−inflammatory cells
to sites of damaged tissue [49]. In fish, constant exposure to various types of pathogens
has led to an immune system based on AMPs [50]. The cationic character determined
AMPs’ interactions with the oppositely charged bacteria cell wall and penetration in the cell
membrane. Destabilization of the membrane electrochemical potential allowed AMP insertion
in the plasmatic membrane of the bacteria, its rupture and bacterial cell death [7,9,51,52].
Major issues against AMPs applications have been related to AMPs’ toxicity to eukaryotic
cells, poor stability in vivo with eventual degradation during transportation to their target
cells and organs [32,51,53,54].

AMPs have been classified according to their origin [8]. When they were extracted
from bacteria or fungi, they belong to the nonribosomal synthetized peptides (NRAMP)
class. When extracted from eukaryotic cells, they belong to the ribosomal synthetized pep-
tides (RAMP) class. Gramicidin, vancomycin and polymyxin B are examples of NRAMPs,
while nisin and melittin are RAMPs [8,55]. AMPs usually have one or more secondary
structures such as α−helix, β−sheet, αβ, and non−αβ [56]. A huge structural diversity of
AMPs have the common feature of positive charge and amphipathic nature [57]. Figure 2
illustrates AMPs structures. In Figure 2a, gramicidin A incorporated in bilayer membranes
can be seen as a peptide dimer traversing the bilayer with four tryptophan side−chains
as anchors at the membrane interface. Figure 2b shows the structure of the antimicrobial
frog skin peptide magainin as determined by nuclear magnetic resonance (NMR) spec-
troscopy in the presence of sodium dodecyl sulfate (SDS) micelles with the side−chains of



Int. J. Mol. Sci. 2021, 22, 5424 3 of 27

lysine and phenylalanine residues [57]. Figure 2c shows LL−37 peptide adopting a typical
α−helical (orange) conformation in the presence of micelles. Figure 2d shows indolicidin
in an extended conformation. Figure 2e shows the spider−derived β−hairpin peptide
gomesin with β−sheets (green) typically stabilized by disulfide bonds (yellow). Figure 2f
shows phormicin with both α−helix and β−sheet secondary structures [58].
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mechanisms of action for AMPs [60]. Figure 3a shows the barrel−stave model: the AMPs 
approach the lipid bilayer in parallel orientation but eventually penetrate it perpendicu-
larly, keeping intermolecular peptide interactions. Figure 3b shows the “toroidal pore” 
model with two stages: at low concentrations (inactive state), peptides remain parallel to 
the plane of the bilayer; from a critical concentration, peptide molecules reorient per-
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gether with some lipid molecules, adopt a multi−pore configuration with irreversible 
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Figure 2. AMPs structural features. (a) The gramicidin A structure in membranes. (b) The magainin
structure in micelles, adapted from [57], Copyright 1999, with permission from Elsevier. (c) The
LL−37 peptide structure in micelles. (d) The indolicidin structure. (e) The gomesin structure
stabilized by disulfide bonds. (f) The insect CSαβ−defensin phormicin, Adapted with permission
from [58]. Copyright 2019 Elsevier.

AMPs affect bacteria by inhibiting enzymatic activity, DNA or protein synthesis, or
by piercing bacterial cell walls and membranes [7,9,51,52,59]. Figure 3 illustrates possible
mechanisms of action for AMPs [60]. Figure 3a shows the barrel−stave model: the AMPs
approach the lipid bilayer in parallel orientation but eventually penetrate it perpendicularly,
keeping intermolecular peptide interactions. Figure 3b shows the “toroidal pore” model
with two stages: at low concentrations (inactive state), peptides remain parallel to the plane
of the bilayer; from a critical concentration, peptide molecules reorient perpendicularly
penetrating the hydrophobic region of the bilayer (active state) and, together with some
lipid molecules, adopt a multi−pore configuration with irreversible rupture of the plasma
membrane. Figure 3c shows the carpet model: peptides remain parallel to the lipid bilayer
until reaching a threshold concentration above which the membrane becomes unstable
and disintegrates, forming micelles, in the so−called aggregate or “detergent−like” model
(Figure 3d) [9,52,60–62].
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Figure 3. Models for the interaction between antimicrobial peptides (AMPs) and bilayer membranes: (a) the barrel−stave
model, (b) the toroidal pore model, (c) the carpet model, and (d) the aggregate or “detergent−like” model was
adapted from [60].

The establishment of structure–function relationships for AMPs has been deemed
a difficult task [63]. More than 2000 natural or synthetic AMPs with different lengths,
sequences, 3−dimensional (3−D) structures and intermolecular interactions have been
described. Moreover, AMPs high sensitivity to their environment has been reported from
their medium−dependent−conformations. A good example is the behavior of gramicidin
D (Gr) in different media [64].

Figure 4 illustrates Gr conformations in different media depicted from Gr circular
dichroism (CD) and intrinsic fluorescence spectra [64]. Figure 4a,b shows Gr beta−helix in
trifluoroethanol and large lipid vesicles (LV), respectively. Figure 4c,d illustrates the inter-
twined Gr conformation in ethanol and nanosized lipid bilayer fragments (BF), respectively.
The dimeric Gr functional channel has been described as a pore spanning lipid bilayers.
This pore has been associated with an ionic imbalance and bacterial cell death. Curiously,
Gr channels only have been observed in LV. On the other hand, Gr intertwined dimers
in the non−channel conformation only occur at the borders of cationic bilayer fragments,
as shown in Figure 4d. Both LVs and BFs shield Gr tryptophans against quenching by
acrylamide. However, the Stern–Volmer quenching constant is slightly higher for Gr in BFs
than in LVs, confirming that the peptide was more exposed to the water medium in BFs
than in LVs [64].
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beta−helices in lipid bilayer fragments (BFs). Gr molecules sense a nonpolar medium in the LV bilayer and acquire its
functional channel conformation. Gr molecules sense a polar medium in the BF bilayer and become intertwined. The lipids
in LVs or BFs are dipalmitoylphosphatidyl choline (DPPC) and dioctadecyl dimethyl ammonium bromide (DODAB) at a 1:1
molar ratio. Reprinted with permission from [64]. Copyright 2012 Elsevier.

2.2. ASA with AMPs for Preserving Activity and Reducing Toxicity

An important issue regarding AMPs performance against bacteria has been the for-
mulation [8]. The Gr behavior in different media can be used to exemplify the importance
of the formulation. Furthermore, Gr formulation plays a central role not only on activity
but also on toxicity, as discussed below.

Gr extracted from Bacillus brevis contains a group of peptides composed of 80%, 6% and
14% of gramicidin A, B, and C, respectively [64,65]. Due to Gr toxicity against eukaryotic
cells, its use over a range of low concentrations has been limited to topical applications
avoiding systemic administration [66,67].

In assemblies with dioctadecyldimethylammonium bromide (DODAB) bilayers, both
DODAB and Gr interacted with Escherichia coli and Staphylococcus aureus. Thereby DODAB
antimicrobial activity against Gram−negative bacteria [42,43] has been combined with Gr
activity against Gram−positive bacteria [67]. This combination broadens the spectrum
of antimicrobial activity. In addition, the toxicity against yeast eukaryotic cells of the
DPDAB/Gr formulation has been tested and yielded improved yeast viability in compari-
son to the one of Gr alone [67].

Gr has also been formulated in lipid polymer NPs [68]. The insertion of Gr functional
channels on DODAB supported bilayers has been achieved thanks to the optimization of the
construction onto negatively charged polystyrene sulfate (PSS) NPs. Firstly, PSS NPs have
been covered with a positively charged DODAB bilayer, which increased the zeta−average
diameter by 8–10 nm, changed the zeta−potential of the NPs from negative to positive,
and yielded a narrow size distribution for the PSS/DODAB/Gr NPs [68]. This formulation
has been displaying broad and high antimicrobial activity at very small concentrations
of the antimicrobials, namely, 0.057 and 0.0057 mM for DODAB and Gr concentrations,
respectively. The results emphasized the advantages of highly organized, nanostructured,
and lipid polymer cationic NPs to achieve hybrid combinations of antimicrobials with
broad−spectrum activity at tiny DODAB and Gr concentrations [68]. Further applications
for these Gr formulations using NPs have been envisaged in the biomedical field for treating
burns, wounds, ulcers, caries, and pulp infections in dentistry, as antifouling, antimicrobial,
and antibiofilm coatings on surfaces or embedded in hydrogels [8,18,35,63,66,69,70].
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Since the 1960s, the AMP nisin, a RAMP lantibiotic, has been widely employed as
a food preservative to extend the shelf life of dairy products (lantibiotics refers to AMPs
produced by bacteria) [52,66]. In contrast to Gr, nisin has been considered nontoxic to
eukaryotic cells and effective against food spoiling bacteria, showing stability over a pH
and temperature range plus low susceptibility to enzymatic proteolysis [52].

Nisin has also been formulated as films released from polymer/nisin multilayers;
whereas nisin/polyacrylic acid (PAA) layers disintegrated in 24 h in water solution,
nisin/dextran sulfate (DX) films were stable for 14 days without releasing nisin; both
films hampered the spread of Staphylococcus epidermidis biofilms in disk diffusion tests;
therapeutic utility proposed for nisin/PAA films was treating burns and wounds due to
the quick nisin release, whereas nisin/DX coatings would impart steady sterilization of
surfaces over long periods of time [71].

The AMP melittin, the main component of bee venom, has been formulated on a
variety of lipid or polymer based−assemblies [55,72]. In model membrane and cell culture
studies, certain melittin analogues have been proposed as anticancer, antimicrobial, and
low hemolytic activity [73]. The interest for this AMP has been increasing due to possible
uses in a variety of cancer treatments [74–79] despite the high in vivo cytotoxicity and
hemolytic activity in intravenous applications [80]. Apoptosis of cancer cells has been often
reported in association with melittin; for example, cancer cell growth was inhibited via the
increase of death receptor 3 expression and inactivation of NF−kappa beta in lung cancer
cells [76]. A graphene formulation facilitated melittin piercing of the cell wall, causing cell
lysis in Gram−negative and −positive bacteria [81].

The acronym ESKAPE pathogens have been employed to encompass E: Enterococ-
cus faecium, S: Staphylococcus aureus or Stenotrophomonas maltophilia, K: Klebsiella pneumoniae
or C: Clostridioides difficile, A: Acinetobacter baumannii, P: Pseudomonas aeruginosa, E: Enter-
obacter spp., or Enterobacteriaceae. These MDR bacteria have been concerning physicians
due to very few options left for treating infected patients; AMPs have been considered
important for reversing this situation [7,82]. Recently, the synergy between antibiotics and
certain AMPs has been described in a murine, sub−cutaneous abscess model caused by
ESKAPE pathogens [82]. The bacteria organization on surfaces as single and multispecies
biofilms has required several techniques for proper evaluation of unconventional agents,
including AMPs in the treatment of biofilm infections [83,84]. Designing and optimizing
AMPs will have to consider that the targets reached may not be the same; peptides could
be active against several kinds of cells with activity and selectivity resulting from interac-
tion with multiple target cell components; the cellular composition has been affecting the
AMP–target cell interaction and also the design of novel AMPs [85].

Various pathogens, such as polymyxin−sensitive Salmonella species, have been able
to penetrate macrophages, where they persisted and multiplied; modifications of NPs,
liposomes, and mesoporous silica with specific cell ligands have been enabling them with
penetration into macrophages and killing of intracellular pathogens [86]. Metal−based
NPs, including gold NPs, have been proposed as particularly promising platforms for the
intracellular delivery of AMPs, such as polymyxins eliminating intracellular Salmonella
Enterica Serovar Typhimurium [87].

Polymyxin has been deemed of critical medical importance against severe nosocomial
multidrug−resistant Gram−negative bacteria causing nosocomial pneumonia. Several
polymyxin formulations have been developed for parenteral use (for treatment of cystic
fibrosis, pneumonia, bacteremia, and urinary tract infections), inhalation (cystic fibro-
sis, pneumonia), and topical use (optic and ophthalmic solutions). The most common
polymyxin side effects have been dose−dependent nephrotoxicity and neurotoxicity; since
polymyxins were essentially not absorbed by the gastrointestinal tract, their encapsulation
into suitable carriers improved intestinal permeability, thereby allowing novel formulations
administered by the oral route [88]. Figure 5 shows a polymer−based formulation for
polymyxin B based on the electrostatic attraction between the cationic peptide and the
anionic poly (styrene sulphonate) polymer as reproduced from [89,90]; the antimicrobial
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activity of the polymyxin AMP was influenced by the degree of polymerization of the
poly−ion (DP): a low DP improved antimicrobial activity, while a high DP improved the
NPs stability [89].
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The relative high burden of methicillin−resistant S. aureus (MRSA) has been a major
concern in healthcare; vancomycin, a glycopeptide antibiotic inhibiting cell wall biosyn-
thesis, has remained the drug of choice for treatment of severe MRSA infections for many
years. Unfortunately, vancomycin−resistant S. aureus strains have been disclosed in the
1990s; their polygenic molecular basis of resistance was due to stepwise mutations in genes
encoding molecules predominantly involved in cell envelope biosynthesis [91]. Resistance
has been associated with persistent infections, vancomycin treatment failure, and poor
clinical outcomes. S. aureus strains isolated from humans, pigs, and cattle have created
intermediate resistance to vancomycin [92]. Vancomycin formulated as nanoplexes of the
antibiotic with dextran sulfate sodium salt has recently addressed MRSA infections; the
size, polydispersity, and zeta potential of the optimized nanoplexes were 84.6 ± 4.3 nm,
0.449 ± 0.024, and −33.0 ± 4.9 mV, respectively, with 90.4 ± 0.8% complexation efficiency
and 62.3 ± 0.2% drug loading; in vivo studies using a BALB/c mouse skin infection
model revealed that nanoplexes reduced MRSA burden by 2.3−fold compared to bare
vancomycin [93]. Liposomal vancomycin topical formulations have also produced sim-
ilar results against MRSA, reconfirming the importance of the formulation for fighting
drug−resistant microbia [94].

AMPs have been fighting not only bacteria but also other pathogens, such as fungi [95],
viruses, and protozoa [15]. Besides, their versatility allowed extensions for treating
from skin wounds to cancer. Therefore, future studies with AMPs are necessary, for
instance, with the improvement of its stability and its scaling−up projection in the indus-
try [51], to go beyond the combat against antimicrobial resistance. Recent advances in
antimicrobial polymers in general [96] or natural and synthetic AMPs, in particular, have
been reviewed [50,95,97].

Major applications for AMPs have also been the subject of important review articles
such as the use of AMPs for drug design and therapeutics [98,99], natural additives for
food preservation [52,100,101], prevention of caries, and pulpal infections due to dental
plaques and similar others [102,103].

The most important types of carriers for AMPs were liposomes [64,67,69,70,101], nanos-
tructured lipid carriers [104], lyotropic lipid phases (cubic and hexagonal) [105], lipid nan-
odisks, and bilayer fragments [10,12], NPs of several types such as biomimetic [20,28,32,68],
polymeric [61,89,106], magnetic [107,108], metal−AMPs designed as metallodrugs with nucle-
ase, and protease activity [109] or silver co−spinned with nisin in polymeric nanofibers [110],
hydrogels [36,37,111], silver in alginate hydrogels [112], or fabrics [113–115].

Lipid−based liquid crystals as carriers for antimicrobial peptides emphasized the
importance of more fluid lipid phases for the antimicrobial effect [105]. Figure 6 shows
lipid−based liquid crystals from cubic and hexagonal phases; these lyotropic liquid crys-
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talline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glyc-
erol monooleate/oleic acid/water assemblies have been examined as carriers for AMPs.
Certain AMPs had their antimicrobial activity preserved, whereas others had their activity
reduced by the carriers; LC−structured gels or NPs had the capability of solubilizing both
hydrophilic and hydrophobic substances, as well as being biocompatible and biodegrad-
able; depending on AMP nature, LC showed no effect on AMPs antimicrobial activity or a
diminished effect on this property.
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Importantly, several AMPs formulations have been proposed against multidrug re-
sistance. For example, liposomal AMPs combined with vancomycin exhibited improved
activity against intracellular MRSA; after selecting AMPs with high antimicrobial activity,
the selected peptides were lipidated, combined with model membranes (liposomes), and
tested for intracellular activity against MRSA infecting human embryonic kidney epithelial
cells in culture (HEK−293). They possessed good cell penetration to act against the intra-
cellular MRSA; in addition, there was sustained release for the AMPs with a consequent
improvement in the bioavailability [116].

Mycobacterium tuberculosis is intrinsically resistant to many antibiotics due to mutations
that lead to novel strains. AMPs with metal complexes have been proposed as advanta-
geous combinations since metal complexes associated with known AMPs often present
different mechanisms of action with respect to single peptides: the destruction of bacterial
plasma membranes as well as hydrolytic or oxidative cleavage of nucleic acids promoted
by metal−based compounds followed from their role in the generation of reactive oxygen
species able to degrade biomolecules [117]; the formulations complexing metal with AMPs
could fight drug resistance against tuberculosis [118]. Adding antimicrobial and antibiofilm
activities to AMPs via covalently bound metal−binding motifs improved their activities in
certain cases; when combined with meropenem, streptomycin, or chloramphenicol, certain
variants showed synergistic effects against E. coli (KpC+ 1812446) biofilms; the addition of
motif also improved the survival rate of mice in a systemic infection model and reduced
the hemolytic activity of the wild−type AMP [119].
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Besides the AMPs, the cationic antimicrobial polymers (APs) represent another ex-
tremely promising class of antimicrobial molecules. APs are briefly presented and discussed
regarding their outstanding properties in the next section.

3. ASAs with APs
3.1. Structure and Antimicrobial Activity for ASA with APs

Antimicrobial polymers (APs) have been designed to exhibit similar mechanisms
of action as AMPs while diminishing AMPs’ disadvantages. APs are not degradable by
enzymatic proteolysis as the AMPs, display controllable dose−dependent toxicity towards
mammalian cells, have lower manufacturing costs than AMPs do, and can easily become
available commercially from their facile production on a large scale following industrial
synthetic protocols [48,120–125]. Most APs, similar to AMPs, are positively charged in
water solution; the electrostatic attraction drives the physical adsorption onto pathogenic
microbes as the first step of their mechanism of action. Thereafter, they penetrate cell walls
and membranes, leading to various degrees of antimicrobial activity and toxicity that can
culminate in cell lysis with leakage of internal contents [14,16,17,26]. The determination of
APs specific cytotoxicity against mammalian cells has been a major requirement to establish
their utility in vivo; it is important to evaluate whether APs used at a minimal bactericidal
concentration (MBC) do not affect mammalian cells in culture [10,126,127]. Certain APs
showed dose−dependent cytotoxicity against human epithelial cells, lung fibroblasts, and
monocytes [128]. Nevertheless, their high antimicrobial activity at low doses has been
the main motivation for the intense and extensive research on APs over the last twenty
years [10,13–15,17,129]; they have been often described as a promising platform for the
development of next−generation antimicrobial agents [120,122]. In addition, their flexible
properties, facile synthesis, or modification from natural polymers, such as chitosan, gelatin,
dextran, starch, or cellulose, also led to various alternative therapeutic applications [20,130].
Among their important applications, APs have been used as adjuvants for vaccine design
and antigen presentation [126,127,129] and for gene and drug delivery [131]; interestingly,
aminated microcrystalline cellulose killed melanoma and breast cancer cell lines in cul-
ture [131]. Excellent overviews on the synthesis and preparation of cationic polymers are
available [48,130,132,133].

Most cationic polymers bear amine functions that can be protonated, such as polyethy-
leneimine (PEI), poly−L−(lysine) (PLL), chitosan, and poly [2−(N,N−dimethylamino)ethyl
methacrylate] (PDMAEMA) [134]. While these polymers have inherent cationic charges,
others have been developed by introducing cationic moieties such as aminated cellulose,
which, compared to chitosan, represent a novel cationic cellulose derivative with improved
mucoadhesive properties as well as sufficient hydration at physiological pH [135]. Chitosan
derivatives bearing quaternary ammonium moieties and displaying good antimicrobial
activity have also been developed [136].

Antimicrobial cationic polymers mainly contain two functional components: the
cationic and the hydrophobic groups. The antimicrobial activity is influenced by the type,
amount, location, and distribution of these two components; the structure–function re-
lationship for AP could provide some guidelines for developing molecular engineering
of antimicrobial cationic polymers with tailor−made structures and functions [137]. For
example, the chemical structures of poly (diallyldimethylammonium chloride) (PDDA)
derivatives with different hydrophobic–hydrophilic balances such as poly (diallylam-
monium trifluoroacetate) (PDAATFA), poly (diallylmethylammonium trifluoroacetate)
(PDAMATFA), and PDDA itself are shown in Figure 7 [17]; their hydrophobic–hydrophilic
balance and their antimicrobial activity against Gram−negative bacteria increase from left
to right [17,138].
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right. Polymers are poly (diallylammonium trifluoroacetate) (PDAATFA), poly (diallylmethylammonium trifluoroacetate)
(PDAMATFA) and poly (diallyldimethylammonium chloride) PDDA. Reproduced from [17].

The activities of the PDDA derivatives on Figure 7 against Gram−positive bacteria
or fungus were not so clearly dependent on the hydrophobic–hydrophilic balance of the
molecule, possibly due to superimposed effects of AP molecular weight and/or the nature
of the molecular composition and the nature of the microbes cell wall for different species;
against fungus, no effect of the molecular weight or the hydrophobic–hydrophilic balance
were apparent; the fungus was very sensitive to all PDDA derivatives [16,17,138].

PDDA immobilization in biocompatible poly (methyl methacrylate) (PMMA) NPs
diminished its antimicrobial activity to a certain extent; PMMA/PDDA NPs synthesis from
emulsion polymerization of the methyl methacrylate (MMA) monomer in the presence of
PDDA yielded interesting core−shell NPs; the free PDDA molecules showed lower mini-
mal microbicidal concentrations (MMC) than the immobilized ones [17]. The core−shell
nature of PMMA/PDDA NPs was an interesting finding; the hydrophobic, neutral PMMA
polymeric core became surrounded by a shell of the hydrophilic, cationic polyelectrolyte
PDDA, as shown in Figure 8. Apparently, the cationic NPs were not as efficient as free
PDDA to penetrate the microbes’ cell walls and membranes [17,23].
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Besides the quaternary ammonium, cationic moieties in antimicrobial polymers could
be sulfonium [139,140], guanidinium [125,128,141], or phosphonium [142,143]. Polymeric
sulfonium salts exhibited high antibacterial activity against Gram−positive bacteria but
were less active against Gram−negative bacteria [139]. It was found that the activity of
the polymeric sulfonium salts was much higher than that of the corresponding monomers,
particularly against S. aureus. Figure 9 shows some chemical structures for cationic APs
with sulfonium, phosphonium, or guanidinium as the cationic moiety.
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The sulfonium polypeptoid on the left (Figure 9) was obtained via ring−opening
polymerization and post−modification strategy with excellent biological performance
for the treatment of the infections caused by S. aureus; it contained both sulfonium and
oligo (ethylene glycol) (OEG) motifs and displayed high selectivity for the pathogens
over mammalian red blood cells [140]. Similar to natural AMPs that contain cationic
and amphipathic moieties, several synthetic antimicrobial polymers named polypeptoids
have been proposed. They were polymers analogous to AMPs with the advantages of
facile synthesis at low cost and excellent stability against degradation in vivo. These
peptidomimetic polymers had, for example, an N−substituted glycine backbone similar to
the polypeptoid shown on the left in Figure 9 [140].

Various cationic polymers with quaternary ammonium or phosphonium, which pos-
sessed high antimicrobial activities in solution, exhibited a significant decrease in their
antimicrobial efficiency after crosslinking or solubilization loss [17,145]. The antimicrobial
activity of water−insoluble polycations could be preserved as long as the polymeric chains
were long and flexible for penetration through the bacterial membranes. In a series of
water−insoluble N−alkyl−N,N−dimethyl de−oxy ammonium celluloses, those modi-
fied by N,N−dimethyl dodecyl ammonium exhibited antimicrobial activity, while those
modified by N,N−dimethyl butyl ammonium did not [146]. PDDA immobilization as
the outer shell of PMMA nanoparticles core also reduced antimicrobial activity in com-
parison to the activity of free PDDA in solution [17]. Another interesting example of
phosphonium−modified polymer were some inulin derivatives; inulin is a natural, renew-
able, biodegradable, and water−soluble carbohydrate recently modified with quaternary
phosphonium salt to impart antifungal activity to the molecule. The antifungal activity
increased with the alkyl chain length of the grafted quaternary phosphonium salt [147].

3.2. Biomedical Applications for ASA with APs

Synergistic antimicrobial activity against ESKAPE pathogens was reported for combi-
nations of quaternary ammonium and guanidinium homopolymers [148]. Guanidinium
polymers were successfully used to target intracellular, multidrug−resistant Staphylo-
coccus aureus [149]. Non−leaching polyacrylate and guanidine−based copolymer NPs
with 80–130 nm mean diameter were synthesized by emulsion polymerization with acry-
late and glycidyl−methacrylate monomers and modified by oligoguanidine; NPs and
their films presented long−term antimicrobial activity [150]. The antimicrobial copoly-
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mer of polyhexamethylene guanidine hydrochloride and polypropylene glycol digly-
cidyl ether adhered onto cotton fabrics both by physical adsorption and covalent bind-
ing, resulting in durable antimicrobial properties against Escherichia coli and Staphylo-
coccus aureus; antimicrobial activity remained unchanged even after laundering the fab-
rics with detergent solution [151]. New chitosan derivatives bearing guanidinium func-
tions were synthesized following different synthesis strategies. N−guanidinium chi-
tosan acetate and N−guanidinium chitosan chloride were synthesized by direct reaction
between chitosan and cyanamide in the presence of scandium (III) triflate. The syn-
thesis of N−guanidinium chitosan (N,N′−dicyclohexyl) chloride and N−guanidinium
chitosan (N−(3−dimethylaminopropyl)−N’−ethyl hydrochloride) chloride involved the
reaction of chitosan with carbodiimides in ionic liquid. All newly guanylated chitosan
derivatives displayed high antimicrobial activity in comparison with neat chitosan [152].
Guanidine−based polymers imparting antimicrobial activity to polysaccharides, such as
cellulose, starch, and cyclodextrin, have been recently overviewed [153].

The accepted mechanism of action for cationic polymers involves the same membrane
disruptive effects observed for AMPs; major events are adsorption into the bacterial cell
surface, penetration into the cell wall, and insertion into the cytoplasmic membrane (due
to hydrophobic group of the polymer) with membrane disruption, leakage of cytoplasmic
contents, and eventually, cell lysis [14,96,121,154–156]. Mechanisms of action for APs and
AMPs indeed decreased the odds of creating resistant bacteria [7,9,51,52,59].

Antimicrobial biopolymers were an important branch in this field; their exclusive
qualities usually include being natural, biodegradable, biocompatible, cheap and extracted
from biomass−derived waste, and, some of them, being both antibacterial and antifungal
agents [8,157,158]. The interest in these molecules has been growing along with environ-
mental concerns [159]. Some examples of biopolymers are: cellulose, the most abundant
one in nature; chitosan, a versatile polymer attainable by treating chitin from the crus-
tacean shell waste generated by the seafood industry; and lignin, a byproduct of the
paper industry with great qualities, including antioxidant activity and high thermal sta-
bility [158–161]. Recent studies with hydroxypropyl methylcellulose (HPMC)/lignin and
HPMC/lignin/chitosan films had positive results, with antimicrobial effect against both
Gram−positive and Gram−negative at 35 and 0–7 ◦C [158]. Even though most biopoly-
mers came with interesting advantages, some of them have their problems, such as chitosan
sensitiveness to temperature and pH [162]. Biopolymers could eventually replace synthetic
ones without critical side effects [159].

The biomedical applications for antimicrobial polymers required thromboresistant
materials also able to avoid the formation of biofilms [163]. In biomedical devices such
as catheters, intravascular grafts, extracorporeal circuits and membrane oxygenators, the
adsorption of serum proteins onto these blood−contacting materials may trigger the blood
coagulation cascade, whereas the contact with infective pathogens may cause the formation
of biofilms and infection.

A few examples in the literature deal with the production of materials displaying both
thromboresistant and anti−biofilm properties. The sulfonated polymers and sulfated gly-
cosaminoglycan have been widely recognized as heparin−mimetic components since they
show similar functionalities as heparin, displaying anticlotting and antithrombotic activi-
ties, the stabilization of growth factors, and the promotion of angiogenesis [164,165]. Some
combined polymers joining multiple functional groups on one surface, such as a synthetic
heparin−mimetic polymer or hydrophilic polymer brushes (e.g., PEG) with antibacterial
quaternary compounds (QAC), were described. The layer−by−layer assembly of sulfonic
amino poly (ether sulfone) (SNPES) and quaternized chitosan (QC) yielded multilayers.
Additionally, when submitted to systematic tests for antithrombotic and antimicrobial
activity, the multilayers showed that the heparin−mimetic multilayer−coated membrane
suppressed adsorption of bovine serum fibrinogen, platelet adhesion, and activation, pro-
longed clotting times, and reduced activation of blood complement. Furthermore, the
antibacterial test suggested that the multilayer−coated substrates exhibited activity against
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Escherichia coli and Staphylococcus aureus [166]. Figure 10 illustrates the preparation of these
multilayered coatings.
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SNPES and QC are negatively and positively charged, respectively. Reproduced with permission from [166]. Copyright
2015 American Chemical Society.

The layer−by−layer approach has also been useful to impart anti−biofilm property
to materials; deposition of PDDA and poly (acrylic acid) (PAA) layers with an outer PAA
layer onto polyester fabric prevented S. aureus adhesion to the fabric and allowed removal
of bacteria by water rinse [167].

Recent progress in the biomedical applications of polydopamine (PDA) nanostruc-
tures, such as drug delivery, photothermal therapy, bone and tissue engineering, cell
adhesion, and antimicrobial uses, were recently reviewed [168]. Rough PDA films on
various substrates such as reverse osmosis filtration membranes [169], glass, plastic, stain-
less steel, and gauze showed remarkable antibacterial activity as compared with smooth
PDA films [170]. The antifouling and antibacterial properties were attributed to the fact
that the PDA film with positively charged amine groups would be responsible for the
interaction with bacterial cell walls at high pH, causing cell rupture. Moreover, the rough
surface of PDA exhibited higher particle contact with substrates during vigorous shaking
and thus exhibited more bactericidal action [170]. Coatings cast onto silicon wafers from
PMMA/PDDA nanoparticles also displayed a correlation between contact points between
cells and films and the antimicrobial activity [31]. Figure 11 illustrates the compared fre-
quency of contacts between cells and coatings from two coatings cast onto silicon wafers
from PMMA/PDDA dispersions as reproduced from reference [31].
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Another interesting approach recently reviewed was covalently binding or com-
bining by physical adsorption AMPs and functional antimicrobial polymers [171], e.g.,
chitosan [172] or polydopamine [173]. The conjugation of AMPs into functional polymers
broadened the spectrum of antimicrobial activity, including activity against MDR bacteria,
reduced toxicity, and offered more functionalities for developing multifunctional biomed-
ical hydrogels, polymer vesicles, or polymer micelles [171]. For example, the peptide
anoplin, extracted from wasp venom, was covalently bound to chitosan to create a highly
antimicrobial yet selective and nonhemolytic agent [172]. The conjugate displayed greater
antibacterial activity when compared to anoplin only, especially against Gram–negative
bacteria [172]. Another example of the peptide–polymer conjugate was a thin layer of
PDA deposited onto a surface of polydimethylsiloxane (PDMS) to ease the attachment
of peptide CWR11, creating a PDMS/PDA/CWR11 slide; CWR11 was attached to PDA
through nucleophilic addition via thiol or amine group at either end of the peptide chain
or through physical adsorption onto the PDA surface; the attachment of CWR11 conferred
the PDA–coated PDMS surfaces a high antimicrobial activity against E. coli, S. aureus,
and P. aeruginosa; the antifouling property was also present as determined by seeding
fluorescently labeled–P. aeruginosa onto the slides of PMDS/PDA/CWR11; the material
might be applied in catheters to prevent catheter–associated urinary tract infections caused
by the development of biofilms on its surface [173].

The conducting and hydrophilic polymer polyaniline (PANI) has been considered
promising for applications in biomedicine because of its high electrical conductivity and
biocompatibility. However, PANI’s low processability and degradability led to its com-
bination with various biopolymers and nanomaterials as blends and nanocomposites,
respectively. Biomedical applications of conductive PANI−based nanocomposites were
available in antimicrobial therapy, drug delivery, biosensors design, nerve regeneration,
and tissue engineering [174,175]. PANI materials have been used in photothermal therapy
(PDT) for treating tumors or infections; the incidence of near−infrared radiation (NIR)
onto PANI materials led to photothermal ablation of cancer cells or bacteria death [176].
For example, catechol−conjugated poly (vinyl pyrrolidone) sulfobetaine (PVPS) and PANI
tightly linked by ionic interaction (PVPS:PANI) has been proposed as a novel photothermal
antibacterial agent for surface coating, able to absorb broadband NIR light; the coat-
ing released eminent photothermal heat for the rapid killing of surface bacteria [177].
Figure 12 illustrates the photothermal effect of PVPS:PANI coatings on bacteria [177].
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Similarly to PVPS: PANI coatings on Figure 12, the photothermal antimicrobial effect
was also used to kill bacteria adhered to fabrics of polyethylene (PE) impregnated with
poly ethylene imine−poly pyrrole NPs able to absorb the near−infrared light, thereby
heating the fabric and killing adsorbed bacteria. Moreover, the fabric became washable,
reusable, breathable, biocompatible, and photothermally conversable for active eradication
of pathogenic bacteria [178].

A three−dimensional liver scaffold was fabricated from a chitosan/gelatin (CG)
solution cross−linked with glutaraldehyde and showed a porous structure similar to the
extracellular matrix that facilitated hepatocyte adhesion and proliferation; this CG scaffold
had high hepatocyte biocompatibility and mechanical strength but also maintained hepatic
functions and viability in in vitro cultures; especially, this liver scaffold revealed high
potential for further bioartificial liver design in the near future [179].

Skin traumas such as burns and wounds are susceptible to microorganisms invasion;
recent studies succeeded in treating E. coli and S. aureus infected skin with antimicrobial
polymers in hydrogels, coatings, nanofibers and nanogels formulations [180–184]. The
development of effective wound dressings was essential for speeding up wound healing.

Rectorite, a type of layered silicate, yielded interlayered nanocomposites with pos-
itively charged polymers such as quaternized chitin; these composites combined with
cellulose fibers created functional sponges with antibacterial and hemostatic properties
for wound−healing applications; the in vivo animal tests demonstrated that the sponges
rapidly induced hemostasis in a rat tail amputation test, making them superior to the
traditional hemostatic materials; in addition, the sponges could substantially promote
collagen synthesis and neovascularization, thereby accelerating wound healing 3 days
earlier than gauze. This multi−functional biomedical material, fabricated using natural
substances, showed great potential to be used for wound healing [185]. Another interest-
ing antimicrobial polymer, melamine−modified silk fibroin (SF–Mel), has been used to
produce films with poly caprolactone (PCL) nanofibers via the electrospinning technique.
These films were hemocompatible and noncytotoxic, exhibiting broad−spectrum antibacte-
rial activities against both Gram−negative (Escherichia coli) and Gram−positive bacteria
(Staphylococcus aureus). In vivo evaluations showed accelerated wound healing by pro-
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moting re−epithelialization, collagen deposition, and vascular reconstruction; chemically
grafting melamine on the side chains of silk fibroin could improve the antimicrobial proper-
ties due to the existence of positively charged amine groups derived from melamine [180].
Figure 13 illustrates the preparation of the PCL/SF–Mel wound dressings [180].
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Figure 13. The film with cationic polymer useful as an antimicrobial wound dressing. (a) Melamine−modified silk fibroin
(SF–Mel) was synthesized by covalent conjugation between silk fibroin and melamine. (b) Polycaprolactone (PCL) blended
with SF–Mel enhanced the mechanical properties. (c) SF–Mel/PCL nanofiber films were fabricated via electrospinning.
(d) Nanofiber membrane comprising SF–Mel/PCL was constructed as a wound dressing for skin repair. Adapted with
permission from [180]. Copyright 2019 The Royal Society of Chemistry.

Cryopolimerization of dopamine in the presence of quaternized chitosan (QC) yielded
QC/ polydopamine (PDA) cryogel, with PDA concentrations varying from 0.5 to 4.0 mg/mL
so that the highest PDA concentrations yielded the best antibacterial and antioxidant ac-
tivities plus near−infrared photothermal effect; moreover, these cryogels exhibited much
better hemostasis than gauze and gelatin sponge in vivo in three different models: a rat
liver injury model, a rabbit liver section model, and a pig skin laceration model; there was
improved blood cell and platelet adhesion, with quick nonpressing surface hemostasis and
wound healing [181]. Tributylammonium alginate (TBAH−Alg) salt was deposited onto
modified cationic polyurethane surfaces (CPU) through supramolecular ionic interactions
to create a wound dressing. Both CPU and CPU/TBAH−Alg showed large inhibition
zones against bacteria in agar diffusion; in vivo experiments in wound models treated with
the CPU/TBAH−Alg dressings reduced the persistent inflammatory phase and improved
re−epithelialization, collagen deposition, and mature blood vessel formation, showing
better results than commercial dressing Tegaderm [182].

3.3. Other Applications for ASA with APs

ASAs with antimicrobial polymers were also involved in the food packaging, fabrics
and textile industries, in addition to water treatment [96,157].

In water treatment, the use of organic polyelectrolytes included a myriad of examples
of the benefits of polymer use in conventional sedimentation and filtration; however, the
influence of polymer chemical structure on performance has been investigated superfi-
cially [186]. Organic coagulants and flocculants were usually water−soluble polymers
(polyelectrolytes) originated from various natural macromolecular compounds, including
polyamines, PDDA, dimethylamine, and polyacrylamides [187]. Among the flocculants,
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only a few exhibited both antimicrobial and coagulation properties; PDDA was among
those able to impart both properties to materials used for water treatment [8,13,14,17,188].

Macroporous antimicrobial polymeric gel (MAPG) containing quaternary ammonium
in its chemical structure was synthetized through cryopolymerization; a hydrogel (HG)
with the same chemical composition was also prepared for comparison. Firstly, a qua-
ternary ammonium (QA) methacrylate monomer bearing a hydrophobic n−hexyl tail
was synthesized [189]. This was an adequate antimicrobial combination of cationic and
hydrophobic groups in the monomer to synthesize the polymer: the n−hexyl group was
selected as sufficiently hydrophobic to cause membrane disruption, while the cationic moi-
ety implemented adsorption to the bacteria cell wall [189]. The polymerization is shown in
Figure 14. First, the QA monomer was synthesized via quaternization reaction between
2−(dimethyl amino) ethyl methacrylate and 1−bromohexane; second, the polymerization
of the QA monomer via free−radical polymerization in the presence of a redox radical
initiator (i.e., ammonium persulfate), coinitiator N,N,N′,N′ ′,N′ ′−pentamethyldiethylene
triamine (PMDETA), and a cross−linkable monomer (i.e., oligoethylene glycol dimethacry-
late (OEG−DMA)) in water was carried out at subzero temperature (Figure 14a). Filtration
of contaminated water using MAPG produced pure water without bacteria (Figure 14b–
d) [189]. Cryogelation required only simple mixing of chemicals, hence making the whole
process potentially viable for industrial−scale preparation.
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ified antimicrobial fabrics. Direct polymerization of monomers and covalent attachment 
of QACs was expected to enhance the stability of the coating and the performance. 
N−halamines had high effectiveness in short contact times in antimicrobial fabrics [192]. 
However, the real field applicability of N−halamine on face masks has not been explored 
yet. Natural compounds and antimicrobial peptides are promising molecules due to less 
ecotoxicity and proven antimicrobial properties. Recently, the inactivation by oxygen 
singlet of severe acute respiratory syndrome coronavirus 2 (SARS−CoV−2) using light on 
synthetic conjugated polymers and oligomers was reported; five representative conju-
gated oligomers and polymers from an array of phenylene ethynylene−based cationic 
and anionic conjugated materials against SARS−CoV−2 revealed that light activation of 
the materials at the wavelengths where they absorb gave rise to moderate to very strong 
inactivation of the virus. Furthermore, no dark inactivation of the virus for three of the 
five materials/compounds occurred for the quaternary ammonium derivatives. There-

Figure 14. Macroporous antimicrobial polymeric gel (MAPG) for water treatment. (a) MAPG synthesis via free radical
polymerization at subzero temperature. (b) Image of macroporous antimicrobial polymeric gel (MAPG) in a syringe
and E. coli−contaminated water passing through it. (c) Image of treated water after passing through the syringe. Com-
pared to the untreated, cloudy water due to the presence of bacteria, the treated water was clear. (d) The syringe was
subjected to 8 continuous cycles of percolation with E. coli−contaminated water; the recovered water was analyzed via
colony−forming unit (CFU) counting. No viable bacteria were detected in the water that passed through the syringe.
APS is ammonium persulfate, QA monomer is the quaternary ammonium ethyl methacrylate monomer, PMDETA is
the coinitiator N,N,N′,N′ ′,N′ ′−pentamethyldiethylenetriamine, and OEG−DMA is oligoethylene glycol dimethacrylate.
Adapted from [189].
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Polymers, which act as the primary substrate for face masks, could be fine−tuned to
impart bio−active and bio−passive properties to the fabrics. The active moieties such as
N−halamines, QACs, PEI, benzophenone (BP), polypyrrole, and inorganic groups, such
as metals, have been incorporated to yield various antimicrobial polymers suitable for
making a reusable facemask [190,191]. Among these, N−halamine and QACs have proven
and powerful activity against a broad spectrum of microorganisms. Bath coating, spray
coating, and immobilization via carriers have been employed to yield QACs modified an-
timicrobial fabrics. Direct polymerization of monomers and covalent attachment of QACs
was expected to enhance the stability of the coating and the performance. N−halamines
had high effectiveness in short contact times in antimicrobial fabrics [192]. However, the
real field applicability of N−halamine on face masks has not been explored yet. Natural
compounds and antimicrobial peptides are promising molecules due to less ecotoxicity
and proven antimicrobial properties. Recently, the inactivation by oxygen singlet of severe
acute respiratory syndrome coronavirus 2 (SARS−CoV−2) using light on synthetic conju-
gated polymers and oligomers was reported; five representative conjugated oligomers and
polymers from an array of phenylene ethynylene−based cationic and anionic conjugated
materials against SARS−CoV−2 revealed that light activation of the materials at the wave-
lengths where they absorb gave rise to moderate to very strong inactivation of the virus.
Furthermore, no dark inactivation of the virus for three of the five materials/compounds
occurred for the quaternary ammonium derivatives. Therefore, the generation of reactive
oxygen species definitely inactivated the virus; the incorporation of these materials in
wipes, sprays, masks, and clothing and other personal protection equipment would possi-
bly be useful in preventing infections and the spreading of the virus and future outbreaks
from similar viruses [193]. A more recent report on the development of a non−woven face
mask filter fabricated with a coating of benzalkonium chloride, a quaternary ammonium
compound, was able to inactivate more than 99% of SARS−CoV−2 particles in one minute
of contact and also methicillin−resistant Staphylococcus aureus and Staphylococcus epider-
midis; this would solve the pressing problem of commercial face masks that contained filters
not capable of inactivating either SARS−CoV−2 or multidrug−resistant bacteria [194].

4. Conclusions

Antimicrobial polymers, such as APs and AMPs, have been widely explored as materi-
als for biomedical applications. Their chemical structure usually contains both cationic and
hydrophobic moieties, exhibiting unlimited potential to fight microbial resistance against
available antibiotics. In terms of their potential shortcomings, in vivo AMPs necessitate
protection from proteolytic enzymes and rapid degradation, whereas APs still require
improvements in terms of their biocompatibility. The similar mechanisms of action found
in APs and AMPs involve adsorption to the cell wall, penetration across the cell membrane,
and microbe lysis. The synthetic procedures, chemical stability, and improved adsorption
of APs—the latter due to their multipoint attachment to microbes—represent significant
advantages in comparison to the expensive synthetic pathways for procedure scaling,
poor yield, and subpar in vivo stability of AMPs. ASAs with APs and AMPs have also
been found useful in water treatment and the production of fabrics and textiles endowed
with suitable antimicrobial properties, e.g., face masks and air filters, which have become
important and oftentimes crucial defenses in an era of pandemics.
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Abbreviations

NP Nanoparticle
MDR Multidrug−resistant
ROS Reactive oxygen species
AMP Antimicrobial peptide
ASA Antimicrobial supramolecular assembly
PEG Polyethylene glycol
NRAMP Nonribosomal synthetized peptide
RAMP Ribosomal synthetized peptide
DNA Deoxyribonucleic acid
Gr Gramicidin D
LV Large lipid vesicles
BF Nanosized lipidic bilayer fragments
CD Circular dichroism
DPPC Dipalmitoylphosphatidylcholine
DODAB Dioctadecyldimethylammonium bromide
PSS Polystyrene sulfate
DX Dextran sulfate
MRSA Methicillin−resistant Staphylococcus aureus
IDSA Infectious Diseases Society of America
LC Liquid crystalline
AP Antimicrobial polymer
MBC Minimum bactericidal concentration
PEI Polyethyleneimine
PLL Poly−L−lysine
PDMAEMA Poly [2−(N,N−dimethylamino)ethyl methacrylate]
PDDA Poly (diallyldimethylammonium chloride)
PDAATFA Poly (diallylammonium trifluoroacetate)
PDAMATFA Poly (diallylmethylammonium trifluoroacetate)
PMMA Poly (methyl methacrylate)
MMA Methyl metacrylate
OEG Oligo (ethylene glycol)
HPMC Hydroxypropylmethylcellulose
QAC Antibacterial quaternary compound
SNPES Sulfonic amino poly (ether sulfone)
QC Quaternized chitosan
PAA Poly (acrylic acid)
PDA Polydopamine
PDMS Polydimethylsiloxane
PANI Polyaniline
PDT Photothermal therapy
PVPS Poly (vinylpyrrolidone) sulfobetaine
PE Polyethylene
CG Chitosan/gelatin
SF−Mel Melamine−modified silk fibroin
PCL Polycaprolactone



Int. J. Mol. Sci. 2021, 22, 5424 20 of 27

TBAH−Alg Tributylammonium alginate
CPU Polyurethane surfaces
MAPG Macroporous antimicrobial polymeric gel
HG Hydrogel
QA Quaternary ammonium
PMDETA N,N,N′,N′′,N′′−pentamethyldiethylenetriamine
OEG−DMA Oligoethylene glycol dimethacrylate
BP Benzophenone
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
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