
Faster dense deformable image registration
by utilizing both CPU and GPU

Simon Ekström ,a,b,* Martino Pilia ,a Joel Kullberg,a,b

Håkan Ahlström,a,b Robin Strand ,a,c and Filip Malmberga,c
aUppsala University, Section of Radiology, Department of Surgical Sciences, Uppsala, Sweden

bAntaros Medical, Mölndal, Sweden
cUppsala University, Centre for Image Analysis, Division of Visual Information and Interaction,

Department of Information Technology, Uppsala, Sweden

Abstract

Purpose: Image registration is an important aspect of medical image analysis and a key com-
ponent in many analysis concepts. Applications include fusion of multimodal images, multi-atlas
segmentation, and whole-body analysis. Deformable image registration is often computationally
expensive, and the need for efficient registration methods is highlighted by the emergence of
large-scale image databases, e.g., the UK Biobank, providing imaging from 100,000 participants.

Approach: We present a heterogeneous computing approach, utilizing both the CPU and the
graphics processing unit (GPU), to accelerate a previously proposed image registration method.
The parallelizable task of computing the matching criterion is offloaded to the GPU, where it can
be computed efficiently, while the more complex optimization task is performed on the CPU.
To lessen the impact of data synchronization between the CPU and GPU, we propose a pipeline
model, effectively overlapping computational tasks with data synchronization. The performance
is evaluated on a brain labeling task and compared with a CPU implementation of the same
method and the popular advanced normalization tools (ANTs) software.

Results: The proposed method presents a speed-up by factors of 4 and 8 against the CPU imple-
mentation and the ANTs software, respectively. A significant improvement in labeling quality
was also observed, with measured mean Dice overlaps of 0.712 and 0.701 for our method and
ANTs, respectively.

Conclusions: We showed that the proposed method compares favorably to the ANTs software
yielding both a significant speed-up and an improvement in labeling quality. The registration
method together with the proposed parallelization strategy is implemented as an open-source
software package, deform.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JMI.8.1.014002]

Keywords: Atlas-based segmentation; brain MRI; deformable image registration; graphics
processing unit.

Paper 20152RR received Jun. 5, 2020; accepted for publication Dec. 31, 2020; published online
Feb. 1, 2021.

1 Introduction

Image registration is an important aspect of medical image analysis and a key component in
many analysis concepts. Applications include fusion of multimodal images, multi-atlas segmen-
tation,1 and whole-body analysis.2 Deformable image registration is generally computationally
expensive and implementing methods for registration usually involves a trade-off between the
quality of the results and the computation time required to produce them. The need for computa-
tionally efficient registration methods is highlighted by the emergence of large-scale image
databases, e.g., the UK Biobank,3 providing multimodal imaging from 100,000 participants.
Extensive reviews on image registration are available.4–6

*Address all correspondence to Simon Ekström, simon.ekstrom@surgsci.uu.se

Journal of Medical Imaging 014002-1 Jan∕Feb 2021 • Vol. 8(1)

https://orcid.org/0000-0003-2368-6888
https://orcid.org/0000-0002-6842-9140
https://orcid.org/0000-0001-7764-1787
https://doi.org/10.1117/1.JMI.8.1.014002
https://doi.org/10.1117/1.JMI.8.1.014002
https://doi.org/10.1117/1.JMI.8.1.014002
https://doi.org/10.1117/1.JMI.8.1.014002
https://doi.org/10.1117/1.JMI.8.1.014002
https://doi.org/10.1117/1.JMI.8.1.014002
mailto:simon.ekstrom@surgsci.uu.se
mailto:simon.ekstrom@surgsci.uu.se
mailto:simon.ekstrom@surgsci.uu.se
mailto:simon.ekstrom@surgsci.uu.se


Dense deformable image registration aims to find the correspondences on a voxel-to-voxel
basis. This leads to a resulting displacement field that has the same resolution as the input
images, i.e., one displacement vector for each voxel. The popular advanced normalization
tools (ANTs) software package with the symmetric image normalization method (SyN)7,8 pro-
duces such displacement fields. Other approaches provide very efficient registration but with
deformation grids of lower resolution9 and even computation times of a few seconds has been
achieved.10

In our recent work,11 we introduced a dense image registration method based on discrete
optimization by minimal graph cuts with α-expansion.12 The use of minimal graph cuts for image
registration has previously been proposed by others13,14 but has seen limited adoption in practice
due to the high computational cost of this approach. By dividing the image into subregions and
restricting each α-expansion to a single subregion at a time, we were able to drastically reduce the
computation time of this registration approach with only a small penalty in terms of quality.

Processing a subregion involves two steps: computing the voxelwise matching criterion
(i.e., constructing the graph) and performing discrete optimization by solving a minimal graph
cut problem. Early profiling experiments revealed that, for smaller subregions, the majority of
the computation time was spent computing the matching criterion, and not in performing the
graph cut optimization. This effect was even more pronounced when using more computation-
ally intensive similarity metrics, e.g., cross-correlation (CC), which has been proven valuable in
image registration.15

The matching criterion can be decomposed as a sum of independent terms over voxels,
whose calculation is straightforward to parallelize. We, therefore, propose to further reduce
the computational cost of our previously proposed registration method11 by moving the com-
putation of the matching criterion to the highly parallel graphics processing unit (GPU), while
still performing the graph cut optimization on the central processing unit (CPU). The reasoning
is that an optimization task of this nature is generally harder to parallelize and performing all
works on the GPU would result in valuable computing resources, i.e., the CPU, not being uti-
lized. A potential bottleneck of this heterogeneous computing approach is the data sharing
between processors. To lessen the impact of data synchronization, we propose a pipeline model,
effectively overlapping computational tasks with data synchronization. The resulting imple-
mentation is then evaluated in a brain labeling task and compared empirically with the ANTs
software package. ANTs was chosen due to its proven performance in brain labeling16 and the
fact that it produces a high-resolution displacement field. Further evaluation of ANTs can be
found in the literature.9,15

This work aims to present an efficient parallel computation strategy for GPU accelerated
image registration. Both the performance and the quality of the presented implementation are
evaluated. The method is implemented as a software package, deform, and made publicly avail-
able as an open-source project in an attempt to facilitate further research and development.

2 Related Work

The modern GPU and general-purpose computing on graphics processing units (GPGPU) have
played a critical role within high-performance computing in the last two decades.17 The afford-
ability and high computing power in terms of flop/s are two large contributors to the rapid devel-
opment of GPGPU. GPU acceleration has been adopted within a large range of fields, including
medical image analysis.18,19 They have also been a large contributor to the rapid growth of deep
learning.20 However, for GPUs, and heterogeneous computing in general, a common challenge is
the task of sharing data between the processors. It is not uncommon that the transfer overhead for
PCI Express is a large bottleneck for GPU-based applications even though the computing per-
formance is rapidly increasing.21 The increased amount of available memory on recent GPUs
(e.g., 11 GB on NVIDIA GTX 1080 Ti) makes it easier to avoid the costly transfer for appli-
cations that do not need to continuously synchronize data between CPU and GPU. It is also
possible to stream data asynchronously over PCI express to minimize the performance loss
caused by the transfer. This allows for overlap of computation and transfer operations but at
the cost of increased application complexity.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-2 Jan∕Feb 2021 • Vol. 8(1)



Extensive effort has been put on accelerating the task of image registration using GPUs.
Available methods can be grouped into two categories: methods implemented fully on the
GPU, and heterogeneous methods, utilizing both CPU and GPU. The reasoning for hetero-
geneous methods is generally that certain tasks are less trivial to parallelize. Older GPUs also
lack efficient double-precision floating-point operations, making them unsuitable for tasks
requiring high precision. However, data synchronization quickly becomes an obstacle for meth-
ods employing a dense deformation model. The Demons algorithm together with variations has
been fully implemented on the GPU, presenting speed-up by factors of 35 to 40 with no loss in
accuracy compared with their corresponding CPU implementations.22,23 Mutual information,
another computationally expensive metric commonly used for multimodal image registration,
has been successfully accelerated by GPUs in several cases24–26 and even real-time performance
has been achieved.27 A reformulation of the free-form deformation to enable acceleration by
GPUs was proposed by Modat et al.28 GPU acceleration has also been implemented in the regis-
tration package elastix.29 Specifically, the Gaussian pyramid computation and the image resam-
pling were accelerated by the GPU. This resulted in acceleration by a factor of 4 to 5 on a
machine with eight physical cores. Another efficient heterogeneous approach where the match-
ing criterion was computed on the GPU and the optimization was performed on the CPU was
proposed by Ellingwood et al.30 This method implemented a composite transformation model to
reduce the required CPU-GPU communication and demonstrated a speed-up by a factor of 4.
Multiple surveys on the topic of image registration on GPUs have been published.31,32

ANTs do not utilize GPU computing for the image registration but efforts have been put into
utilizing the multithreading functionality introduced in Insight Toolkit 4 (ITK).8 Implemen-
tations of using GPUs to accelerate the similarity metric computation of ANTs have been
reported in literature,33 but no implementation was publicly available at the time of writing.

3 Preliminaries

3.1 Efficient Graph-Cut-Based Registration

In this section, we briefly recall our previously proposed efficient graph cut-based registration
method.11 We define an image I as a pair I ¼ ðV; IÞ, where V is the set of voxels on a regular grid
and I a mapping I∶V → R. We consider registration from a source image, S ¼ ðVS; ISÞ to a
target image, T ¼ ðVT; ITÞ.

Deformations are in this setting represented by a dense grid of displacement vectors, where
each point within the image can be displaced arbitrarily. The sought transformation between the
two input images can be defined by the mapping W∶R3 → R3. W maps each voxel in T to a
voxel in S. The deformation model is represented by a displacement field, u, where uðxÞ for
x ∈ VT . Thus,W can be defined asWðxÞ ¼ xþ uðxÞ. Throughout, we use trilinear interpolation
to define the values of both images and displacement fields at nongrid points.

We phrase registration as an optimization problem and seek a displacement field that min-
imizes an objective function f in the form

EQ-TARGET;temp:intralink-;e001;116;236fðuÞ ¼ DðuÞ þ αRðuÞ; (1)

where D is a data term, measuring the similarity between the target image and the transformed
source image, and R is a regularization term that penalizes nonsmooth deformation fields. The
user-defined parameter α controls the balance between the two terms. In the experiments pre-
sented here, Pearson’s correlation coefficient (PCC) was employed as similarity metric. The
PCC is computed independently for each voxel, and the neighborhood is assumed to be rigid
with respect to the center voxel. This is due to the registration algorithm considering all voxels
and their corresponding displacement vectors individually. PCC can be defined as

EQ-TARGET;temp:intralink-;e002;116;121PCCðA;BÞ ¼
P

v∈VðIAðvÞ − IAÞðIBðvÞ − IBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
v∈VðIAðvÞ − IAÞ2

P
v∈VðIBðvÞ − IBÞ2

q ; (2)

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-3 Jan∕Feb 2021 • Vol. 8(1)



where A and B are the two images to match and I denotes the mean value of I over V, V in this
case being the shared domain of A and B. The data term can thus be defined as

EQ-TARGET;temp:intralink-;e003;116;711DPCCðuÞ ¼
X
v∈VT

1

2
ð1 − PCCððωðv; rÞ; ITÞ; ðωðv; rÞ; IS ∘ TuðvÞÞÞÞ; (3)

where the PCC is computed for patches of T and S defined by small spherical windows,
ωðv; rÞ ⊆ VT, centered in v with radius r. TuðvÞ is a translation defined by vector uðvÞ. The
coefficient ranges from −1 to 1, with values below zero denoting negative correlation, and values
above zero denoting positive correlations. In this case we only consider positive correlations but
for other purposes, such as multimodal registration, the metric may be reformulated to match
negative correlations as well.

For the regularization term, a diffusion regularizer was applied,34 defined as

EQ-TARGET;temp:intralink-;e004;116;578RðuÞ ¼
X

ðv;wÞ∈N
kuðvÞ − uðwÞkγ: (4)

Here, N is the set of all pairs of voxels that are adjacent according to the standard 6-neighbor-
hood, and γ is a parameter that affects the strength of the regularization, with higher values of γ
implying stronger penalty for high values of the first derivative of the transform, while keeping
low penalty for small values of the derivative. The Appendix provides a proof that our binary
terms are submodular, a requirement for being able to solve the maximum flow/minimum cut
problem in polynomial time.

By constraining the displacement vectors to lie on a regular grid, the problem of finding a u
that minimizes the fðuÞ can be cast as a discrete labeling problem. The grid spacing ϵ is typically
selected to be smaller than the voxel spacing in the image, to allow registration with subvoxel
precision. An iterative move-making approach is used to find an optimal displacement field u.
A move, in this context, consists of changing a given displacement field by moving the displace-
ment vectors at some subset of the voxels by a vector of length ϵ along a specified coordinate
axis. This vector can be defined as

EQ-TARGET;temp:intralink-;e005;116;377δ ¼ ϵei; (5)

where ei is a unit vector aligned to one of the coordinate axes. Starting from an arbitrary initial
displacement field we determine, at each iteration, if the current displacement field can be
improved by performing such a move. The process continues until convergence, e.g., until
no move that improves the solution exists. Determining the best possible move along an axis
at a given configuration is a binary labeling problem – each voxel either moves ϵ along the given
axis or remains unchanged. The space of all binary labelings (i.e., moves along a given axis) is
extremely large, and thus an exhaustive search is not feasible. It turns out, however, that an
optimal move can be found in low-order polynomial time by solving a minimal graph cut
problem.12,35

To find an optimal move we begin by redefining u as a function of the sought binary labeling
and δ

EQ-TARGET;temp:intralink-;e006;116;214u 0ðxÞ ¼ uðxÞ þ LðxÞδ; (6)

where the binary labeling is defined by the function L∶VF → f0;1g. Further, we redefine our
matching criterion as a function of the same labeling

EQ-TARGET;temp:intralink-;e007;116;159fðu 0Þ ¼
X
v∈VF

ϕvðLðvÞÞ þ
X

ðv;wÞ∈N
ϕv;wðLðvÞ; LðwÞÞ: (7)

The unary term, ϕv∶f0;1g → R, is equal to the data term in Eq. (3),

EQ-TARGET;temp:intralink-;e008;116;102ϕvðLðvÞÞ ¼
X
v∈VT

1

2
ð1 − PCCðTjωðv;rÞ; Ŝjωðv;rÞÞÞ; (8)

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-4 Jan∕Feb 2021 • Vol. 8(1)



where Ŝ is transformed according to

EQ-TARGET;temp:intralink-;e009;116;721ÎSðvÞ ¼ ISðvþ uðvÞ þ LðvÞδÞ: (9)

Similarly, the binary term, ϕv;w∶f0;1g × f0;1g → R, is defined according to our regularization
term in Eq. (4):

EQ-TARGET;temp:intralink-;e010;116;664ϕv;wðLðvÞ; LðwÞÞ ¼ kðuðvÞ þ LðvÞδÞ − ðuðwÞ þ LðwÞδÞkγ: (10)

In summary, the optimization method starts from an arbitrary initial displacement field (e.g.,
the identity transform). The displacement field is then iteratively improved by a sequence of
moves—each determined by solving a minimal graph cut problem—until no further improve-
ment can be made. To avoid poor local minima, the algorithm is combined with a multiresolution
strategy.

Solving a minimal graph cut problem to determine the optimal move across all voxels in the
image is computationally expensive, and thus a direct application of the optimization method
described above is not practically feasible for registration of large volume images. The main
contribution of our previous work11 is the observation that considering all voxels at every iter-
ation is not strictly necessary, as interactions between distant voxels are unlikely to significantly
affect the result. By dividing the image into smaller subregions and restricting each move to only
modify the displacement vectors within one region at a time, the computation time of the method
described above can be reduced drastically (from days to minutes) with only a small penalty in
terms of quality of the solution.

3.2 GPU Programming Model

For the purpose of this paper, only NVIDIA GPU architectures and related nomenclature were
considered. At this level of abstraction, other commonly used architectures, e.g., AMD, are not
too dissimilar. An extensive overview of modern GPU architectures has been presented by
Owens et al.17

The modern GPU consists of a number of streaming multiprocessors (SM), each containing a
number of streaming processors (SP). Today a typical GPU (NVIDIA GTX 1080 Ti) has 3584
SPs divided among 28 SMs. GPUs are, despite this, very primitive, including only a simple
instruction set and very limited control logic. They are thus generally considered a supplement
to the more common CPU. The CPU, which together with its memory is referred to as the host, is
responsible for scheduling computation resources and transferring data to (upload) and from
(download) the GPU and its memory (i.e., the device).

The compute unified device architecture (CUDA) programming model was introduced by
NVIDIA to enable general computations on GPU hardware. CUDA employs a single instruction
multiple thread model of parallelization. Each thread, mapped to an SP, will execute the same
instructions on different data, this can also be referred to as data parallelism. To facilitate con-
currency, the concept of streams was introduced, extending the regular data parallelism. A stream
is a sequence of operations that are executed in order on the GPU. These operations could be
either kernel invocations, i.e., routines executed on the GPU, or transfer operations, e.g., host-
device communication. The scheduler will do its best to execute operations in different streams
concurrently, i.e., executing kernels on available SM resources or performing asynchronous data
transfers. Hence, this stream model promotes task parallelism. An extensive introduction to
GPGPU and CUDA has been presented by Sanders and Kandrot.36

4 Method

This work is an extension to our previous method.11 Preliminary evaluations identified the
matching criterion computation and the optimization as the two largest time consumers, with
a majority of the time being spent on the former. This section presents a strategy where the
computation of the matching criterion is performed on the GPU, greatly alleviating the CPU

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-5 Jan∕Feb 2021 • Vol. 8(1)



load. Furthermore, a pipeline model is presented to lessen the impact of the required CPU-GPU
communication.

Figure 1 shows an overview of the proposed optimization loop. The process starts by setting
uðxÞ to an arbitrary initial transform (e.g., identity transform). The input images, T and S, are
then permanently uploaded to the device. The process is structured similarly to our previous
work, with the exception that the matching criterion and the transformation (i.e., resampling
with trilinear interpolation) are computed on the GPU.

Using the subregion heuristic the process produces a set of subregions, B ¼ fb1; b2; : : : ; bng,
for each subiteration. The regions can be processed in arbitrary order, making task parallelism
trivial. To accelerate this process, a four-stage process is implemented:

1. Let V 0 be the voxels residing in the current subregion. The unary (ϕv) and binary terms
(ϕv;w) for v; w ∈ V 0 are computed on the GPU, Eqs. (8) and (10), respectively.

2. Download the terms ϕv and ϕv;w to the host memory.
3. Build the graph representation using ϕv and ϕv;w and perform the max-flow/min-cut opti-

mization. This provides the mapping LðxÞ for x ∈ V 0.
4. Upload the label mapping LðxÞ as produced by Eq. (3) to the GPU.

Two kernels were implemented to compute the energy terms, one for each term. The unary
kernel takes the two input images, T and S, as input together with the set V 0 defining which
voxels to compute. The kernel computes ϕvðLðvÞÞ [Eq. (8)] for every voxel in V 0 in parallel,
where LðvÞ ∈ 0;1. The result is written to a buffer of size 2jV 0j. This step also includes a trilinear
interpolation of S. The GPU provides built-in support for interpolation but at the cost of loss in
precision, with only 8-bit precision for the interpolation coefficients.37 For this reason, trilinear
interpolation was reimplemented on the GPU to reflect the 32-bit precision of the original CPU
implementation.

The binary kernel computes the binary terms, i.e., the edges connecting all voxels in V 0. The
kernel takes u, δ, and the set N 0 as input. The binary term, ϕv;wðLðvÞ; LðwÞÞ [Eq. (10)], is
computed with LðvÞ; LðwÞ ∈ f0;1g for all pairs in N 00. The terms for the pairs in N 0 \ N 00,
ϕv;wðLðvÞ; 0Þ, are also computed. The computed terms are written to a buffer of size 4jN 00j þ
2jN 0 \ N 00j.

For the active subregion, ϕv and ϕv;w are transferred to the host. The energy term buffers on
the device have corresponding pinned (page-locked) memory buffers on the host. The advantage
of using pinned memory is that data transfer between host and devices can be performed asyn-
chronously. The optimization is performed as described in the previous section using the
Boykov–Kolmogorov algorithm.38 The resulting labeling, LðxÞ for x ∈ V 0, is stored to a buffer
and asynchronously uploaded to the device.

The pipeline is designed to process the subregions in an efficient manner. The key purpose is
to allow overlapping data transfers and calculations on both the host and the device. Figure 2
shows the proposed pipeline and how the stages are overlapped between streams. In practice, this
was implemented using streams in CUDA. The four processing stages of a subregion are queued

Matching
criterion

Transform Optimal u?

Optimization

Upload 

Download 

ÎS

T

S û

L

GPU CPU

Fig. 1 Diagram of the registration loop and the interaction between CPU and GPU. Input volumes,
T and S, are directly uploaded to the GPU and u is initialized. S is transformed by u and passed
to the matching criterion function. The criterion is computed and the terms, ϕ, are downloaded to
the CPU. The CPU performs the optimization and uploads the resulting labeling, L, to the GPU,
where it is applied to u. This loop is iterated until u converges.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-6 Jan∕Feb 2021 • Vol. 8(1)



to four streams. The optimization stage within the stream pushes the task of optimization to a
separate queue and marks the stream as completed. This utilizes the fact that the optimization
generally is more time consuming than computing the matching criterion, and the host has more
available resources (e.g., 4 streams versus 12 CPU cores). The host processes the queued opti-
mization tasks in parallel, utilizing all available CPU cores. Whenever a stream completes a
subregion, a new one is queued until all subregions have been processed.

After all subregions have been processed, the accumulated labels, LðxÞ for x ∈ V, are used to
update the displacement field u. This is performed by a third kernel, the apply kernel, which
takes LðxÞ, δ, and u as input and applies the new displacement, δ, as defined by Eq. (6) for every
∀ x ∈ V. The results are then stored back into the buffer holding u.

5 Experiments

This section describes two experiments performed to evaluate the proposed method.

• First, an empirical comparison between the GPU-accelerated method and its CPU counter-
part was performed, testing the assumptions on computation time and resource utilization.

• Second, the quality and computation time of the proposed methods, both CPU-only and the
CPU/GPU hybrid, were evaluated in a brain labeling task, using the ANTs software7,16 as a
baseline.

Labeling of brain volumes is an important task in neurology and a common approach is to
utilize image registration to transfer known labeling from one brain to another. Avants et al.8

demonstrated such a task with the purpose of evaluating the ANTs software. This task used a
pediatric brain atlas consisting of brain images from 33 two-year-olds with 83 automatically
generated regions, as described by Gousias et al.39 A similar experiment was performed for this
evaluation, using a publicly available atlas of T1-weighted MR volumes of brains and 95 man-
ually segmented regions for 30 adult subjects.39–41

Twenty-five pairs were randomized from a group of 30 subjects, each pair consisting of a
target and a source subject. The purpose was to automatically produce the labeling for the target
volume from the source labeling by image registration. The source volume was registered to the
target volume, generating a displacement field, mapping the source to the target. The produced
displacement field was then used to transform the segmented regions from the source volume to
the target volume.

Version v0.2 of deform was used for both the CPU and the hybrid CPU-GPU experiments. In
addition, both experiments used the same parameter set. Since the deform software does not
include any affine registration, ANTs were used to acquire an initial affine transformation.
The scripts and parameter files for this experiment were made publicly available. The compu-
tation times and resulting displacement fields were collected for each registration.

To further assess the performance of the GPU implementation, the software was profiled
using NVIDIA’s nvprof and the NVIDIAVisual Profiler. Only a single randomly selected subject
was registered and the mean run times of all four stages were collected for the first iteration.

Time

Stream 1

Stream 2

Stream 3

Stream 4

0 1 2 3

Matching criterion Download Optimization Upload 

4 5 6 7 8 9 10

Fig. 2 Diagram visualizing the proposed pipeline. Each subregion is processed through four sub-
tasks; computing the matching criterion, downloading ϕ, optimization, and uploading the labeling
L. The purpose, as shown, is to overlap the different subtasks in an attempt to increase throughput.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-7 Jan∕Feb 2021 • Vol. 8(1)



The first iteration of the registration process was measured to capture an approximately equal
workload for each subregion. Only the last level of the resolution pyramid was profiled since it
was the most time consuming and representative of the total run time.

To evaluate the effect of the available hardware resources on computation time another
experiment was performed. In this experiment, the same registration task was performed for
12 different thread configurations on both the CPU and the GPU. All registrations were per-
formed for 1 to 12 number of threads. The number of threads does not directly affect the number
of cores that will be utilized, but it limits the number of compute tasks that can be run simulta-
neously and should thus give an indication of the performance with limited resources.

As a baseline, the same registration task was performed with ANTs version v2.3.1. The
ANTs registrations were performed using the script antsRegistrationSyN.sh which is provided
together with the ANTs package. This is a three-stage process consisting of rigid, affine, and
deformable registration. All stages use a multiresolution strategy with four levels and the shrink
factors set to 8 × 4 × 2 × 1, i.e., the resolution is changed by a factor 2 for each level. The rigid
and affine stages used mutual information as similarity metric while the deformable stage used
SyN together with a CC similarity metric.

ANTs produce a matrix for the affine transform and a displacement field for the deformable
transformation, both used to generate the final labeling. For ANTs, the computation time was
collected together with the resulting transformation.

The overlap between the ground-truth and the automatically produced segmentations was
used to assess the quality of the registrations. The Dice overlap was computed for all 95 regions
within all the 25 registered pairs. In addition, the voxelwise Jacobian determinant for uðxÞ, JuðxÞ,
was computed. The Jacobian determinant quantifies local volume change, where JuðxÞ < 1

implies local contractions and JuðxÞ > 1 local expansions. JuðxÞ < 0 signals that u inverts,
or folds, the space at x, which implies a physically impossible transform. The number of voxels
with foldings, jfxjJuðxÞ < 0gj, was collected for each resulting displacement field.

All registrations were performed on an Intel Xeon W-2133 with six cores and hyperthreading
enabled and an NVIDIA GTX 2080 Ti graphics card.

6 Results

The results are summarized in Table 1. The GPU implementation of deform had a mean com-
putation time below 2 min, a speed-up by a factor of 4 when compared with the 7 min of the CPU
implementation. The SyN stage of ANTs had a mean computation time of 14 min. The rigid and
affine stages, exluded in the table, had a mean computation time of 50.7 (5.85) s. Mean Dice
overlap of 0.712 and 0.701 was presented for deform and ANTs respectively with a detected
significant difference (p < 0.01, two-sided paired t-test). Only a slight difference in the results of
the GPU and CPU implementation was observed (0.006% difference in Dice overlap). As for the
Jacobian determinant, an average of 36 of voxels with negative Jacobian determinant was
observed in each pair for deform and 0 for ANTs.

Table 2 further summarizes the GPU implementation and the time spent per subregion on
each stage. It was noted when inspecting the implementation, using the profiler, that the GPU did
indeed overlap data synchronization and computational tasks. The GPU also managed to execute
multiple kernels for the matching criterion in parallel.

Table 1 Mean (and standard deviation) of computation time,
Dice overlap, and number of voxels with negative Jacobian
determinant.

Method Time (s) Dice jfxjJuðxÞ < 0gj

Deform 419 (34) 0.712 (0.1) 34.6

Deform (GPU) 110 (11) 0.712 (0.1) 36.2

ANTs (SyN) 826 (48) 0.701 (0.1) 0

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-8 Jan∕Feb 2021 • Vol. 8(1)



Figure 3 shows the results of the performance analysis when running the registration on
different number of CPU cores. Displayed is the mean runtime of the 25 registrations for the
different thread configurations.

Figure 4 shows the Dice overlap for all regions measured in the 25 registered pairs. Regions
located both in left and right hemispheres were merged to a single region for visualization.

Table 2 Average time spent in each iteration and average
time spent per subregion for the matching criterion compu-
tation, the optimization, and the data synchronization.

Task CPU CPU-GPU

Iteration (s) 18.54 3.95

Matching criterion (ms) 8.44 0.13

Optimization (ms) 1.03 1.41

Download ϕ (ms) N/A 0.025

Upload L (ms) N/A 0.004

A total of 23,400 subregions were processed in each iteration.

Fig. 3 Line plot of the mean runtime for the different thread configurations on the CPU and the
GPU implementation of the method. The inner line displays mean runtime and the outer displays
standard deviation.

Fig. 4 Boxplots of measured Dice overlaps in all regions for the 25 registered pairs. The scores
are grouped by method and region, with left and right hemispheres merged to improve visualiza-
tion. All regions are sorted by median Dice overlap for deform.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-9 Jan∕Feb 2021 • Vol. 8(1)



As seen in Table 1, both the CPU and the CPU-GPU version of deform were faster than
ANTs.

Figure 5 shows one randomly selected pair out of the 25 registered brain pairs, showing slices
from the T1-weighted images and contours of five common regions selected from the full set
of 95. Presented from left to right are the source image, target image, and the resulting images
produced by deform and ANTs.

7 Discussion and Conclusion

This paper presented an efficient GPU-accelerated implementation of a dense image registration
method. The task of computing the matching criterion was offloaded to the GPU, where it could
be computed efficiently, while the less trivial optimization task was performed on the CPU.
A pipeline was proposed to allow parallelization of all the subtasks, effectively overlapping
matching criterion computation, data synchronization, and optimization.

The implementation was first compared with its CPU counterpart. A speed-up by a factor of
4 was observed, which is in line with the results achieved by other heterogeneous methods in the
relevant literature. The small differences observed in the resulting displacement fields were neg-
ligible and likely caused by floating-point errors when computing the matching criterion. It was
observed that around 0.7 s were spent on data synchronization in each iteration (around 18%),
but this had a negligible impact on the performance since the pipeline overlapped data transfer
and other tasks efficiently. Importantly, it was observed that the matching criterion computation
was no longer the bottleneck, as compared with the CPU implementation. Data not reported in
this paper showed that changing the regularization parameters within a range were the registra-
tion still produced a reasonable result did not affect the presented performance benefit. The

Fig. 5 Illustration of a single registered brain pair. Slices from the T1-weighted image and contours
of five regions (cerebellum, brainstem, thalamus, corpus callosum, and lateral ventricles excluding
temporal horns) are displayed for the input (source and target) and the results of both methods.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-10 Jan∕Feb 2021 • Vol. 8(1)



benefits diminished when applying less intricate similarity metrics however, such as the sums of
squares metric. There was a noticeable time increase in the optimization task (37%), explained
by the need for building the graph representation. The CPU implementation had no need for
intermediate storage of the graph weights and would build the graph directly in connection
to computing the matching criterion.

In the experiments, subregions of size 163 were used. Ekström et al.11 discussed the effect of the
subregion size on the graph cut minimization. Similarly, the subregion size is an important aspect to
consider when discussing performance on the GPU. The CUDA block size is an important param-
eter that may determine the ability to saturate the available SMs. There is a clear connection between
task granularity and the possibility to run a task in parallel. However, kernel invocations and data
transfers on GPU are not free of overhead and this is an aspect that requires further exploration.

The effect of the number of threads was also investigated to give an indication of the per-
formance when having limited resources. As expected, the computation time decreased as the
number of threads were increased. However, this benefit was diminished after around six threads.
This could have multiple reasons including the coarse granularity of the tasks or the efficiency of
hyperthreading. The benefits of threading are highly dependent upon the ability to divide a task
into smaller subtasks. The subtasks are, in this case, the subregions and if the subregions are large
enough with respect to the image data we would have more compute threads than blocks resulting
in idling threads. Another important aspect is also the fact that the hardware used for these experi-
ments in reality only has six CPU cores with hyperthreading. Hyperthreading simulates additional
cores by allowing existing cores to work on two tasks simultaneously. For this reason, the per-
formance benefit cannot be expected to be on the same level as additional hardware cores.
Knowing from the previous experiment that the method is bound by the optimization tasks, a
change of the GPU hardware would most likely have less, or no, impact on the computation time.

In the second part of the experiment, the proposed method was compared with the popular
ANTs software package in the task of labeling brain images. A significant difference in Dice
overlap was detected with mean Dice overlap of 0.712 and 0.701 for deform and ANTs, respec-
tively. Figure 4 shows a correlation in the regionwise Dice overlap between the two methods.
Although both methods produced results of similar quality, a large difference in computation time
was measured for ANTs when compared with both versions of deform. One downside of deform is
the lack of guarantees on producing diffeomorphic deformations, but only an average of 38 voxels
with a negative Jacobian determinant (0.0006%) was detected in the resulting deformations. This
indicates that the regularization term used should be sufficient for reliable results. Increasing the
spatial regularization would reduce the number of foldings but also the Dice overlap.

For the future, the task of improving the registration quality mostly involves selecting the best
matching criterion and accompanying parameters. This would also be sensitive to the data to regis-
ter. There are interesting directions for improving performance, however, the most evident direc-
tion would be to investigate moving the optimization task to the GPU. There have been efforts to
perform graph-cut optimization on GPU, the most prominent attempt being JF-Cut.42 However, the
practical benefit of such an approach is unclear without further investigation. There would be no
data synchronization needed but the GPU would effectively be saturated by both the matching
criterion computation and the optimization while the available CPU resources would be unused.

In conclusion, we have presented a parallel computing strategy to efficiently accelerate the task
of image registration using GPUs. The method demonstrated a speed-up by a factor of 4 when
compared with its CPU-only counterpart. We evaluated the method on a brain labeling task where
we compared it with the popular software package ANTs. Our method outperformed the baseline
both in terms of quality and computation time. A significant improvement in Dice overlap and a
speed-up by a factor of 1.8 and 7.5 were observed for CPU and CPU-GPU versions, respectively.
The method presented in this paper is also available in its full as an open-source project.

8 Appendix: Proof of Submodularity

A globally optimal solution to the binary labeling problem given in Eq. (7) can be found by
solving a maximum flow/minimum cut problem, provided that all binary terms are submodular.35

In this appendix, we prove that the binary terms in Eq. (7), given by Eq. (10), are submodular for
any u and δ, and for any γ ≥ 2.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-11 Jan∕Feb 2021 • Vol. 8(1)



A binary term ϕv;wðLðvÞ; LðwÞÞ is submodular if it satisfies the inequality

EQ-TARGET;temp:intralink-;e011;116;723ϕv;wð0;0Þ þ ϕv;wð1;1Þ ≤ ϕv;wð0;1Þ þ ϕv;wð1;0Þ: (11)

Here, we have

EQ-TARGET;temp:intralink-;e012;116;680ϕv;wð0;0Þ ¼ kuðvÞ − uðwÞkγ; (12)

EQ-TARGET;temp:intralink-;e013;116;636ϕv;wð1;1Þ ¼ kðuðvÞ þ δÞ − ðuðwÞ þ δÞkγ; (13)

EQ-TARGET;temp:intralink-;e014;116;614ϕv;wð1;0Þ ¼ kðuðvÞ þ δÞ − uðwÞkγ; (14)

EQ-TARGET;temp:intralink-;e015;116;591ϕv;wð0;1Þ ¼ kuðvÞ − ðuðwÞ þ δÞkγ: (15)

Let γ ¼ 2p. We then obtain:

EQ-TARGET;temp:intralink-;e016;116;569ϕv;wð0;0Þ ¼ ðkuðvÞ − uðwÞk2Þp; (16)

EQ-TARGET;temp:intralink-;e017;116;525ϕv;wð1;1Þ ¼ ðkðuðvÞ þ δÞ − ðuðwÞ þ δÞkÞp; (17)

EQ-TARGET;temp:intralink-;e018;116;502ϕv;wð1;0Þ ¼ ðkðuðvÞ þ δÞ − uðwÞk2Þp; (18)

EQ-TARGET;temp:intralink-;e019;116;479ϕv;wð0;1Þ ¼ ðkuðvÞ − ðuðwÞ þ δÞk2Þp: (19)

As presented by Malmberg and Strand,43 ϕv;w is submodular for any p ≥ 1 if the following
conditions hold:

1. ϕv;w is submodular for p ¼ 1.
2. The following inequality holds for p ¼ 1:

EQ-TARGET;temp:intralink-;e020;116;410 maxfϕv;wð0;0Þ;ϕv;wð1;1Þg ≤ maxfϕv;wð1;0Þ;ϕv;wð0;1Þg: (20)

A proof that condition 1 holds was given by Ekström et al.11 To complete the proof, we thus
only need to show that condition 2 holds as well.

Let p ¼ 1. Noting that ϕv;wð0;0Þ ¼ ϕv;wð1;1Þ, the left-hand side of Eq. (20) can be
rewritten as

EQ-TARGET;temp:intralink-;e021;116;331 maxfϕv;wð0;0Þ;ϕv;wð1;1Þg ¼ kuðvÞ − uðwÞk2: (21)

For the right-hand side of Eq. (20), we may rewrite ϕv;wð1;0Þ as
EQ-TARGET;temp:intralink-;e022;116;286ϕv;wð1;0Þ ¼ kuðvÞ − uðwÞk2 þ kδk2 þ 2ðuðvÞ − uðwÞÞ · δ: (22)

Similarly, we may rewrite ϕv;wð0;1Þ as

EQ-TARGET;temp:intralink-;e023;116;242ϕv;wð0;1Þ ¼ kuðvÞ − uðwÞk2 þ kδk2 − 2ðuðvÞ − uðwÞÞ · δ: (23)

We observe that kδk2 is non-negative, and that the dot product 2ðuðvÞ − ðuðwÞÞÞ · δ may be
either negative or non-negative. Thus, at least one of the real numbers kδk2 þ 2ðuðvÞ −
ðuðwÞÞÞ · δ and kδk2 − 2ðuðvÞ − uðwÞ · δÞ are non-negative. Thus,maxfϕv;wð0;0Þ;ϕv;wð1;1Þg ≤
maxfϕv;wð1;0Þ;ϕv;wð0;1Þg. This completes the proof.

Disclosures

Joel Kullberg and Håkan Ahlström are cofounders, coowners of, and together with Simon
Ekström, part-time employees at Antaros Medical AB, Mölndal, Sweden. Antaros Medical was
not involved in the research and development presented in this paper. The remaining authors
declare no potential conflicts of interest.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-12 Jan∕Feb 2021 • Vol. 8(1)



Acknowledgments

Funding was received from the Swedish Research Council (2016-01040).

Data, Materials, and Code Availability

Soure code for the presented method and the experimental setup is publicly available at
https://github.com/simeks/deform and https://github.com/simeks/deform-eval respectively.
The imaging data used in the evaluation is publicly available at https://brain-
development.org/ (©2007 Imperial College of Science, Technology and Medicine; all rights
reserved).

References

1. J. E. Iglesias and M. R. Sabuncu, “Multi-Atlas segmentation of biomedical images: a sur-
vey,” Med. Image Anal. 24, 205–219 (2015).

2. R. Strand et al., “A concept for holistic whole body MRI data analysis, Imiomics,” PLOS
One 12, e0169966 (2017).

3. C. Sudlow et al., “UK Biobank: an open access resource for identifying the causes of a
wide range of complex diseases of middle and old age,” PLoS Med. 12, e1001779
(2015).

4. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376
(1992).

5. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image Vision Comput. 21,
977–1000 (2003).

6. A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: a sur-
vey,” IEEE Trans. Med. Imaging 32, 1153–1190 (2013).

7. B. B. Avants et al., “Symmetric diffeomorphic image registration with cross-correlation:
evaluating automated labeling of elderly and neurodegenerative brain,” Med. Image Anal.
12, 26–41 (2008).

8. B. B. Avants et al., “The Insight ToolKit image registration framework,” Front. Neuroinf.
8, 44 (2014).

9. Z. Xu et al., “Evaluation of six registration methods for the human abdomen on clinically
acquired ct,” IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016).

10. D. Budelmann et al., “Fully-deformable 3d image registration in two seconds,” in
Bildverarbeitung für die Medizin 2019, pp. 302–307, Springer (2019).

11. S. Ekström et al., “Fast graph-cut based optimization for practical dense deformable regis-
tration of volume images,” Comput. Med. Imaging and Graphics 84, 101745 (2020).

12. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph
cuts,” IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001).

13. R. W. So, T. W. Tang, and A. C. Chung, “Non-rigid image registration of brain magnetic
resonance images using graph-cuts,” Pattern Recognit. 44, 2450–2467 (2011).

14. A. Szmul et al., “Supervoxels for graph cuts-based deformable image registration using
guided image filtering,” J. Electron. Imaging 26, 061607 (2017).

15. A. Klein et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain
MRI registration,” NeuroImage 46, 786–802 (2009).

16. B. B. Avants et al., “A reproducible evaluation of ANTs similarity metric performance in
brain image registration,” NeuroImage 54, 2033–2044 (2011).

17. J. Owens et al., “GPU computing,” Proc. IEEE 96, 879–899 (2008).
18. A. Eklund et al., “Medical image processing on the GPU – past, present and future,” Med.

Image Anal. 17, 1073–1094 (2013).
19. E. Smistad et al., “Medical image segmentation on GPUs – a comprehensive review,” Med.

Image Anal. 20, 1–18 (2015).
20. G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal.

42, 60–88 (2017).

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-13 Jan∕Feb 2021 • Vol. 8(1)

https://github.com/simeks/deform
https://github.com/simeks/deform
https://github.com/simeks/deform-eval
https://brain-development.org/
https://brain-development.org/
https://doi.org/10.1016/j.media.2015.06.012
https://doi.org/10.1371/journal.pone.0169966
https://doi.org/10.1371/journal.pone.0169966
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1145/146370.146374
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1109/TBME.2016.2574816
https://doi.org/10.1109/34.969114
https://doi.org/10.1016/j.patcog.2011.04.008
https://doi.org/10.1117/1.JEI.26.6.061607
https://doi.org/10.1016/j.neuroimage.2008.12.037
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1016/j.media.2013.05.008
https://doi.org/10.1016/j.media.2013.05.008
https://doi.org/10.1016/j.media.2014.10.012
https://doi.org/10.1016/j.media.2014.10.012
https://doi.org/10.1016/j.media.2017.07.005


21. C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate CPU vs. GPU
performance without the answer,” in IEEE Int. Symp. Performance Anal. of Syst. and
Software, IEEE, pp. 134–144 (2011).

22. P. Muyan-Ozcelik et al., “Fast deformable registration on the GPU: a CUDA implementa-
tion of demons,” in Int. Conf. Comput. Sci. and Its Appl., Perugia, IEEE, pp. 223–233
(2008).

23. X. Gu et al., “Implementation and evaluation of various demons deformable image regis-
tration algorithms on a GPU,” Phys. Med. Biol. 55, 207–219 (2010).

24. R. Shams and N. Barnes, “Speeding up mutual information computation using NVIDIA
CUDA hardware,” in 9th Biennial Conf. Aust. Pattern Recognit. Soc. on Digital Image
Comput. Tech. and Appl. (DICTA 2007), Glenelg, IEEE, pp. 555–560 (2007).

25. Y. Lin and G. Medioni, “Mutual information computation and maximization using GPU,” in
IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognit. Workshops, Anchorage,
AK, IEEE, pp. 1–6 (2008).

26. T.-Y. Huang, Y.-W. Tang, and S.-Y. Ju, “Accelerating image registration of MRI by GPU-
based parallel computation,” Magn. Reson. Imaging 29, 712–716 (2011).

27. R. Shams et al., “Parallel computation of mutual information on the GPU with application to
real-time registration of 3d medical images,” Comput. Methods Prog. Biomed. 99, 133–146
(2010).

28. M. Modat et al., “Fast free-form deformation using graphics processing units,” Comput.
Methods Prog. Biomed. 98, 278–284 (2010).

29. D. Shamonin, “Fast parallel image registration on CPU and GPU for diagnostic classifica-
tion of Alzheimer’s disease,” Front. Neuroinf. 7, 50 (2013).

30. N. D. Ellingwood et al., “Efficient methods for implementation of multi-level nonrigid
mass-preserving image registration on GPUs and multi-threaded CPUs,” Comput.
Methods Prog. Biomed. 127, 290–300 (2016).

31. R. Shams et al., “A survey of medical image registration on multicore and the GPU,” IEEE
Signal Process. Mag. 27, 50–60 (2010).

32. O. Fluck et al., “A survey of medical image registration on graphics hardware,” Comput.
Methods Prog. Biomed. 104, e45–e57 (2011).

33. Y.-G. Luo et al., “Accelerating neuroimage registration through parallel computation of sim-
ilarity metric,” PLoS One 10(9), e0136718 (2015).

34. B. Glocker et al., “Dense image registration through MRFs and efficient linear program-
ming,” Med. Image Anal. 12, 731–741 (2008).

35. V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts?”
IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004).

36. J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU
Programming, Addison-Wesley, Upper Saddle River, New Jersey (2011).

37. NVIDIA Corporation, “CUDA C++ Programming Guide,” (2018).
38. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algo-

rithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell. 26(9),
1124–1137 (2004).

39. I. S. Gousias et al., “Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of
interest,” NeuroImage 40, 672–684 (2008).

40. A. Hammers et al., “Three-dimensional maximum probability atlas of the human brain, with
particular reference to the temporal lobe,” Hum. Brain Mapp. 19, 224–247 (2003).

41. I. Faillenot et al., “Macroanatomy and 3D probabilistic atlas of the human insula,”
NeuroImage 150, 88–98 (2017).

42. Y. Peng et al., “JF-cut: a parallel graph cut approach for large-scale image and video,” IEEE
Trans. Image Process. 24, 655–666 (2015).

43. F. Malmberg and R. Strand, “When can lp-norm objective functions be minimized via graph
cuts?” Lect. Notes Comput. Sci. 11255, 112–117 (2018).

Simon Ekström is a PhD student in medical image analysis at the Department of Surgical
Sciences, Uppsala University, Sweden. His research is focused around medical image registra-
tion, including method development and applications.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-14 Jan∕Feb 2021 • Vol. 8(1)

https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1109/ICCSA.2008.22
https://doi.org/10.1088/0031-9155/55/1/012
https://doi.org/10.1109/DICTA.2007.4426846
https://doi.org/10.1109/DICTA.2007.4426846
https://doi.org/10.1109/CVPRW.2008.4563101
https://doi.org/10.1016/j.mri.2011.02.027
https://doi.org/10.1016/j.cmpb.2009.11.004
https://doi.org/10.1016/j.cmpb.2009.09.002
https://doi.org/10.1016/j.cmpb.2009.09.002
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.1016/j.cmpb.2015.12.018
https://doi.org/10.1016/j.cmpb.2015.12.018
https://doi.org/10.1109/MSP.2009.935387
https://doi.org/10.1109/MSP.2009.935387
https://doi.org/10.1016/j.cmpb.2010.10.009
https://doi.org/10.1016/j.cmpb.2010.10.009
https://doi.org/10.1371/journal.pone.0136718
https://doi.org/10.1016/j.media.2008.03.006
https://doi.org/10.1109/TPAMI.2004.1262177
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1016/j.neuroimage.2007.11.034
https://doi.org/10.1002/hbm.10123
https://doi.org/10.1016/j.neuroimage.2017.01.073
https://doi.org/10.1109/TIP.2014.2378060
https://doi.org/10.1109/TIP.2014.2378060
https://doi.org/10.1007/978-3-030-05288-1_9


Martino Pilia is a software engineer on computer vision products at Veoneer. He received his
MSc degree in computer science from Uppsala University.

Joel Kullberg is an associate professor of radiology at Uppsala University, Sweden. His pri-
mary research focuses on the development, validation, and application of medical imaging tech-
niques. He is currently leading a group of researchers at the Department of Radiology at
Uppsala University. He has more than 80 papers published in peer-reviewed journals and holds
a master’s of science in engineering physics (2004) and his PhD in medical image analysis
(2007).

Håkan Ahlström is a head physician at the Department of Radiology at Uppsala University
Hospital and a professor of radiology at Uppsala University. He has been PI for more than
30 phase 1 to 3 clinical trials. He is the author of more than 300 peer-reviewed publications
in cardiometabolic and oncologic imaging, and PI of the first PET/MR scanner installed in
Sweden. He has also been the scientific supervisor for more than 30 PhD students

Robin Strand is a professor of computerized image analysis at Uppsala University, Sweden. He
is at the Department of Information Technology and at Radiology in the Department of Surgical
Sciences, both at Uppsala University. His research addresses methods and theory in image
processing and their applications in medicine and he has published around 100 papers in
international journals and conference proceedings.

Filip Malmberg is a researcher in computerized image analysis at Uppsala University, Sweden.
He is at the Department of Information Technology and at Radiology in the Department of
Surgical Sciences, both at Uppsala University. His research addresses methods and theory in
image processing and their applications in medicine.

Ekström et al.: Faster dense deformable image registration by utilizing both CPU and GPU

Journal of Medical Imaging 014002-15 Jan∕Feb 2021 • Vol. 8(1)


