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Obesity is a condition of chronic tissue inflammation and oxidative stress that poses as a risk factor for
male infertility. Moringa oleifera oil extract is known to have cholesterol-lowering properties and a
potential to treat obesity, while lycopene is a potent antioxidant. We hypothesize that Moringa or lyco-
pene may improve male fertility markers in an animal model of diet-induced obesity. Male Albino rats
(n = 60) were randomized to receive regular chow (RC) or high-fat diet (HFD) for 12 weeks (n = 30 each).
Animals in each arm were further randomized to receive gavage treatment with corn oil (vehicle), lyco-
pene (10 mg/kg), or Moringa (400 mg/kg) for four weeks starting on week 9 (n = 10 each). Animals were
sacrificed at 12 weeks, and blood was collected to assess lipid profile, serum testosterone, and gonado-
tropin levels. The testes and epididymides were removed for sperm analysis, oxidative stress and inflam-
matory markers, and histopathological assessment. In comparison to their RC littermates, animals on
HFD showed an increase in body weights, serum lipids, testosterone and gonadotrophin levels, testicular
oxidative stress and inflammatory markers, as well as sperm abnormalities and disrupted testicular his-
tology. Moringa or lycopene reduced body weight, improved oxidative stress, and male fertility markers
in HFD-fed animals with lycopene exhibiting better anti-antioxidant and anti-lipidemic effects. Lycopene
is superior to Moringa in improving male fertility parameters, possibly by attenuating oxidative stress.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The global prevalence of metabolic diseases, particularly obe-
sity, has dramatically increased worldwide (Potabattula et al.,
2019). Western diet (i.e., high caloric and high saturated fat diet)
and the sedentary lifestyles are predisposing factors for obesity
(World Health organization, 2020). Obesity negatively affects male
reproductive capacity (Davidson et al., 2015; Deshpande et al.,
2019). A worldwide progressive reduction in sperm counts
occurred since the mid-1900s coinciding with an increase in global
obesity rates, suggesting a possible correlation (Crean and Senior,
2019).

Moringa oleifera is a species of the moringaceae family. It has
various nutritional values and medicinal uses of most parts of
the plant (Kumar et al., 2010). Moringa oil extract contains antiox-
idants (vitamin C, flavonoids, and phenolics) (Nahar et al., 2016). It
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possesses antimicrobial, antidiabetic, cholesterol-lowering, and
liver protection properties (Caceres et al., 1992; Ghasi et al.,
2000); however, its effect on obesity-induced male infertility has
not been investigated.

Lycopene is a red carotenoid, with a potent antioxidant prop-
erty, naturally found in red-colored fruits and vegetables like
tomatoes and watermelons (Agrawal, 2018; Pourahmadi et al.,
2015). Some studies have related the high consumption ofl y-
copene with decreased risk of metabolic disorders. Researchers
suggest that lycopene has beneficial health effects that could
fight obesity-related pathologies (Fenni et al., 2017).

In a recent study, Moringa or lycopene was found to have com-
parable anti-obesity potential (Kilany et al., 2020). Moringa or
lycopene was also reported to improve male fertility parameters
in normal or cadmium-induced toxicity rodent model (Agrawal,
2018; Gupta and Kumar, 2002; Khalifa et al., 2016; Obembe and
Raji, 2018). Yet, the effects of either product on obesity-induced
male infertility remain elusive. In the current study, we aimed to
assess the effectiveness of Moringa or lycopene on male fertil-
ity markers in an animal model of diet-induced obesity.
2. Materials and methods

2.1. Animals

Adult male Albino Wistar rats (age 10–12 weeks � 120–150
gm) were purchased from the Ophthalmology Research Institute
in Giza, Egypt. Animals were housed in polyethylene cages
(n = 5/cage) in a 12-h light–dark cycle at controlled temperature
and humidity ranges of 20–27 ͦ C and 40%-60%, respectively. They
were fed with a standard chow diet and water ad libitum. Animals
were acclimatized for one week before the start of the study. All
procedures and experimental protocols were reviewed and
approved by the Faculty of Medicine’s ethics committee, Suez
Canal University.

2.2. Experimental procedure

Animals (n = 60) were randomized to receive regular chow (RC
– Control group ‘‘C”) or high-fat diet (HFD) for 12 weeks (n = 30
each). HFD contained 20 g of fat/100 g of diet (19 g of butter oil
and 1 g of soybean oil to provide essential fatty acids) and provided
19.34 kJ/g of diet, including 7.74 kJ/g as fat (Woods et al., 2003).
Animals in each arm were further randomized to receive gavage
treatment with either lycopene ‘‘LY” (10 mg/kg - NOW FOODS
Co., USA obtained as capsules) for the C/LY and HFD/LY groups
(Agrawal, 2018), or Moringa oleifera oil extract ‘‘MO” (400 mg/kg
– Grenera Nutrients Private Limited, India) for the C/MO and
HFD/MO groups (n = 10 each) (Bais et al., 2014). Treatment lasted
for four weeks, starting on week 9. Animals were weighed weekly,
then sacrificed at 12 weeks under an overdose of anesthesia. Blood
samples were withdrawn from the abdominal aorta to assess lipid
profile, testosterone, and gonadotropin levels. The testes were
removed and immediately weighed. The caudal end of the epi-
didymis was cut for sperm analysis. One of the testes was washed
with washing buffer and then homogenized to estimate antioxi-
dant activities. The other testis was preserved for histological
and immunohistochemical analysis in a 10% formalin solution.

2.3. Lipid profile

Total cholesterol (TC) and High-density lipoprotein (HDL) were
determined, according to Stein et al. (1986). Low-density lipopro-
tein (LDL) was calculated, according to Friedewald et al. (1972).
Triglyceride (TG) was measured in serum, according to Wahelfed
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(Nagele et al., 1984). Very low-density lipoprotein (VLDL) was cal-
culated. All kits were purchased from Biodiagnostic, Egypt.

2.4. Hormonal assay

Serum testosterone, follicle-stimulating hormone (FSH), and
luteinizing hormone (LH) were assessed by ELISA standard kits
(Biocheck, Inc. Foster City CA, USA). The procedure described in
the hormone assay kits was used according to Tietz’s principle
(Tietz, 1995).

2.5. Sperm analysis

Epididymides were minced aseptically into sterile Petri dishes
containing 1 ml of pre-warmed (35 �C) Dulbecco’s phosphate buf-
fered saline (PBS) and filtered through 80 lM pore size nylon-
mesh. The filtrate was used for the evaluation of sperm parame-
ters. The filtrate samples were diluted with 5 ml of pre-warmed
(35 �C) Dulbecco’s PBS, and the spermatozoa were counted by
hemocytometer using the improved (Deep1/10 mm LABART, Ger-
many) chamber as described (Pant and Srivastava, 2003).

Normal spermatozoa were estimated by differential staining
technique using Eosin-Nigrosin stain (NE). These slides were also
used for assessing the abnormal sperm morphology based on
observed abnormalities of head, neck, mid-piece, and tail region
of the spermatozoa. A total of 1000 spermatozoa were counted in
a slide. The stained and partially stained spermatozoa were consid-
ered as dead. However, for sperm abnormalities analysis, one thou-
sand spermatozoa (heads only or intact sperm) per animal were
evaluated for head/or flagellar defects by microscopy using 100�.
The head and tail abnormalities were counted per 1000 sperm
count.

2.6. Histopathological assessment

Testicular tissues were cut and fixed in 10% formalin saline.
After the fixation, the tissues were washed and processed by stan-
dard histology procedures and embedded in paraffin. Tissue sec-
tions were stained with hematoxylin and eosin (H&E). Testicular
tissue was double-blindly evaluated and scored in about 50 semi-
niferous tubules using light microscopy at power 400 (Holstein and
Davidoff, 2003).

2.7. Measurement of inflammatory markers in testicular tissues

Sections of 3 mm of testicular tissue were deparaffinized and
rehydrated. Hydrogen peroxide was used for blocking endogenous
peroxidase activity. Incubation with 5% horse serum was done for
blocking non-specific antigen-binding sites. Incubation with indu-
cible nitric oxide synthase (iNOS) antibodies (Thermo Sci, Fremont,
CA, USA, 1:50) overnight at 4 �C in a humidified chamber, sections
washed twice with PBS then incubated with avidin biotin peroxi-
dase at room temperature for one hour. The sections were then
washed three times with PBS, counterstained, dehydrated, and
mounted. About 20 images for each group were analyzed using
the immunohistochemistry (IHC) profiler plugin in the Image J pro-
gram through 3,30-Diaminobenzidine (DAB)-stained cytoplasmic
option (Varghese et al., 2014). Images were acquired through an
Olympus camera and microscope. Images were interfaced with
IBM desktop and capture � 10 power.

2.8. Measurement of oxidative stress biomarkers in testicular tissues

Oxidative stress markers, namely catalase activity, lipid perox-
idase, malondialdehyde (MDA), reduced glutathione (GSH), and
superoxide dismutase (SOD), were measured in testicular tissues.
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Tissue samples were homogenized in four volumes of ice-cold Tris-
HCl buffer (50 mM, pH 7.4) on a homogenizer (Ultra Turrax IKA
T18 Basic, USA) for 2 min at 5,000g at 4 �C. SOD activity was
assayed spectrophotometrically by inhibition of epinephrine
autoxidation (Misra and Fridovich, 1972). MDA activity was
assayed spectrophotometrically (Ohkawa et al., 1979). The Cata-
lase activity was quantified as previously described (Aebi, 1984).
GSH levels were measured according to the method described by
Beutler et al. (1963).
3. Data analysis

Data were expressed as mean ± SEM and analyzed using the
Statistical Package of Social Sciences (SPSS program, version 20,
SPSS Inc., Chicago, IL, USA). The difference of mean values among
groups was assessed using one-way analysis of variance (ANOVA)
followed by Bonferroni’s multiple comparison test. All p values
reported are two-tailed, and p < 0.05 was considered statistically
significant.
4. Results

Treatment with either Moringa or lycopene had no effects on
RC-fed animals (C groups). The changes reported below were only
observed in the HFD-fed animals.
4.1. Bodyweight and testicular weight

Fig. 1 shows the changes in animal body weights over time in
response to diet and treatment. HFD increased all animals’ body
weight in the first eight weeks of the study compared to RC
(*p < 0.05 each vs. HFD). Lycopene or Moringa decreased body-
weight comparably in animals on HFD. Body weights at 12 weeks
(g) were 230 ± 22, 228 ± 21 for lycopene and Moringa, respectively
vs. 333 ± 25 for HFD ($p < 0.05 each vs. HFD). There was no signif-
icant difference between the testicular weights of the control or
the treated groups (data not shown).
Fig. 1. Bodyweight change over time. HFD increased all animals’ body weight in the fir
Moringa decreased bodyweight comparably in animals on HFD ($p < 0.05 each vs. HF
*Significant in comparison to C group. $Significant in comparison to HFD. C; control grou
group, HFD/LY; high-fat diet/Lycopene group, HFD/MO; high-fat diet/Moringa group.
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4.2. Lipid profile

Table 1 shows the values of the lipid profile. HFD increased
serum levels of TC, TG, LDL, and VLDL and decreased HDL com-
pared to RC (*p < 0.05 each vs. HFD). Treatment with either Mor-
inga or lycopene decreased TC, VLDL, TG, and LDL, and increased
HDL ($p < 0.05 each vs. HFD) with lycopene being more effective
in improving the latter three (#p < 0.05 each vs. lycopene –
Table 1).

4.3. Hormonal assay

HFD decreased serum testosterone, FSH, and LH levels com-
pared to RC (*p < 0.05 each vs. HFD). Treatment with either Mor-
inga or lycopene increased FSH, and LH levels comparably
($p < 0.05 each vs. HFD - Fig. 2). FSH (ng/mL) was 3.66 ± 0.07,
3.88 ± 0.10 for lycopene and Moringa, respectively vs. 2.67 ± 0.07
for HFD ($p < 0.05 each vs. HFD). LH (ng/mL) was 2.62 ± 0.03,
2.60 ± 0.04 for lycopene and Moringa, respectively vs. 2.04 ± 0.07
for HFD ($p < 0.05 each vs. HFD). There was no significant differ-
ence between the changes seen in gonadotrophins in response to
either treatment.

4.4. Sperm analysis

Table 2 shows the Holstein testicular score and Sperm analysis.
HFD decreased all sperm analysis variables in comparison to RC
(*p < 0.05 each vs. HFD). Treatment with Moringa or lycopene
improved the total sperm count, sperms with normal morphology,
sperms with abnormal morphology, and sperms with abnormal
heads ($p < 0.05 each vs. HFD). Either treatment had no effects
on the count of sperms with abnormal tail or sperms with abnor-
mal head and tail. There was no significant difference between
the changes seen in sperm analysis in response to either treatment.

4.5. Histopathological assessment

The histological structure of testicular tissue of animals in all
RC-fed groups showed a regular arrangement of the seminiferous
st eight weeks of the study compared to RC (*p < 0.05 each vs. HFD). Lycopene or
D). All data are expressed as mean ± SEM and analyzed using one-way ANOVA.
p, C/LY; control/Lycopene group, C/MO; control/Moringa group, HFD; high-fat diet



Table 1
Lipid profile.

TC TG HDL LDL VLDL

RC 217.2 ± 1.8 132.89 ± 4.6 45.3 ± 3.1 127.6 ± 5.2 27.07 ± 1.6
C/LY 218.2 ± 2.1 141.4 ± 4.4 47.6 ± 1.6 142.8 ± 5.9 27.7 ± 0.7
C/MO 217.2 ± 4.3 125.3 ± 4.1 48.9 ± 2.8 148.7 ± 4.5 22.1 ± 2.1
HFD 249.5 ± 0.8* 181.1 ± 1.9* 33.8 ± 202* 171.3 ± 5.4* 39.6 ± 2.1*
HFD/LY 220.5 ± 3.5$ 139.8 ± 4.7$ 48.7 ± 2.3$ 139.49 ± 2.6$ 30.15 ± 0.8$

HFD/MO 218.7 ± 3.7$ 149.3 ± 4.8$# 40.1 ± 1.3$# 152.8 ± 3.6$# 28.7 ± 1.3$

Fig. 2. Hormonal Assay. HFD decreased serum testosterone, FSH, and LH levels compared to RC (*p < 0.05 each vs. HFD). Treatment with either Moringa or lycopene increased
FSH, and LH levels comparably ($p < 0.05 each vs. HFD). There was no significant difference between the changes seen in gonadotrophins in response to either treatment. All
data are expressed as mean ± SEM and analyzed using one-way ANOVA. *Significant in comparison to C group. $Significant in comparison to HFD. #Significant in comparison
to HFD/LY group. C; control group, C/LY; control/Lycopene group, C/MO; control/Moringa group, HFD; high-fat diet group, HFD/LY; high-fat diet/Lycopene group, HFD/MO;
high-fat diet/Moringa group, FSH; Follicle-stimulating hormone, LH; Luteinizing hormone.

Table 2
Holstein testicular score and Sperm analysis.

Holstein
testicular
score

Total sperm
count (106/ml)

Sperms with
normal
morphology

Sperms with
abnormal
morphology

Sperms with
abnormal
head

Sperms with
abnormal tail

Sperms with
abnormal
head & tail

C 9.1 ± 0.08 5.4 ± 0.01 892.5 ± 3.05 107.5 ± 3.05 52 ± 1.98 34.7 ± 1.61 20.7 ± 0.71
C/LY 9 ± 0.09 5.2 ± 0.02 885.5 ± 4.06 107.2 ± 2.21 51.5 ± 0.86 34.7 ± 0.71 21 ± 1.76
C/MO 8.8 ± 0.07 5.3 ± 0.02 870.2 ± 3.92 129.7 ± 3.92 56 ± 2.12 40.5 ± 1.42 32.2 ± 1.19
HFD 2.8 ± 0.01* 4.9 ± 0.05* 824.5 ± 2.73* 150.2 ± 1.24* 60 ± 0.09* 41.2 ± 0.71* 39 ± 0.90*
HFD/LY 8.3 ± 0.07$ 5.1 ± 0.01$ 869.2 ± 4.19$ 130.5 ± 2.16$* 55.7 ± 0.62$ 38 ± 1.02 36.7 ± 0.71
HFD/MO 8.6 ± 0.08$ 5.2 ± 0.01$ 873.2 ± 2.43$ 132.5 ± 1.11$* 52.7 ± 1.14$ 40.2 ± 1.19 38.2 ± 1.09
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tubules presenting different stages of the spermatogenic cells
starting with spermatogonia lying on the basal lamina up to
sperms in the center of the tubules. In between each group of sper-
matogenic cells lie the Sertoli supporting cells, all being sur-
rounded by a basal lamina. Among seminiferous tubules, Leydig
cells lie within the interstitial tissue spaces (Fig. 3A, B, and C).

In contrast, the histological structure of testicular tissue of ani-
mals in the HFD group showed several atrophic, distorted tubules
with irregular basal lamina, and disrupted interstitial tissue spaces
with loss of Leydig cells. We observed multiple apparently healthy
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seminiferous tubules with fewer spermatogenic cells, sperms, and
increased spaces and vacuolations between spermatogenic cells
(Fig. 3D). Treatment with either Moringa or lycopene restored
the normal architecture of the seminiferous tubules and spermato-
genic cells with slight thickening in the blood vessels’ tubular base-
ment membrane and walls (Fig. 3E, F).

Holstein score reflected the histological testicular changes
observed in response to HFD compared to RC. HFD decreased Hol-
stein scores in comparison to RC (2.8 ± 0.01 vs. 9.1 ± 0.08;
*p = 0.01). Treatment with either Moringa or lycopene comparably



Fig. 3. Photomicrograph of the testes in response to treatment. A: C; control group, B: C/LY; control/Lycopene group, D: C/MO; control/Moringa group, E: HFD; high-fat diet
group, F: HFD/LY; high-fat diet/Lycopene group, G: HFD/MO; high-fat diet/Moringa group. (H&E � 100).
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increased Holstein scores (8.3 ± 0.07 and 8.6 ± 0.08 for Moringa and
lycopene; respectively– $p < 0.05 vs. HFD). There was no significant
difference between the changes seen in sperm analysis in response
to either treatment (Table 2).

4.6. Measurement of inflammatory markers in testicular tissues

RC decreased iNOS expression in Sertoli & germ cells (in the
seminiferous tubules) and in Leydig cells (in the inter-tubular areas
- Fig. 4A, B, and C; respectively). In contrast, HFD increased iNOS
expression (Fig. 4D). Treatment with either Moringa or lycopene
markedly decreased iNOS expression (Fig. 4E and F; respectively).

4.7. Measurement of oxidative stress markers in testicular tissues

Fig. 5 shows the effects of treatments on oxidative stress mark-
ers. HFD reduced the SOD, catalase activity, and GSH and increased
MDA concentrations compared to RC (*p < 0.05 each vs. HFD). Mor-
inga or lycopene increased SOD, catalase activity, and GSH and
decreased MDA concentrations ($p < 0.05 each vs. HFD) with lyco-
pene being more effective on the latter two (#p < 0.05 each vs. lyco-
pene). SOD (U/L) was 6.12 ± 0.85, 6.37 ± 1.70 for lycopene and
Moringa, respectively vs. 2.5 ± 1.29 for HFD ($p < 0.05 each vs.
HFD). Catalase activity (U/L) was 30.44 ± 4.56, 32.69 ± 4.77 for
lycopene and Moringa, respectively vs. 25.99 ± 2.88 for HFD
($p < 0.05 each vs. HFD). GSH (U/L) was 73.87 ± 23.26,
54.02 ± 8.79 for lycopene and Moringa, respectively vs. 40.58 ± 10.
16 for HFD ($p < 0.05 each vs. HFD - #p < 0.05 vs. lycopene). MDA
(U/L) was 34.68 ± 16.08, 48.75 ± 12.31 for lycopene and Moringa,
respectively vs. 82.02 ± 18.82 for HFD ($p < 0.05 each vs. HFD -
#p < 0.05 vs. lycopene).

5. Discussion

This comprehensive work compared the effects of Moringa olei-
fera oil extract or lycopene on metabolic and fertility markers in a
male rat model of diet-induced obesity. We found that: (1) In com-
parison to RC, HFD increased body weight, serum lipids, sperm
abnormalities, serum testosterone, and gonadotropin levels, testic-
ular oxidative stress and inflammatory markers, and disrupted tes-
ticular histology, (2) treatment with either Moringa or lycopene
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improved all studied parameters with lycopene exhibiting superior
anti-antioxidant, and anti-lipidemic effects.

Under physiological conditions, reactive oxygen species (ROS)
levels are maintained by an antioxidant system. This system is
based on small scavenging molecules like GSH, and enzymes,
which catalytically modify ROS into less harmful forms (Bais and
Sharma, 2014). In the current work, HFD decreased SOD, catalase
activity, and GSH and increased MDA concentrations compared
to RC, indicating a disruption of the antioxidant system with
increased lipid peroxidation, as previously reported (Kilany el al.,
2020). This is conceivable as elevated oxidative stress has been
implicated in obesity, a state of chronic inflammation
(Fernandez-Sanchez et al., 2011).

Obesity-induced oxidative stress has been implicated in
decreased Sertoli cell function, direct sperm DNA damage, and an
overall reduction in sperm count (Bellastella et al., 2019; Pearce
et al., 2019). Indeed, we have observed that HFD decreased gona-
dotropins and testosterone, FSH, and LH levels and exerted delete-
rious effects on testicular histopathology and sperm analysis. This
is consistent with other clinical reports in obese males (Davidson
et al., 2015; Sedaghat et al, 2019). Obesity has a negative impact
on the systematic and regional environment pivotal for spermato-
genesis and sperm maturation, which results in low sperm quality
(Crean and Senior, 2019). Several mechanisms have been proposed
to explain the effects of obesity on sperm functions and male fer-
tility. These include: (1) increased conversion of androgen into
estrogen in excess adipose tissue inducing hormonal imbalance,
(2) increased scrotal adiposity inducing gonadal heat and sup-
pressing spermatogenesis, and (3) increased oxidative stress and
ROS. Specifically, the increased load of ROS was reported not only
to induce chemical and structural changes damaging sperm
nuclear structure and DNA integrity but also to disrupt seminal flu-
idity, which causes reduced sperm motility (Nahar et al., 2016;
Pearce et al., 2019).

Inducible nitric oxide synthase is not expressed under normal
circumstances but is upregulated during inflammatory conditions.
We observed iNOS overexpression in Sertoli and Leydig cells in ani-
mals on HFD, which was in accordance with other studies
(Sedaghat et al, 2019). Such overexpression reflects the increased
testicular inflammatory burden (Zaitone et al, 2015) and possible
inhibition of steroidogenesis (O’Bryan et al., 2000).



Fig. 4. Immunostaining of the testes (using immunohistochemistry ‘IHC’ Profiler) in response to treatment. iNOS immunostaining, intensity of 3,30-Diaminobenzidine (DAB),
and hematoxylin (H) stains with each group’s corresponding histogram profile and different pixels percentages of each pixel intensity (�100). A: C; control group, B: C/LY;
control/Lycopene group, D: C/MO; control/Moringa group, E: HFD; high-fat diet group, F: HFD/LY; high-fat diet/Lycopene group, G: HFD/MO; high-fat diet/Moringa group.
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Medicinal plants have been used for treating obesity for millen-
nia. Moringa or lycopene reduced the weight of HFD-fed animals
significantly, suggesting an anti-obesity potential of either (Bais
et al., 2014; Pierine et al., 2014; Xie et al., 2018; (Kilany et al.,
2020). Either treatment exerted anti-lipidemic effects on HFD-fed
animals, consistent with other reports (Fenni et al., 2017; Pierine
et al., 2014; Jiang et al., 2015; (Kilany et al., 2020) with lycopene
being more effective. Researchers showed that Moringa or lyco-
pene depressed the activity of b-Hydroxy b-methylglutaryl-CoA
(HMG-Co-A) reductase enzyme, the rate-regulating enzyme for
cholesterol biosynthesis (Khan et al., 2017; Mozos et al., 2018).
In addition, others linked the salutary effects of Moringa on body
weight and dyslipidemia to improving visceral fat adipokine gene
expressions (Soleymaninejad et al., 2017).

Either treatment had antioxidant effects on HFD-fed animals,
consistent with other reports (Mozos et al., 2018; Jiang et al.,
2015), yet lycopene showed better results. Indeed, researchers
showed that lycopene reduces oxidative stress by scavenging free
radicals neutralizing ROS, and preventing the damage of lipids,
2961
proteins, and DNA (Agrawal, 2018; Khan et al., 2017; Metwally
et al., 2017).

Importantly, either treatment improved testosterone and gona-
dotropin levels, selective semen analysis parameters, and restored
the testicular structure of HFD-fed animals. Lycopene was shown
to improve sperm count, motility, viability, and morphology, possi-
bly attributed to its antioxidant properties (Agrawal, 2018; Gupta
and Kumar, 2002). Moringa was also shown to improve spermato-
genesis and preserve testicular morphology, possibly attributed to
the presence of flavonoids, which can lessen oxidative stress
(Khalifa et al., 2016; Obembe and Raji, 2018).

Either treatment showed a minimal intensity of iNOS immunos-
taining, denoting the reduction of iNOS expression in HFD-fed ani-
mals. These findings highlight Moringa and lycopene’s anti-
inflammatory properties, consistent with other reports (Kahn
et al., 2017; Vergara-Jimenez et al., 2017). Moringa was shown to
decrease the gene expression and production of inflammatory
markers in Ralph and William (RAW) macrophages (Vergara-
Jimenez et al., 2017). Lycopene exerted several anti-inflammatory



Fig. 5. Oxidative stress marker levels in testicular tissue. HFD reduced the SOD, catalase activity, and GSH and increased MDA concentrations compared to RC (*p < 0.05 each
vs. HFD). Moringa or lycopene increased SOD, catalase activity, and GSH and decreased MDA concentrations ($p < 0.05 each vs. HFD) with lycopene being more effective on the
latter two (#p < 0.05 each vs. lycopene). All data are expressed as mean ± SEM and analyzed using one-way ANOVA. *Significant in comparison to C group. $Significant in
comparison to HFD. #Significant in comparison to HFD/LY group. C; control group, C/LY; control/Lycopene group, C/MO; control/Moringa group, HFD; high-fat diet group,
HFD/LY; high-fat diet/Lycopene group, HFD/MO; high-fat diet/Moringa group.
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effects besides modulating inflammatory mediators, such as inhi-
bition of leukocyte mobilization, stabilization of mast cells, and
inhibition of gene expressions involved in inflammation. Lycopene
also reduced the secretion of metalloproteinases by macrophages
and inhibited T lymphocyte activation (Khan et al., 2017;
Vergara-Jimenez et al., 2017).

A limitation of this work is the lack of dose–response studies
with various treatments. Dose-response could have provided an
insight into the identification of the best treatment dose. Addition-
ally, our diet-induced obesity model could have been more realistic
if we would have replaced the HFD with a palatable, energy-dense,
westernized, or cafeteria-food diet to mimic a real-life ultra-
processed food diet. Further studies are warranted to test the
effects of cafeteria diet on infertility parameters in rodents.

In summary, several factors contribute to lowering male fertil-
ity, including environmental, nutritional (e.g., HFD), pharmacolog-
ical, and others. In a lab. controlled environment, obesity was
teased out as a factor by conducting the study in a diet-induced
obesity rat model. Obesity negatively affects male fertility and
sperm quality through mediating testicular inflammation and
oxidative stress. Lycopene or Moringa are potent natural antioxi-
dants that can ameliorate the reprotoxicity and potentially treat
obesity-induced male infertility with lycopene exhibiting superior
anti-antioxidant and anti-lipidemic effects.
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