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Microcystin-LR (MC-LR) is a hazardous substance that threaten the health 

of aquatic animals. Intestinal microbes and their metabolites can interact 

with hosts to influence physiological homeostasis. In this study, the shrimp 

Litopenaeus vannamei were exposed to 1.0 μg/l MC-LR for 72 h, and the toxic 

effects of MC-LR on the intestinal microbial metagenomic and metabolomic 

responses of the shrimp were investigated. The results showed that MC-LR stress 

altered the gene functions of intestinal microbial, including ABC transporter, 

sulfur metabolism and riboflavin (VB2) metabolism, and induced a significant 

increase of eight carbohydrate metabolism enzymes. Alternatively, intestinal 

metabolic phenotypes were also altered, especially ABC transporters, protein 

digestion and absorption, and the biosynthesis and metabolism of amino acid. 

Furthermore, based on the integration of intestinal microbial metagenomic 

and metabolome, four bacteria species (Demequina globuliformis, Demequina 

sp. NBRC 110055, Sphingomonas taxi and Sphingomonas sp. RIT328) and 

three metabolites (yangonin, α-hederin and soyasaponin ii) biomarkers were 

identified. Overall, our study provides new insights into the effects of MC-LR 

on the intestinal microbial functions of L. vannamei.
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Introduction

The Pacific white shrimp Litopenaeus vannamei is an important economic aquatic 
animal species. Harmful cyanobacteria are the dominant phytoplankton in shrimp 
ponds. With the increase of eutrophication level in the rearing water, cyanobacteria 
are easy to multiply, which not only pollutes the water quality, but also releases a large 
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amount of cyanotoxins, threatening the health and food safety 
of shrimp (Magalhães et al., 2003; Pham and Utsumi, 2018). 
Microcystins (MCs) are one of the most common and highly 
toxic cyanotoxins, the concentration of which in 
cyanobacterial bloom ponds can reach 0.1–10 μg/l (Ye et al., 
2014; Li et al., 2016). Microcystin-LR (MC-LR) is considered 
to be  the most common and widely studied type of MCs, 
which are encountered in freshwater systems, estuarine and 
marine environments (Anderson et al., 1993; Ramos et al., 
2005; Miller et al., 2010; Preece et al., 2017). It was reported 
that the MCs concentration of L. vannamei ponds was 0.53–
2.25 μg/l at the initial stage, and reached 1.79–2.25 μg/l after 
80 days of culture (Wang, 2018); the MC-LR content of 
L. vannamei ponds with dead individuals was as high as 
45 μg/l (Zimba et al., 2006). MC-LR stress can cause immune 
disorder and induce disease susceptibility in shrimp (Chen 
et al., 2016, 2017; Yuan et al., 2016; Li et al., 2019a; Duan et al., 
2020). Unfortunately, effective measures to prevent MC-LR 
stress in shrimp are still lacking.

The regulation of intestinal microecology has been proved 
to be  beneficial to the prevention of shrimp diseases. The 
shrimp intestine inhabits a large microbial community 
including both beneficial and harmful bacteria, which can 
interact with their host. A stable intestinal microbiota is 
beneficial to the host health by participating in substance 
metabolism, promoting nutrient digestion and absorption, 
and acting as a biological barrier (Holt et al., 2021). However, 
intestinal microbiota unbalance will affect the host immune 
and metabolic homeostasis, and then induce the occurrence 
of diseases (Li et al., 2019b). Studies have shown that MC-LR 
stress can lead to intestinal microbiota composition variations 
and immune dysfunction in shrimp (Duan et al., 2020). Ten 
and forty microgram per liter MC-LR can induce a decrease 
in intestinal microbiota diversity and a change in community 
composition of Procambarus clarkii (Zhang et  al., 2020b). 
Similar phenomena have been observed in mice (Chen et al., 
2015; Zhang et  al., 2016, 2020a; Zhuang et  al., 2021) and 
zebrafish (Li et al., 2019a). Additionally, MC-LR stress can 
also alter the functional gene profiles of intestinal microbiota 
in rats, including chitin, starch and limonene metabolism (Lin 
et  al., 2015). But the effects of MC-LR exposure on the 
intestinal microbial function of L. vannamei are absence.

Therefore, in this study, we aimed to explore the effects of 
MC-LR on the gene function and metabolic profile of 
intestinal microbial in L. vannamei using an integrated 
metagenomic and metabolomic approach. Our main goals 
were to reveal: (1) the changes of functional genes in intestinal 
microbial of MC-LR-stressed L. vannamei; (2) the metabolic 
characteristics in the intestines of MC-LR-stressed 
L. vannamei; (3) the changes of the major pathways and 
sensitive biomarkers that were closely associated with MC-LR 
stress. The results of this study are helpful to understand the 
response mechanism of intestinal microbial of L. vannamei to 
MC-LR stress.

Materials and methods

Shrimp and rearing conditions

Healthy L. vannamei juveniles with average body weights of 
1.2 ± 0.2 g, were randomly collected from a local shrimp pond in 
Shenzhen, China. The shrimp were acclimated in 100 l 
experimental tanks for 7 days. Each tank was filled with 60 l of 
filtered seawater with adequate safety for shrimp and aerated 
continuously (salinity 30, temperature 30°C ± 0.2, pH 8.1 ± 0.1). 
The shrimp were fed commercial feed with 40% crude protein 
(Haida Feed, China), and the filtered seawater from the same 
source was renewed daily.

Stress exposure and sample collection

MC-LR was purchased from Taiwan algal science Inc., the 
purity ≥95%. After acclimation, the shrimp were randomly 
divided into two groups: the control (CK), and the MC groups. 
Each group consisted of six replicate 100 l tanks that raised 40 
shrimp in 60 l seawater per group. According to the report on the 
MC-LR toxicity in L. vannamei, 0.5–3.0 μg/l MC-LR can affect the 
immunity of L. vannamei (Chen et al., 2017b). In order to explore 
the toxicity of relatively low dose of MC-LR to L. vannamei, the 
concentration of MC-LR in this study was set as 1.0 μg/l, which 
was 1 folds of the WHO’s maximum standard for water (1.0 μg/l) 
(WHO, 2011). The CK group was normal seawater without 
MC-LR detection. The rearing water of the MC group contained 
1.0 μg/l MC-LR, which were verified analytically. The water of 
each tank was all replaced every 24 h, and the MC-LR was 
re-added in the corresponding concentration. The culture 
conditions of the exposed stage were consistent with those of the 
acclimation stage.

After 72 h of MC-LR exposure, the intact intestines of 30 
individual shrimps from each tank were collected. To reduce 
the impact of interindividual differences, the 30 intact 
intestines were homogenized and bisected into one 
metagenomic sample and one metabolome sample. Overall, six 
metagenomic samples and six metabolomic samples were 
collected from each group.

Intestinal microbial metagenomic 
analysis

The genomic DNA was extracted using CTAB/SDS method 
and detected by 1.0% agarose gel electrophoresis. After DNA 
fragmentation, the Illumina NEBNext® Ultra™ DNA Library 
Prep Kit (NEB, USA) was used to construct the sequencing library 
according to the manufacturer’s instructions. The libraries were 
sequenced on Illumina Novoseq platform. The obtained raw reads 
were processed to obtain high-quality clean data using Readfq 
software (V8). Then the host gene contamination was removed 
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according to the genome of L. vannamei using Bowtie2 software 
(V2.2.4). The Scaftigs were obtained by SOAPdenovo software 
(V2.04). MetaGeneMark (V2.10) was used to predict the ORF of 
Scaftigs, and CD-HIT software (V4.5.8) was used to remove the 
redundancy and obtain the initial gene catalogue. Bowtie2 
software (V2.2.4) was used to compare with clean data of each 
sample to obtain the final gene set for subsequent analysis. 
According to the gene set, the gene abundance information in 
each sample was counted, and the gene number difference 
between groups and the Venn diagram were analyzed. DIAMOND 
software (V0.9.9.110) was used to align Unigenes with 
non-redundant (NR) database, annotate species information, and 
analyze non-metric multidimensional scaling (NMDS) 
dimensionality reduction at different classification levels using R 
Vegan software package (V2.15.3). DIAMOND software 
(V0.9.9.110) was used to annotate Unigenes with Kyoto 
Encyclopedia of Genes and Genomes (KEGG), evolutionary 
genealogy of genes: Non-supervised Orthologous Groups 
(eggNOG), and carbohydrate active enzyme (CAZyme) databases, 
and the parameter was set to E-value ≤1E-5. The functional 
differences between the groups were analyzed by Metastat 
software. All the raw data of intestinal microbiota has been 
submitted to the Sequence Read Archive (SRA) database 
(accession: PRJNA862309).

Intestinal metabolomics analysis

The samples were thawed slowly at 4°C, and homogenized 
with 200 μl of sterile water. The homogenized solution was 
mixed with 800 μl methanol/acetonitrile (1: 1, v/v) for 
metabolite extraction. The mixture was ultrasonicated at 4°C 
for 30 min, stood at–20°C for 10 min, and then centrifuged at 
14,000g, 4°C for 20 min. The supernatant was vacuum dried 
and redissolved in 100 μl acetonitrile solution 
(acetonitrile:water = 1:1, v/v) for liquid chromatography-mass 
spectrometry (LC–MS) analysis.

Liquid chromatography was performed in an UHPLC (Agilent 
1290 Infinity LC) coupled to a quadrupole time-of-flight (AB Sciex 
TripleTOF 6600). HILIC separation were analyzed using a 
ACQUIY UPLC BEH column (2.1 mm × 100 mm, 1.7 μm) (Waters, 
Ireland). Mass spectrometry was accomplished in an AB Triple 
TOF 6600 mass spectrometer to collect the primary and secondary 
spectra of the samples. The positive and negative ionization modes 
of electrospray ionization (ESI) were used for detection, 
respectively.

The raw MS data (wiff.scan files) were converted to MzXML 
files using ProteoWizard MSConvert before importing into freely 
available XCMS software. All the data were determined using 
total ion chromatogram (TIC) and quality control (QC). After 
sum-normalization, compound identification of metabolites was 
performed by comparing of accuracy m/z value (<25 ppm), and 
MS/MS spectra with an in-house database (Shanghai Applied 
Protein Technology) established with available authentic 

standards (Luo et al., 2017; Gu et al., 2018). All the metabolites 
were classified according to their chemical taxonomy. The 
variation trend of metabolite expression in each group was 
analyzed using fuzzy c-means (FCM) algorithm of Mfuzz packet. 
The visual volcano plot of the differential metabolites (DMs) was 
analyzed with an standard of fold-change (FC) > 1.5 or FC < 0.67, 
and p < 0.05. The metabolomic data were multiple compared with 
orthogonal partial least-squares discriminant analysis (OPLS-
DA) using R package (ropls). The robustness of the model was 
evaluated by 7-fold cross-validation and response permutation 
test. The DMs of MC vs. CK were identified with an standard of 
OPLS-DA VIP > 1 and p < 0.05. The KEGG pathway of all the 
DMs was performed using KEGG software.1 The metabolite 
markers with significant changes were further screened 
and analyzed.

Integrated analysis of intestinal microbial 
metagenomic and metabolomic

The KEGG pathways of differential genes and metabolites of 
intestinal bacteria were analyzed, and the pathway attribution of 
them were integrated. Based on the standardized data of scale, the 
spearman correlation coefficient between the differential bacteria 
and metabolites with linear discriminant analysis (LDA) > 2 were 
analyzed using R package psych software. The multilevel 
regulatory relationship among bacteria species, functional genes 
and metabolites was analyzed, and Sankey diagram was conducted 
using R package plotly software.

Results

Genes profile and functional changes of 
intestinal microbiota

A total of 75,600 clean reads were obtained from 12 intestinal 
microbial samples in the two groups by metagenomic sequencing, 
with an average of 6,300 reads per sample; the effective were 
96.63–99.75% (Supplementary Tables S1–S3). A total of 2,947,876 
genes were obtained, and the number of genes in the MC group 
was more than that in the CK group (Figure 1A). Based on Venn 
analysis, 381,307 genes were co-owned by the two groups, and the 
unique genes of the MC group was higher than that of the CK 
group (Figure 1B).

Based on the eggNOG analysis, the highest functional 
categories was “amino acid transport and metabolism” followed 
by “energy production and conversion” “inorganic ion transport 
and metabolism” etc. (Supplementary Figure S1). At the level 2, 
the top categories were “ABC transporter” followed by 
“transcriptional regulator” “membrane” “histidine kinase” and 

1 http://www.kegg.jp/
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“dehydrogenase” (Supplementary Figure S2). Compared with the 
CK group, “ABC transporter (COG1174)” was significantly 
increased in the MC group (Figure 2A). The KEGG analysis of all 
the functional genes was also performed, which were mainly 
“carbohydrate metabolism” “amino acid metabolism” “membrane 

transport” “translation” and “metabolism of cofactors and 
vitamins” (Supplementary Figures S3–S4). Compared with the 
CK group, the “KO_EC 1.5.1.38” pathway encoding “sulfur 
metabolism” and “riboflavin metabolism” was significantly 
increased in the MC group (Figure 2B).

A B

FIGURE 1

Gene numbers analysis of intestinal microbial of L. vannamei after MC-LR exposure. (A) Comparison of non-redundant genes number between 
the CK and MC groups. (B) Venn diagram of gene numbers between the CK and MC groups.

A B

C D

FIGURE 2

Significantly altered gene function of intestinal microbial of L. vannamei after MC-LR exposure. (A) eggNOG function. (B) KEGG function. (C) CAZy 
categories. (D) CAZy species. * represents significant difference between the CK and MC groups (q < 0.05).
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Altered CAZyme of intestinal microbiota

The CAZyme of intestinal microbe of the shrimp were further 
analyzed. The highest CAZyme taxa was glycoside hydrolases (GH), 
followed by glycosyltransferases (GT), carbohydrate-binding 
modules (CBM), carbohydrate esterases (CE), auxiliary activities 
(AA), and polysaccharide lyases (PL) (Supplementary Figure S5; 
Figure 2C). Compared with the CK group, the abundance of eight 
enzymes was significantly increased in the MC group, including 
α-mannosidase, glucan 1,3-β-glucosidase, glucan 1,4-β-glucosidase, 
coniferin β-glucosidase, β-N-acetylhexosaminidase, 
β-N-acetylglucosaminide phosphorylases, xylan 1,4-β-xylosidase, 
and exo-1,3-1,4-glucanase (Figure 2D).

Changes in the composition of intestinal 
bacterial species

Changes in intestinal microflora of the shrimp were analyzed. 
NMDS plot showed a clear visual separation in intestinal microbial 
composition between the CK and MC groups (Figure 3A). Several 
relatively high abundance bacterial species fluctuated in response to 
MC-LR exposure (Figure 3B). For example, the relative abundances 
of Demequina flava, Demequina sp. NBRC 110055, and Demequina 
sediminicola were significantly increased, while that of 
Photobacterium damselae and Shimia marina were significantly 
decreased. Additionally, Demequina globuliformis, Phyllobacterium 
sp. OV277, Ruegeria sp. 6PALISEP08, Sphingomonas taxi, 
Sphingomonas sp. RIT328, and Vibrio xuii were increased, while 
Flavobacteriaceae bacterium UJ101 and Nautella italica were 
decreased, but the differences were not significant.

Screening and functional analysis of 
intestinal metabolites

A total of 2,052 metabolites were identified, including 
1,213 positive ion mode (pos) and 839 negative ion mode 

(neg). The chemical classification of these metabolites were 
mainly “organic acids and derivatives” (31.77%) and “lipids 
and lipid-like molecules” (23.59%) (Supplementary Figure S6). 
Multivariate statistical analysis of OPLS-DA under 
positive and negative ion modes showed that significant 
differences in metabolic patterns were existed between 
the CK and MC groups (Figure 4). Compared with the CK 
group, 103 DMs were identified under positive ion 
pattern, including 56 up-regulated and 47 down-regulated 
metabolites. The negative ion pattern identified 87 DMs, 
including 53 up-regulated and 34 down-regulated metabolites 
(Supplementary Figures S7–S9).

The metabolic pathways of the DMs were further analyzed 
(Figure  5A). The top five highly enriched pathways were 
mainly “ABC transporters” “biosynthesis of amino acids” 
“protein digestion and absorption” “neuroactive ligand-
receptor interaction” “aminoacyl-tRNA biosynthesis” 
Additionally, many pathways of amino acid metabolism were 
also highly enriched, including “arginine and proline 
metabolism” “glycine, serine and threonine metabolism” 
“histidine metabolism” “alanine, aspartate and glutamate 
metabolism” and “taurine and hypotaurine metabolism” In 
the ABC transporters pathway, a total of 14 DMs were 
up-regulated, including dl-threonine, aspartic acid, l-alanine, 
glutamic acid, proline, dl-glutamic acid, glycine, taurine, 
betaine, N-acetyl-d-glucosamine, N-acetyl-glucosamine, 
2′-deoxyinosine, deoxyinosine, and inosine (Figure 5B).

Identification of intestinal metabolic 
markers

Certain organism health-related DMs were further 
identified (Table 1). For example, 7 carbohydrates abundance 
were increased, including pyruvate, muramic acid, N-acetyl-d-
glucosamine, N-acetylglucosamine, N-acetyl-d-mannosamine, 
N-Acetylmannosamine, and dl-lactate. Fifteen amino acids 

A B

FIGURE 3

Comparison of intestinal bacteria species of L. vannamei after MC-LR exposure. (A) NMDS analysis. (B) The relative abundance of bacteria species. 
* Indicates significant differences between the two groups (p < 0.05).
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abundance were altered, such as glycine, dl-threonine, 
dl-glutamic acid, d-pyroglutamic acid, proline, aspartic acid, 
l-alanine, l-methionine, glutamic acid, sarcosine, taurine, 
ergothioneine, γ-aminobutyric acid (GABA), and betaine were 
up-regulated; while γ-glutamylvaline was down-regulated. Five 
lipids such as linoleic acid, dodecanoic acid, myristic acid, 
taurocholate, and taurodeoxycholic acid were decreased. 
Additionally, 1 vitamin such as pyridoxine was decreased.

Integrated analysis of intestinal 
microbiota and metabolic phenotype

The KEGG pathway of functional genes and metabolites 
with significant differences in abundance was statistically 
analyzed (Figure 6). The results showed that phenylpropanoid 
biosynthesis, and riboflavin, sulfur and cyanoamino acid 

A B

FIGURE 4

OPLS-DA analysis of intestinal metabolites of L. vannamei after MC-LR exposure. (A) Positive ion mode. (B) Negative ion mode

A

B

FIGURE 5

The pathways of differential metabolites in the intestinal of  L. vannamei after MC-LR exposure. (A) The pathways of differential metabolites. 
(B) The differential metabolites of ABC transporters.
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metabolism were the high abundance pathways of intestinal 
microbial metabolism.

The correlation between intestinal bacterial species and 
metabolites was further analyzed (Figure 7). For instance, D. sp. 
NBRC 110055 was positively correlated with linoleic acid, but 
negatively correlated with enniatin B and l-methionine. 
Sphingomonas melonis was negatively correlated with 
pantothenate and proline. S. taxi was positively correlated with 
α-hederin, asiaticoside, dodecanoic acid, linoleic acid, myristic 
acid, paxilline, soyasaponins, taurochenodeoxycholate, 
taurodeoxycholic acid, and yangonin. Sphingomonas sp. TDK1 
was negatively correlated with glutamic acid, proline and 
pantothenate. Sphingomonas haliotis was negatively correlated 
with norharmane.

The correlation between intestinal bacterial species, functional 
genes and metabolites was further analyzed (Figure  8). The 
bacteria D. sp. NBRC 110055, S. taxi and S. sp. RIT328 were 
correlated with the metabolite yangonin through β-glucosidase 
(bglX) gene, while D. globuliformis was correlated with yangonin 
through flavin mononucleotide reductase (ssuE) gene. The 

bacteria S. taxi was correlated with the metabolites α-hederin and 
soyasaponin ii through (1 → 4)-α-d-glucan 1-α-d-glucosylmutase 
(treY) gene.

Discussion

Intestinal microbial metagenomic 
response to MC-LR exposure

The intestinal microbiota interacts with its host, thereby 
influencing many of the host physiological processes, and changes 
in their functions can affect host physiological homeostasis (Valdes 
et al., 2018; Holt et al., 2021). In this study, based on the functional 
annotations of eggNOG and KEGG, the gene functions of the 
intestinal microbial of L. vannamei were mainly amino acid and 
carbohydrate metabolism, which was consistent with the results of 
Gao et al. (2019). After MC-LR exposure, the functions of ABC 
transporter and “KO_EC 1.5.1.38” of intestinal microbial were 
increased, and “KO_EC 1.5.1.38” was mainly involved in sulfur and 
riboflavin metabolism. Microbial sulfur metabolism produces 
hydrogen sulfide (H2S), which is associated with colorectal cancer 
(Nguyen et al., 2021). Riboflavin, also known as vitamin B2, has 
antioxidant activity and is mainly involved in biological oxidation 
and energy metabolism in vivo (Ashoori and Saedisomeolia, 2014; 
Salman and Naseem, 2015). ABC transporters are membrane-
binding proteins that participate in transmembrane transport of 
endogenous syncytic and xenobiotic compounds, contributing to 
the detoxification and excretion of toxic substances (Higgins, 1992; 
Wang et  al., 2021). Therefore, it can be  concluded that MC-LR 
exposure can induce the risk of H2S generation in intestinal 
microbial metabolism of L. vannamei, and the organism can improve 
antioxidant function and promote detoxification metabolism by 
enhancing ABC transporter and riboflavin metabolism.

Intestinal microbes can produce a large number of carbohydrate 
metabolism enzymes to influence digestion and metabolism 
of the host (Valdes et al., 2018). CAZymes encoded by intestinal 
microbes can catalyze the decomposition of glycoconjugates, 
oligosaccharides and polysaccharides into monosaccharides, and 
can also metabolize dietary fibers to produce short-chain fatty acids 
to promote the intestinal health of the host (Kaoutari et al., 2013). In 
this study, based on CAZy functional annotation, carbohydrate 
metabolism enzymes of intestinal microbial of L. vannamei 
were mainly glycoside hydrolase (GH) and glycosyltransferase (GT). 
After MC-LR exposure, the levels of α-mannosidase, 
glucan 1,3-β-glucosidase, glucan 1,4-β-glucosidase, coniferin 
β-glucosidase, β-N-acetylhexosaminidase, β-N-acetylglucosaminide 
phosphorylases, xylan 1,4-β-xylosidase, and exo-1,3-1,4-glucanase 
of intestinal microbial of the shrimp were increased, indicating that 
intestinal microbes respond to MC-LR stress by enhancing the 
capacity of carbohydrate hydrolysis.

Several potentially bacteria species exhibited variation after 
MC-LR exposure. Demequina is involved in starch degradation to 
glucose and dextrine (Al-naamani et al., 2015; Peruzzi et al., 2017). 

TABLE 1 Significantly altered metabolites in the intestines of L. 
vannamei after MC-LR exposure.

Name VIP Fold 
change

p-value Categories

Pyruvate 1.58 3.11 0.01 Carbohydrates

Muramic acid 1.37 2.65 0.02 Carbohydrates

dl-Lactate 10.39 1.60 0.00 Carbohydrates

N-Acetyl-d-glucosamine 7.70 2.44 0.01 Carbohydrates

N-Acetylglucosamine 3.28 1.89 0.00 Carbohydrates

N-Acetyl-d-mannosamine 4.65 2.39 0.01 Carbohydrates

N-Acetylmannosamine 1.46 2.34 0.01 Carbohydrates

Glycine 2.16 1.70 0.01 Amino acids

dl-Threonine 1.47 1.28 0.04 Amino acids

dl-Glutamic acid 3.03 1.22 0.00 Amino acids

d-Pyroglutamic acid 1.38 1.15 0.01 Amino acids

Proline 7.52 1.52 0.00 Amino acids

Aspartic acid 3.08 1.51 0.01 Amino acids

l-Alanine 1.06 1.50 0.01 Amino acids

l-Methionine 3.61 1.49 0.04 Amino acids

Glutamic acid 5.36 1.36 0.00 Amino acids

Sarcosine 2.11 1.28 0.03 Amino acids

Taurine 7.26 1.22 0.05 Amino acids

Ergothioneine 5.18 3.58 0.00 Amino acids

γ-Aminobutyric acid 2.37 2.24 0.04 Amino acids

Betaine 22.06 1.15 0.05 Amino acids

γ-Glutamylvaline 7.31 0.86 0.00 Amino acids

Dodecanoic acid 4.38 0.50 0.00 Lipids

Linoleic acid 20.48 0.45 0.04 Lipids

Taurocholate 2.26 0.34 0.00 Lipids

Taurodeoxycholic acid 4.48 0.27 0.01 Lipids

Myristic acid 11.52 0.34 0.00 Lipids

Pyridoxine 2.66 0.27 0.00 Vitamins
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In this study, the relative abundances of three Demequina species 
(D. flava, D. sp. NBRC 110055 and D. sediminicola) were increased 
in response to MC-LR exposure, suggesting that these bacteria 
may facilitate carbohydrate degradation. P. damselae is an 
opportunistic pathogen, which has high pathogenicity and can 
cause photobacteriosis of shrimp (Song et al., 1993; Vaseeharan 
et al., 2007). S. marina was originally isolated from the biofilm of 

a coastal fish farm (Choi and Cho, 2006), and may have 
pathogenicity related to coral white diseases based on 
metagenomic studies (Godwin et al., 2012; Séré et al., 2013). In this 
study, the relative abundances of P. damselae and S. marina were 
decreased in the MC group, indicating MC-LR exposure might 
affect the abundance of potentially harmful bacteria in the 
shrimp intestines.

FIGURE 6

Correlation analysis of KEGG pathway of intestinal microbial metagenome and metabolome of L. vannamei.

FIGURE 7

The correlation analysis between intestinal bacterial species and metabolites of L. vannamei. * represents a significant difference (*p < 0.05; 
**p < 0.01).
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Intestinal metabolomics response to 
MC-LR exposure

Previous studies have shown that MC-LR exposure induces 
hepatopancreas metabolic phenotype and lipid homeostasis in 
L. vannamei, such as citric acid cycle as well as amino acid, linoleic 
acid, and arachidonic acid metabolism. However, intestinal 
metabolic characteristics of L. vannamei under MC-LR stress are 
still unclear. In this study, untargeted metabonomics further 
revealed that MC-LR exposure caused significant fluctuations in 

the intestinal metabolites in L. vannamei. Interestingly, the 
differential metabolites were mainly enriched in the ABC 
transporters, protein digestion and absorption, and amino acid 
biosynthesis and metabolism. These phenomena indicate that 
amino acid metabolism is the main toxic mechanism of MC-LR 
in L. vannamei, and the metabolic response of intestinal and 
hepatopancreas to MC-LR stress is different.

Amino acid metabolism can provide nutrients and 
participate in physiological processes in organisms (Eswarappa 
and Fox, 2013). ABC transporter can realize trans-membrane 
transport of various substances and has the detoxification 

FIGURE 8

Correlation analysis of intestinal bacteria species, functional genes and metabolites of L. vannamei. Left: bacteria species, middle: functional genes, 
right: metabolites. The line between the bacteria species and functional gene indicates the contributing bacteria of the functional gene. The line 
between the functional genes and metabolites represents they have significant correlation (|r| > 0.8, p < 0.05).
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function (Higgins, 1992; Wang et al., 2021). In this study, the 
up-regulation of amino acids also participated in ABC 
transporters. Hence, we speculated that the shrimp intestines 
might utilize ABC transporters and amino acid metabolism for 
adapting MC-LR stress, and the up-regulated amino acids 
could also compensate for the host’s requirements for amino 
acids. Pyridoxine (VB6) is a coenzyme component involved in 
the non-oxidative degradation of amino acids (Giri et  al., 
1997). In this study, the decreased level of pyridoxine further 
suggested that MC-LR influenced the homeostasis of amino 
acid metabolism in the shrimp intestines.

Lipid metabolism participates in fatty acid and energy sources 
for organisms (Lee et al., 2018). In this study, the decreased levels 
of linoleic acid, dodecanoic acid, myristic acid, taurocholate and 
taurodeoxycholic acid indicated that MC-LR affected intestinal 
lipid metabolism homeostasis. Taurocholate is considered to be a 
more efficient bile acid in fat absorption (Chesney et al., 1998). 
Taurine is involved in fat digestion as a bile acid conjugator (Kim 
et al., 2007). In this study, the decreased levels of taurocholate and 
taurodeoxycholic acid, and the increased level of taurine indicated 
that MC-LR might also affect the bile acid metabolism of 
the shrimp.

Additionally, several intestinal metabolites related to the 
health of the organism were also fluctuated after the shrimp 
exposed to MC-LR. For example, four amino acids including 
ergothioneine, betaine, GABA and taurine were all up-regulated. 
Ergothioneine is a natural antioxidant (Hartman, 1990). Betaine 
is a common feed additive that functions in anti-inflammatory, 
liver disease treatment, and intestinal health improvement 
(Santos et  al., 2019; Huang et  al., 2021). GABA is an 
neurotransmitter produced by microorganisms that enhances 
stress resistance in shrimp (Xie et al., 2015). Taurine can reduce 
inflammation and oxidative stress, and regulate blood sugar, 
lipids and energy metabolism by binding bile acids (Guizoni 
et al., 2020). In this study, the increased levels of ergothioneine, 
betaine, GABA and taurine indicated that the shrimp intestines 
might response positively to stress by producing these 
beneficial metabolites.

Integration of metagenomic and 
metabolomic of intestinal microbial

Host-microbiota interactions can affect the immunity of 
aquatic animals (Li et  al., 2019b; Xiao et  al., 2021a,b). The 
integrated analysis of intestinal microbial metagenome and 
metabolome is conducive to elucidate the relationship between 
intestinal microbe and metabolites, thus identifying key 
biomarkers. In this study, intestinal bacteria species 
D. globuliformis, D. sp. NBRC 110055, S. taxi and S. sp. RIT328 
were correlated with the metabolites yangonin, α-hederin and 
soyasaponin ii. At present, there is a lack of study reports on these 
four bacteria species, their specific functions are still unclear and 
need to be  further analyzed. α-hederin and soyasaponin have 

anti-tumor and inflammatory and immunomodulatory functions 
(Deng et al., 2019; Chitisankul et al., 2021). Yangonin has anti-
cancer cell proliferation and antioxidant activity, which can also 
be used to treat liver diseases (Renchao et al., 2019). Thus speculate 
intestinal metabolites yangonin, α-hederin and soyasaponin ii 
might improve the resistance to MC-LR stress of L. vannamei, and 
can be used as potential functional metabolic markers for the 
development of biological agents. For these intestinal bacteria and 
metabolic markers identified in this study, their roles in the 
response of L. vannamei to MC-LR stress will be explored in the 
future, so as to lay the foundation for the research and development 
of biological agents.

Conclusion

We investigated the effects of MC-LR on the intestinal 
microbial function of L. vannamei using an integrated 
metagenomic and metabolomic approach. MC-LR stress altered 
the gene functions of intestinal microbial, including ABC 
transporter, sulfur metabolism and riboflavin (VB2) metabolism, 
and induced a significant increase of eight carbohydrate 
metabolism enzymes. Alternatively, the metabolic pattern 
variation occurred the intestine, involving ABC transporters, 
protein digestion and absorption, and the biosynthesis and 
metabolism of amino acid; several functional metabolites 
including 7 carbohydrates, 14 amino acids, 5 lipids, and 1 vitamin 
were identified. Further, based on the integration of intestinal 
microbial metagenomic and metabolome, four bacteria species 
(D. globuliformis, D. sp. NBRC 110055, S. taxi and S. sp. RIT328) 
and three metabolites (yangonin, α-hederin and soyasaponin ii) 
biomarkers were identified. ABC transporter is an important 
target of intestinal microbiota of the shrimp in response to 
MC-LR stress. Overall, our study provides new insights into the 
effects of MC-LR on the intestinal microbial functions of 
L. vannamei.
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