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The Savitzky-Golay (SG) filter is widely used to smooth
and differentiate time series, especially biomedical data.
However, time series that exhibit abrupt departures
from their typical trends, such as sharp waves or steps,
which are of physiological interest, tend to be
oversmoothed by the SG filter. Hence, the SG filter tends
to systematically underestimate physiological
parameters in certain situations. This article proposes a
generalization of the SG filter to more accurately track
abrupt deviations in time series, leading to more
accurate parameter estimates (e.g., peak velocity of
saccadic eye movements). The proposed filtering
methodology models a time series as the sum of two
component time series: a low-frequency time series for
which the conventional SG filter is well suited, and a
second time series that exhibits instantaneous
deviations (e.g., sharp waves, steps, or more generally,
discontinuities in a higher order derivative). The
generalized SG filter is then applied to the quantitative
analysis of saccadic eye movements. It is demonstrated
that (a) the conventional SG filter underestimates the
peak velocity of saccades, especially those of small
amplitude, and (b) the generalized SG filter estimates
peak saccadic velocity more accurately than the
conventional filter.

Introduction

The smoothing and differentiation of time series is
important in numerous fields. The Savitzky-Golay (SG)
filter (Savitzky & Golay, 1964) is widely used for this
purpose, especially for biomedical data. For example,
the SG filter has been advocated for electroencepha-
lography and electrocardiography (Azami, Moham-
madi, & Bozorgtabar, 2012), elastography (Luo, Bai,
He, & Ying, 2004), near infrared spectroscopy
(Schneider & Kovar, 2003), functional magnetic
resonance imaging (Geissler et al., 2007), speech
enhancement (Shajeesh, Kumar, Pravena, & Soman,
2012), and eye movement analysis (Nyström &
Holmqvist, 2010; Quaia, Joiner, FitzGibbon, Optican,
& Smith, 2010; Shaikh, Xu-Wilson, Grill, & Zee, 2010).

Despite its widespread use, the SG filter obeys an
unavoidable trade-off between noise suppression and
signal distortion, as does any linear filter. Corre-
spondingly, the SG filter tends to oversmooth time
series that exhibit abrupt deviations such as sharp
waves or steps, yet these are often of physiological
interest (e.g., a saccade is an abrupt change in eye
position). Consequently, the SG filter can lead to
physiological parameters being systematically underes-
timated (e.g., the peak angular velocity of the eye
during a saccade). Accurate estimation of such
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parameters is of interest, since they are used in clinical
research and practice.

Saccades are rapid eye movements redirecting sight
from one object of interest to another (Leigh & Zee,
2015). These movements are brief, rarely lasting more
than 80 ms (Leigh & Zee, 2015). Advances in the study
of anatomy and pathology of the brain and eye
movements have reinforced the substantial utility of
saccades in clinical practice. Abnormalities of sac-
cades offer important clues in the diagnosis of a
number of neurological disorders (Ramat, Leigh, Zee,
& Optican, 2007). Quantitative saccade parameters
include latency, amplitude, duration, peak velocity,
and peak acceleration, etc. Among these measures, the
peak velocity of saccades is of particular interest. Slow
saccadic eye movements may suggest a brainstem
lesion in excitatory saccade burst neurons (Horn &
Büttner-Ennever, 1998; Horn, Büttner-Ennever, Su-
zuki, & Henn, 1995; Ramat, Leigh, Zee, Shaikh, &
Optican, 2008). Examples of conditions that typically
cause saccadic slowing include progressive supranu-
clear palsy (Chen et al., 2010; Leigh & Riley, 2000) or
spinocerebellar ataxia type 2 (Garbutt, Harwood,
Kumar, Han, & Leigh, 2003; Wadia & Swami, 1971).
Additional factors, such as saccade adaption and
visual salience, may also affect saccade peak velocity
(Ethier, Zee, & Shadmehr, 2008; Schütz, Braun, &
Gegenfurtner, 2011); even subtle reductions in the
peak velocity of otherwise normal saccades have been
observed in states of mental fatigue (Di Stasi et al.,
2012). Thus, accurate determination of saccade peak
velocity is critical to the understanding of normal and
pathological saccade behavior.

We propose a generalization of the SG filter that can
track abrupt deviations in time series more accurately
than the conventional SG filter. The generalized SG
filter leads to more accurate parameter estimates when
it is desirable to measure abrupt changes, such as the
peak velocity of saccadic eye movements. The proposed
filtering methodology models a time series as the sum of
two component time series: a low-frequency time series
for which the conventional SG filter is well suited, and
a second time series that exhibits instantaneous
deviations (e.g., sharp waves, steps, or more generally,
discontinuities in a higher-order derivative). We for-
mulate the generalized SG filter via sparse signal
modeling. The output of the filter is expressed in terms
of the solution to a sparse-regularized linear inverse
problem, and is calculated via convex optimization.
The generalized SG filter is thus nonlinear and can
overcome the limitations of the conventional (linear)
SG filter.

We model an abrupt deviation in a time series as a
discontinuity either in the underlying signal, in the
derivative of the underlying signal, or in a higher order
derivative of the underlying signal. In turn, the next-

higher order derivative of the time series exhibits
impulses (isolated values of high amplitude). Such a
time series therefore has a sparse component (a time
series is said to be sparse if it is mostly zero in value,
except for isolated values of high amplitude). Accord-
ingly, in the proposed generalization of the SG filter, we
adopt tools from sparse signal processing (Elad, 2010).
An early instance of filtering based on a sparse signal
model is total variation denoising (Rudin, Osher, &
Fatemi, 1992), which models a step signal as having a
sparse first-order derivative.

The proposed generalization of the SG filter is
closely related to the sparsity-assisted signal smoothing
(SASS) method (Selesnick, 2015, 2017; Selesnick,
Graber, Pfeil, & Barbour, 2014). The SASS method can
be considered a generalization of the digital Butter-
worth filter (a particular recursive filter), while the filter
proposed in this work constitutes a generalization of
the SG filter (a particular nonrecursive filter). Addi-
tionally, SASS was developed only for smoothing,
while the filter proposed here is also developed for
differentiation, which is important for the estimation of
velocity time series and associated parameters (e.g.,
peak velocity).

In this article, we demonstrate that the proposed
generalization of the SG filter can estimate peak
saccadic velocity from eye position time series more
accurately than the conventional SG filter. The
evaluation of the proposed filter uses (a) simulated data
based on a recently developed parametric model for
saccadic eye movements (Dai, Selesnick, Rizzo, Ruck-
er, & Hudson, 2016), (b) physiologic data of saccadic
eye movements that have been objectively recorded and
manually identified by two experts, Nyström and
Andersson (2017), and (c) data recorded in our lab
(Rizzo et al., 2016).

Methods

The SG smoothing filter

The SG smoothing filter is a particular low-pass filter
defined by two parameters that we shall denote K and
M (Orfanidis, 1995; Savitzky & Golay, 1964; Schafer,
2011b). The SG filter can be defined and implemented
as a weighted moving average, i.e., a finite impulse
response (FIR) filter. We denote by x(n) the time series
to be estimated, and we suppose the observed time
series is given by y(n) ¼ x(n) þ w(n) where w(n)
represents additive white Gaussian noise. Applied to
time series y(n), the SG filter produces an output time
series x̂ðnÞ given by
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x̂ðnÞ ¼
XM

k¼�M
hðkÞ yðn� kÞ ð1Þ

where M is a parameter of the filter and h(n) is the
impulse response of the filter (defined for jnj � MÞ.

The SG filter is defined via a least-squares polyno-
mial approximation problem. Specifically, the SG filter
defines x̂ð0Þ (i.e., the output at time n ¼ 0) to be the
value of the coefficient of a polynomial of order K that
best fits the time series data y(n) over the interval
jnj � M. Given the time series y(n) and the parameters
K and M, define the polynomial

pðnÞ ¼
XK
k¼0

ckn
k ð2Þ

as the polynomial minimizing the square error E,

E ¼
XM
n¼�M

ðyðnÞ � pðnÞÞ2: ð3Þ

The output value x̂ð0Þ of the SG filter at time n¼ 0 is
defined to be p(0)—that is, the value of the best-fitting
polynomial at n¼ 0. Hence, for the SG filter, we have
x̂ð0Þ ¼ p(0) ¼ c0 where c0 is a coefficient of the best-
fitting polynomial. The output values x̂ðnÞ at time
instants other than n ¼ 0 are similarly defined. This
process wholly determines the impulse response h(n) of
the filter (Orfanidis, 1995). We note that the impulse
response of the SG filter is symmetric—that is, h(–n)¼
h(n). Given M, the parameter K must be chosen so that
0 � K � 2M:

The transfer function of a filter with impulse
response h(n) is defined as

HðzÞ ¼
X
n

hðnÞ z�n ð4Þ

and the frequency response is given byHðejxÞ. Since the
impulse response of the SG filter is symmetric, its
frequency response is real-valued, and it is a zero-phase
filter. Figure 1a shows the frequency response of the SG
smoothing filter for several parameter values. The cut-
off frequency of the SG filter depends on the
parameters K and M, as described by Schafer (2011a).
We highlight a property of the SG smoothing filter we
use below.

Property 1

Let H(z) be the transfer function of a SG smoothing
filter with polynomial order parameter K. Then H(z)
can be expressed as

HðzÞ ¼ 1� ð1� z�1ÞKþ1QðzÞ ð5Þ
where Q(z) is the transfer function of another FIR
filter. This property implies that the frequency response

of the SG smoothing filter is flat (of order K) at x¼ 0
(Orfanidis, 1995). The flatness of the frequency
response can be seen in Figure 1a.

The SG differentiation filter

SG filters are used not only for smoothing but also
for differentiation of time series. Like the SG smooth-
ing filter, the SG differentiation filter is a particular
zero-phase low-pass differentiation filter defined by two
parameters, K and M, and it can be implemented as an
FIR filter. The SG differentiation filter is defined via
the differentiation of the polynomial that best fits the
data, determined already for the SG smoothing filter.
Differentiation of the polynomial p in Equation 2 yields

p0ðnÞ ¼
XK
k¼1

�ck n
k�1 ð6Þ

where �ck ¼ kck. Like the SG smoothing filter, the
impulse response �hðnÞ of the SG differentiation filter is
determined by parameters K and M. Figure 1b shows
the frequency response of the SG differentiation filter

Figure 1. The frequency response of Savitzky-Golay (a)

smoothing and (b) differentiation filters for several parameter

values.
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for several parameter values. We highlight a property
of the SG differentiation filter we use below.

Property 2

Let �HðzÞ be the transfer function of a SG differen-
tiation filter with polynomial order K. Then �HðzÞ can
be expressed as

�HðzÞ ¼ ð1� z�1Þ þ ð1� z�1ÞKþ1UðzÞ ð7Þ
where U(z) is the transfer function of another FIR
filter. This property implies that the frequency response
of the SG differentiation filter is tangent (of order K) to
a line at x ¼ 0 (Luo, Ying, He, & Bai, 2005) The
high-order tangency of the frequency response can be
seen in Figure 1b.

A generalization of the smoothing filter

In this section, we derive a framework for extending
the SG smoothing filter. We first express the conven-
tional SG filter using linear algebra and define related
filters. We then formulate the proposed filter using
sparse-regularized optimization.

Let H(z) be a SG smoothing filter. Since the SG filter
is linear, we express the output time series x̂ nð Þ in
Equation 1 via matrix-vector multiplication,

x̂ ¼ Hy ð8Þ
where y is a vector of time series values y(n) and H is a
Toeplitz matrix. For example, if M¼ 1, then the matrix
H has the form

H ¼

hð0Þ hð1Þ
hð�1Þ hð0Þ hð1Þ

. .
. . .

. . .
.

hð�1Þ hð0Þ hð1Þ
hð�1Þ hð0Þ

2
666664

3
777775
: ð9Þ

Since H is a zero-phase low-pass filter, the filter G
defined as

G ¼ I�H; ð10Þ
is a zero-phase high-pass filter (I is an identity matrix,
equivalently the identity filter). Its transfer function is
G(z) ¼ 1 – H(z).

We define DS as the S-order difference matrix. The
matrix D1 has the form

D1 ¼

�1 1
�1 1

. .
. . .

.

�1 1

2
664

3
775: ð11Þ

The matrix D1 is a discrete form of first-order

differentiation, and D1x is a discrete first-order
derivative of the time series x. The matrix D3 has the
form

D3 ¼

�1 3 �3 1
�1 3 �3 1

. .
. . .

. . .
. . .

.

�1 3 �3 1

2
664

3
775: ð12Þ

The transfer function of the S-order difference filter is
given by

DSðzÞ ¼ ð1� z�1ÞS: ð13Þ
Using Equations 5 and 10, we write the transfer
function of the high-pass filter G as

GðzÞ ¼ 1�HðzÞ ð14Þ

¼ ð1� z�1ÞKþ1QðzÞ: ð15Þ
If S � Kþ 1, then using Equations 13 and 15, we may
factor DS(z) out of G(z),

GðzÞ ¼ ð1� z�1ÞKþ1�SQðzÞDSðzÞ ð16Þ

¼ RðzÞDSðzÞ; ð17Þ
where R(z) is the transfer function of another FIR
filter. We also write G ¼ RDS where R is a matrix
correspondingly defined.

The two-component model

We assume the time series data x to be estimated can
be modeled as

x ¼ x1 þ x2 ð18Þ
where x1 and x2 are two component time series. In this
model, we assume the time series x1 has the property
that DSx1 is sparse, and that x2 is a low-frequency time
series for which conventional SG filters are well suited.
We assume the time series data is given by

y ¼ xþ w ð19Þ

¼ x1 þ x2 þ w ð20Þ
where w is additive white Gaussian noise.

We assumed x2 is a time series for which the SG filter
is well suited. By this, we mean the SG filter H
preserves the time series x2 and suppresses white noise
w, (i.e., we have x2 ’ H(x2þw). Using Equation 20, we
have

x2 ’Hðx2 þ wÞ ð21Þ

¼ Hðy� x1Þ: ð22Þ
Hence, we propose to estimate x2 in terms of an
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estimate x̂1;

x̂2 ¼ Hðy� x̂1Þ: ð23Þ
In turn, we express an estimate of the unknown time
series x as

x̂ ¼ x̂1 þ x̂2 ð24Þ

¼ x̂1 þH y� x̂1ð Þ ð25Þ

¼ ðI�HÞx̂1 þHy ð26Þ

¼ Gx̂1 þHy ð27Þ

¼ RDSx̂1 þHy ð28Þ
where G is the high-pass filter (Equation 10), which
admits the factorization (Equation 17). By assumption,
DSx̂1 is sparse. Hence, we define û ¼ DSx̂1 and write

x̂ ¼ RûþHy: ð29Þ
Since we model û as sparse, we estimate û via standard
sparse-regularized least squares (Elad, 2010). That is, û
is calculated as the solution to the optimization
problem

û ¼ arg min
u

1

2
jjy� ðRuþHyÞjj22 þ kjjujj1

� �
ð30Þ

where

jjxjj22 :¼
X
n

xðnÞ2 ð31Þ

jjxjj1 :¼
X
n

jxðnÞj ð32Þ

and k is a positive parameter. The parameter k should
be chosen according to the noise level. Several
algorithms are available to solve Equation 30, e.g., the
forward-backward splitting algorithm (Combettes &
Pesquet, 2011). Once û is obtained, the estimated time
series x̂ is then given by Equation 29.

A generalization of the differentiation filter

In this section, we use the framework developed in
the previous section to extend the SG differentiation
filter.

We write the derivative of the time series x as x0 and
we express it as

x0 ¼ �Fx ð33Þ
where �F is a zero-phase full-band differentiation filter
(i.e., its impulse response is symmetric and it
accurately differentiates high-frequency sinusoids).

The ideal full-band differentiation filter cannot be
realized by an FIR filter, but it can be well
approximated by one (Al-Alaoui, 2007; Kumar, Roy,
& Shah, 1992; Pei & Wang, 2001; Rabiner & Schafer,
1974; Selesnick, 2002). In fact, the SG differentiation
filter with parameters K ¼ 2M is an approximate full-
band differentiation filter. Therefore, we let �F be a
zero-phase full-band differentiation FIR filter. A
problem in practice with full-band differentiators is
that they severely amplify noise. Hence, by a
differentiation filter, we mean by default a low-pass
differentiation filter. The SG filter with parameters K
, 2M is a low-pass differentiation filter.

Let �hðnÞ be the impulse response of the SG
differentiation filter with parameters K and M. If the
input of the filter is the time series y, then the output of
the filter is given by the weighted moving average,

x̂0ðnÞ ¼
XM

k¼�M

�hðkÞyðn� kÞ: ð34Þ

As in Equation 8, we express the output via matrix-
vector multiplication,

x̂0 ¼ �Hy ð35Þ
where �H is a matrix determined by the SG differenti-
ation filter.

In the previous section, we subtracted the zero-phase
low-pass filter H from the identity, I, to define a zero-
phase high-pass filter G (i.e., G¼ I – H). Here, we
subtract the zero-phase low-pass differentiation filter �H
from a zero-phase full-band differentiation filter �F, to
define

�G ¼ �F� �H: ð36Þ
The filter �G is a zero-phase high-pass differentiation
filter. Here, we let �F be a SG differentiation filter with
parameters K¼2M. Then the transfer function of �F can
be written as

�FðzÞ ¼ ð1� z�1Þ þ ð1� z�1Þ2Mþ1VðzÞ ð37Þ
where V(z) is the transfer function of another FIR
filter. Using Equations 7 and 37, we write the transfer
function of filter �G as

�GðzÞ ¼ �FðzÞ � �HðzÞ ð38Þ

¼ ð1� z�1Þ þ ð1� z�1Þ2Mþ1VðzÞ
�ð1� z�1Þ � ð1� z�1ÞKþ1UðzÞ ð39Þ

¼ ð1� z�1Þ2Mþ1VðzÞ � ð1� z�1ÞKþ1UðzÞ: ð40Þ
If K � 2M, then
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�GðzÞ ¼ 1� z�1
� �Kþ1

WðzÞ ð41Þ

where W(z)¼ (1 – z–1)2M–KV(z) – U(z).
If S � K þ 1, then using Equations 13 and 41, we

may factor DS(z) out of �GðzÞ,
�GðzÞ ¼ ð1� z�1ÞKþ1WðzÞ ð42Þ

¼ ð1� z�1ÞKþ1�SWðzÞDSðzÞ ð43Þ

¼ �RðzÞDSðzÞ ð44Þ
where �RðzÞ ¼ ð1� z�1ÞKþ1�SWðzÞ:

The two-component model

We assume the time series x to be differentiated can
be modeled as x ¼ x1 þ x2 as in the previous section.
Given the noisy time series y¼ xþ w¼ x1þ x2þ w, we
seek an estimate x̂0 of the unknown differentiated time
series x0. Since we assumed x2 is a signal for which
conventional SG filters are well suited, its derivative
can be well estimated by the SG differentiation filter
�H—that is, x02 ’ �Hðx2 þ wÞ: Consequently,

x02 ’ �Hðx2 þ wÞ ð45Þ

¼ �Hðy� x1Þ: ð46Þ
Hence, we propose to estimate x02 in terms of an
estimate x̂1,

x̂02 ¼ �Hðy� x̂1Þ: ð47Þ
In turn, an estimate of the unknown time series x0 can
be expressed as

x̂0 ¼ x̂01 þ x̂02 ð48Þ

¼ �Fx̂1 þ �Hðy� x̂1Þ ð49Þ

¼ ð �F� �HÞx̂1 þ �Hy ð50Þ

¼ �Gx̂1 þ �Hy ð51Þ

¼ �RDSx̂1 þ �Hy ð52Þ

¼ �Rûþ �Hy ð53Þ
where �G is the high-pass filter (Equation 36, which
admits the factorization in Equation 44) and û ¼ DSx̂1:
Once û is obtained as the solution to optimization
problem (Equation 30), the estimated time series x̂0 is
given by Equation 53. The framework developed here
generalizes SG filters for higher order differentiation as
well.

The generalized SG filter: Summary

We summarize the procedure for the proposed
generalized SG filter. Let y denote the time series data
to be filtered.

1. Set the parameters, K and M of the conventional
SG filter. They must be positive integers with K ,
2M.

2. Set the additional parameters S and k. Parameter
S must be a positive integer with S � Kþ 1, which
determines the type of abrupt deviation in the
time series. Parameter k must be a positive real
number, which is nominally set proportional to
the noise level.

3. Define linear filters:
a. Define H to be the conventional SG smoothing

filter.
b. Define R(z)¼ [1 – H(z)] / (1 – z–1)S.
c. Define �H to be the conventional SG differen-

tiation filter.
d. Define �RðzÞ ¼ ½ �FðzÞ � �HðzÞ�=ð1� z�1ÞS:

4. Solve problem (Equation 30) to obtain û.
5. Set x̂ ¼ RûþHy (smoothing).
6. Set x̂0 ¼ �Rûþ �Hy (differentiation).

The filters H, �H and �F can be determined using any
realization of the conventional SG filter. For the entire
calculation, Matlab software is available from the
authors.

Results

In this section, we apply the proposed filtering
method for the problem of peak saccadic velocity
estimation, and we evaluate its accuracy. First, we
simulate saccadic eye movements (horizontal angular
displacement) using a recently developed parametric
model (Dai et al., 2016). This saccade model has three
parameter: g, c, and A. The formula for the saccade
model is

sðtÞ ¼ cfðgt=cÞ � cfðgt=c� A=cÞ ð54Þ
where f is defined as

fðtÞ ¼ tþ 0:25e�2t; t � 0
0:25e2t; t � 0:

�
ð55Þ

It has been shown that this saccade model can well
approximate physiologic saccades (Dai et al., 2016). In
this model, the saccade s(t) has an amplitude of A and a
peak velocity of

Vp ¼ gð1� e�A=cÞ: ð56Þ
We note that the relation between peak velocity Vp and
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amplitude A in Equation 56 is the ‘‘main sequence’’
formula proposed by Baloh, Sills, Kumley, and
Honrubia (1975).

The use of simulated saccades is useful in this work
because true saccade velocities are unknown for
human subjects. However, by simulating saccades
with known velocity, the error of a velocity estimation
method can be quantitatively evaluated. The simula-
tion consists of horizontal saccades made to the right
and then back to the central angular position with
amplitude 58, 108, and 158, as shown in Figure 2. We
simulate data at a sampling rate of 500 samples/s to
match the recording condition in our lab. (We used the
EyeLink 1000 Plus eye tracker.) While the eight most
common sampling rates for eye trackers are 30, 50, 60,
120, 240, 250, 500, and 1000 Hz (Mack, Belfanti, &
Schwarz, 2017), eye trackers with low sampling rates
are not suitable for the study of saccade dynamics,
such as saccade peak velocity. A sampling rate of 333
Hz is considered sufficient for studying position,
velocity, and acceleration of human saccadic eye
movements (Bahill, Kallman, & Lieberman, 1982;
Inchingolo & Spanio, 1985). To this simulated time
series, we add a zero-mean white Gaussian random
process N (0, 0.2) to model noise. We use both the
conventional and proposed generalized SG filters for
smoothing and differentiation. For the conventional
SG filter, we use parameters K ¼ 2, M ¼ 5, as
recommended by Nyström and Holmqvist (2010) for

eye movement analysis. For the generalized SG filter,
we use parameters K ¼ 3, M ¼ 10, S ¼ 4.

The generalized SG differentiation filter estimates
the peak saccadic velocity more accurately than the
conventional SG differentiation filter (Figure 2). The
conventional SG filter underestimates the peak veloc-
ity, especially for small-amplitude saccades. We also
evaluate the filters in terms of the root mean square
error (RMSE) between the noiseless and filtered time
series (Figure 2). The RMSE values further indicate
that the generalized SG filter performs smoothing and
differentiation more accurately than the conventional
SG filter.

To evaluate the generalized SG filter across a range
of noise levels, we simulate eye movement data as in
Figure 2, but vary the noise standard deviation, r. We
set k in Equation 30 proportional to r, because greater
k results in stronger smoothing. Across a range of noise
levels, the generalized SG filter estimates position,
velocity, acceleration, and saccade peak velocity more
accurately (i.e., with lower RMSE) than the conven-
tional SG filter (Figure 3).

To further investigate the accuracy of peak saccadic
velocity estimation using the conventional and gener-
alized SG differentiation filters, we simulate 500
saccades of 58 and 158 at a sampling rate of 500
samples/s and add zero-mean white Gaussian random
process N (0, 0.2) to model noise. The distribution of
estimated saccade peak velocity is shown as histo-
grams in Figure 4 for each case. The histograms reveal

Figure 2. Smoothing (a) and differentiation (b) of simulated saccades of 58, 108, and 158 amplitude. Unlike the conventional SG filter,

the generalized SG filter does not underestimate the saccade peak velocity.
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that the conventional SG filter is biased; it systemat-
ically underestimates the saccade peak velocity. The
histograms show that the peak saccadic velocity, as
estimated by the generalized SG filter, is generally
closer to the true value (indicated by the dashed line).

Systematic underestimation of peak saccadic velocity
leads to distortion of the main sequence relationship,
an important diagnostic tool for clinicians (Bahill,
Clark, & Stark, 1975). To investigate the relative

impact of the filter, we simulate eye movement data
comprising 50 saccades of various amplitudes and with
random intersaccadic intervals and add a zero-mean
white Gaussian random process N (0, 0.1) to model
noise. Figure 5a shows the true main sequence curve
and its 95% prediction interval (the true peak velocities
and amplitudes are known, since the saccades are
simulated). The main sequence curve follows an
exponential equation (Equation 56) where Vp is the

Figure 3. Evaluation of conventional and generalized SG filter across noise level (r). The generalized SG filter has better RMSE than

the conventional SG filter.

Figure 4. Histogram of peak saccadic velocity of 58 and 158 saccades. (a–b) Estimated using conventional SG filter. (c–d) Estimated

using generalized SG filter. Dashed lines indicate the true peak velocities.
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saccade peak velocity, A is the saccade amplitude, and
g and c are parameters to be estimated (Baloh et al.,
1975). Figure 5b and c show the main sequence curves
calculated using the conventional SG filter and
generalized SG filter, respectively. It can be observed
that the conventional SG filter results in a distorted
main sequence, and the best-fitting main sequence
curve differs substantially from the true main sequence
curve. This is because the peak velocities of small-
amplitude saccades are underestimated. The general-
ized SG filter results in a main sequence curve that
more accurately estimates the true one.

To examine the generalized SG filter for different
individuals, we simulate eye movements as in Figure
5a, but vary the main sequence parameter g or c. We

vary the main sequence parameters because different
individuals have different main sequence relations.
The shape of the simulated saccade (Equation 54)
depends on the parameters g and c. Therefore, we vary
either parameter g or c to represent saccades made by
20 individuals. For each individual, we simulate eye
movement data comprising 50 saccades of various
amplitudes and with random intersaccadic intervals
and add zero-mean white Gaussian noise N (0, 0.1).
The main sequence parameters calculated using the
conventional SG filter and generalized SG filter are
listed in Table 1. It can be observed that the
generalized SG filter estimates the main sequence
parameters more accurately than the conventional SG
filter.

Figure 5. Main sequence relationship between peak velocity and amplitude of simulated saccades. (a) True values. (b) Calculated

using conventional SG filter. (c) Calculated using generalized SG filter. The generalized SG filter yields a more accurate main sequence

than the conventional SG filter.

File ID

Parameter g Parameter c

True Conventional (%) Generalized (%) True Conventional (%) Generalized (%)

1 510.0 550.0 (8) 506.4 (�1) 6.0 8.7 (45) 5.4 (�9)
2 530.0 593.0 (12) 542.2 (2) 6.0 9.5 (58) 5.9 (�2)
3 550.0 591.2 (7) 558.1 (1) 6.0 8.8 (47) 5.9 (�2)
4 570.0 631.8 (11) 581.8 (2) 6.0 9.7 (62) 6.0 (1)

5 590.0 656.8 (11) 599.9 (2) 6.0 10.0 (67) 5.9 (�1)
6 610.0 688.7 (13) 625.7 (3) 6.0 10.5 (76) 6.3 (4)

7 630.0 694.7 (10) 641.1 (2) 6.0 10.2 (70) 6.0 (0)

8 650.0 708.4 (9) 664.9 (2) 6.0 10.0 (67) 6.1 (1)

9 670.0 735.9 (10) 684.1 (2) 6.0 10.4 (74) 6.2 (4)

10 690.0 760.2 (10) 704.5 (2) 6.0 10.6 (77) 6.1 (2)

11 600.0 662.6 (10) 623.7 (4) 4.2 8.6 (105) 4.7 (11)

12 600.0 660.5 (10) 618.2 (3) 4.6 8.7 (89) 4.8 (5)

13 600.0 657.3 (10) 614.9 (2) 5.0 9.0 (79) 5.3 (5)

14 600.0 655.2 (9) 609.5 (2) 5.4 9.2 (71) 5.4 (0)

15 600.0 663.2 (11) 611.3 (2) 5.8 9.9 (70) 5.9 (2)

16 600.0 675.0 (12) 612.0 (2) 6.2 10.5 (69) 6.2 (1)

17 600.0 651.7 (9) 610.7 (2) 6.6 10.0 (52) 6.6 (0)

18 600.0 659.7 (10) 612.4 (2) 7.0 10.7 (53) 7.0 (1)

19 600.0 653.1 (9) 605.3 (1) 7.4 10.7 (45) 7.2 (�3)
20 600.0 664.6 (11) 607.2 (1) 7.8 11.5 (48) 7.6 (�2)

Table 1. Main sequence parameters, g and c, of simulated saccades estimated using the conventional and generalized SG filters.
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The oversmoothing of eye movement data also
leads to prolonged estimates of saccadic duration.
Although this phenomenon is not as prominent as the
estimation of peak saccadic velocity, it affects the
empirical relationship between saccade duration and
amplitude. Here, we define the onset and end of a
saccade using a velocity threshold of 308/s. As shown
in Figure 6b, the main sequence relationship calcu-
lated using the conventional SG filter is different from
the reference one, shown in Figure 6a. In comparison,
the generalized SG filter yields a more accurate
estimate of the true main sequence relationship as
shown in Figure 6c.

We also compare the conventional and generalized
SG filters as applied to real eye movement data.
Although no ‘‘ground truth’’ for the real saccade peak

velocity or amplitude is available, it is nevertheless
informative to observe that the two filters yield
different results, demonstrating the impact of the
utilized filter. Figure 7 shows part of an eye movement
time series recorded at a sampling rate of 500 samples/
s while the participant views an image. This time series
is part of a publicly available dataset for which eye
movements have been manually annotated (Larsson,
Nyström, & Stridh, 2013). Many automatic saccade
detection algorithms have been developed and evalu-
ated (Andersson, Larson, Holmqvist, Stridh, &
Nyström, 2017; Behrens, MacKeben, & Schröder-
Preikschat, 2010; Dai et al., 2016; Engbert & Kliegl,
2003; Komogortsev, Gobert, Jayarathna, Koh, &
Gowda, 2010; König & Buffalo, 2014; Nyström &
Holmqvist, 2010; Otero-Millan, Castro, Macknik, &

Figure 6. Main sequence relationship between duration and amplitude of simulated saccades. (a) True values. (b) Calculated using

conventional SG filter. (c) Calculated using generalized SG filter. The generalized SG filter estimates the true relationship more

accurately than the conventional SG filter.

Figure 7. Eye movement of one participant viewing an image. Saccades identified by experts are indicated by shaded gray areas. The

annotated data is publicly available online.
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Martinez-Conde, 2014). Since our focus is on methods
to accurately estimate saccade parameters rather than
methods to reliably detect saccades, we use the manual
annotation instead of an automatic saccade detection
algorithm to identify saccades. The horizontal and
vertical components of eye movement time series are
processed separately. The velocity and amplitude of
each eye movement is then calculated by taking the
square root of the sum of squares of the horizontal
and vertical components (Nyström & Holmqvist,
2010). Using the conventional and generalized SG
filters to calculate saccade peak velocity and ampli-
tude, we obtain the values illustrated in Figure 8. The
best-fitting exponential curves are calculated based on
the respective estimated saccade parameters. It can be
observed that the two filters yield distinctly different
results. In particular, the main sequence curve
obtained using the generalized SG filter is substan-
tially steeper than that obtained using the conven-
tional SG filter. This is consistent with the results
using simulated saccades: The conventional SG filter
tends to underestimate the peak velocity of small-
amplitude saccades.

We further investigate the conventional and gener-
alized SG filter as applied to real eye movement data of
20 individuals. The data was recorded using the
EyeLink 1000 Plus eye tracker and sampled at a rate of
500 samples/s while the participants read numbers on a
test card from left to right and top to bottom (Rizzo et
al., 2016). Saccades are manually annotated by author
WD for this study. The main sequence parameters
calculated using the conventional SG filter and
generalized SG filter are listed in Table 2. The
parameter c estimated by the conventional SG filter is
larger than that estimated by the generalized SG filter
(8.10 6 2.07 vs. 5.76 6 2.17, p¼ 0.001, two-sample t
test). The parameter g estimated using either the
conventional or generalized SG filter is similar. The
same observation is found when the filter is applied to
different data: The conventional SG filter tends to
underestimate the peak velocity of small-amplitude
saccades. Therefore, we conclude that the main

sequence estimated using the generalized SG filter is
more accurate than the one estimated using the
conventional SG filter.

Discussion

The SG filter is a particular (linear) low-pass filter
widely used for smoothing and differentiation of time
series. Other commonly used filters for eye movement
data is the moving average filter and the Butterworth
filter (Mack et al., 2017). They are used for data
smoothing and usually followed by a two-point central
difference filter for data differentiation. All three filters
are linear filters and hence obey an unavoidable trade-
off between noise suppression and signal distortion. It
should also be recognized that linear low-pass filters
tend to oversmooth abrupt deviations from a smooth
trend. Therefore, quantitative measures of signal
extremes (e.g., the peak value of a signal derivative)
might be underestimated when calculated using the SG
filter, or any other linear filter. The proposed nonlinear
generalization of the SG filter aims to mitigate this
issue, by modeling a signal component having discon-
tinuities in its order-S derivative of some prescribed
order S.

Historically, the relationship between saccade peak
velocity and amplitude has been a useful metric in

Figure 8. Main sequence relationship between peak velocity

and amplitude of real saccades. (a) Calculated using conven-

tional SG filter. (b) Calculated using generalized SG filter.

File ID

Parameter g Parameter c

Conventional Generalized Conventional Generalized

1 486.2 530.5 7.8 5.8

2 495.5 563.2 5.8 3.7

3 515.2 552.7 9.7 7.8

4 573.2 568.5 9.2 7.1

5 579.2 625.7 7.9 5.6

6 478.2 453.3 8.6 6.0

7 530.0 522.6 8.7 5.7

8 515.8 501.0 8.2 5.8

9 453.6 463.3 6.0 4.0

10 500.9 473.7 9.5 6.7

11 617.2 604.1 12.9 10.1

12 427.3 369.7 6.9 3.8

13 546.5 540.7 7.3 3.8

14 467.2 498.4 5.8 3.8

15 494.7 440.1 8.0 4.2

16 412.1 425.8 5.8 4.1

17 429.2 547.2 8.8 9.8

18 715.1 697.2 12.7 9.7

19 457.9 444.9 6.5 4.2

20 477.9 504.5 5.8 3.5

Table 2. Main sequence parameters, g and c, of real saccades
estimated using the conventional and generalized SG filters.
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clinical practice for the detection and assessment of
various disease states; however, saccades of different
amplitudes have different power spectra (Harris,
Wallman, & Scudder, 1990). Hence, the use of a
conventional low-pass filter with a fixed cut-off
frequency may be suboptimal for the analysis of eye
movement data comprising saccades of various sizes.
One comprehensive study used a saccade model to
evaluate the three commonly used linear filters
(moving average, Savitzky-Golay, and Butterworth)
as applied to eye movement data (Mack et al., 2017).
Their results suggest various filters should be used for
saccades of different sizes. However, eye movement
data usually contains saccades of various sizes. For
example, we make small intraline saccades and large
interline saccades during reading. Recent studies
showed that chronic concussion patients and multiple
sclerosis patients made more saccades to complete a
rapid number naming test, and these extra saccades
appear to be small (Hainline et al., 2017; Rizzo et al.,
2016). As shown in the Results section, the conven-
tional SG filter tends to underestimate the peak
velocity of saccades, especially small-amplitude sac-
cades. The proposed nonlinear generalization of the
SG filter may more accurately estimate saccade peak
velocity and other saccade parameters.

In the Results section, we used white Gaussian
random processes to model noise. Studies of artificial
eyes for the measurement of noise in eye trackers
showed that the noise is white (it has the same energy at
all frequencies) when artificial eyes are used (Coey,
Wallot, Richardson, & Van Orden, 2012; Wang,
Mulvey, Pelz, & Holmqvist, 2017). Both studies point
out that human data produce pink noise (the energy
decreases as the frequency increases). This may be
because the human eye is never still and always makes
micro movements, which can be similar in amplitude to
the noise. We conducted numerical experiments adding
pink noise instead of white noise in the simulations.
The generalized SG filter was found to more accurately
estimate peak velocity in pink noise as well as white
noise.

Conclusions

In the quantitative analysis of saccades, the limita-
tions of linear low-pass filters should be taken into
account, given their potential to negatively impact
objective metrics. This article demonstrates through
simulation using a recently developed parametric
saccade model that the SG filter, a widely used linear
low-pass filter, may systematically underestimate the
peak velocity of saccades. This article proposes a
nonlinear generalization of the SG filter that can more

accurately track deviations from the smooth back-
ground of an underlying signal. The generalized SG
filter was shown to estimate saccade peak velocity more
accurately than the conventional SG filter, which is
commonly used for this purpose. In turn, the general-
ized SG filter leads to a more accurate estimation of the
main sequence (i.e., the relationship between the
saccade peak velocity and amplitude). Given the
clinical significance of quantitative saccade analysis in
disease diagnosis, the generalized SG filters may be
useful in the study of eye movement data, particularly
saccades.

Keywords: Savitzky-Golay filter, smoothing,
differentiation, sparsity, saccade peak velocity,
quantitative saccade analysis
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