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INTRODUCTION 
 

Synovial inflammation is an important contributor to 

the pathogenesis of osteoarthritis (OA) [1], with  

the synthesis of chondrolytic enzymes and pro-

inflammatory mediators by the inflamed synovium 

eroding cartilage and enhancing the inflammatory  pro- 

 

cess [2, 3]. Halting the excretion of chondrolytic 

enzymes and inflammatory mediators by OA synovial 

fibroblasts (OASFs) is expected to mitigate OA 

disease [2, 4–7]. 

 

Infiltration of mononuclear cells to the inflammatory 

sites and their adhesion to the synovium membrane are 
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ABSTRACT 
 

Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include 
monocyte adhesion and infiltration, and synovial inflammation. In particular, the adhesion protein intercellular 
adhesion molecule type 1 (ICAM-1) promotes monocyte recruitment into the synovial tissue. Visfatin is an 
adipocyte hormone that promotes the release of inflammatory cytokines during OA progression. We report that 
visfatin enhances ICAM-1 expression in human OA synovial fibroblasts (OASFs) and facilitates the adhesion of 
monocytes with OASFs. AMPK and p38 inhibitors, as well as their respective siRNAs, attenuated the effects of 
visfatin upon ICAM-1 synthesis and monocyte adhesion. We also describe how miR-320a negatively regulates 
visfatin-induced promotion of ICAM-1 expression and monocyte adhesion. We detail how visfatin affects ICAM-1 
expression and monocyte adhesion with OASFs by inhibiting miR-320a synthesis via the AMPK and p38 signaling 
pathways. 
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critical steps during OA progression [8]. Several 

different adhesion molecules regulate monocyte 

migration and adhesion in the articular micro-

environment during OA development [8, 9], including 

intercellular adhesion molecule-1 (ICAM-1) [10]. 

ICAM-1 is a critical modulator of monocyte recruit-

ment into the synovial tissue and high levels of ICAM-

1 expression have been found in the synovium of OA 

patients [11, 12]. Downregulation of ICAM-1 

expression in synovial fluid is suggested to be an 

effective method for inhibiting inflammatory activity 

and ameliorating symptoms in OA [13, 14].  

 

Micro RNAs (miRNAs) control the synthesis of target 

genes at the post-transcriptional level and inhibit the 

expression of target genes [15]. Numerous miRNAs 

regulate OA pathogenesis [16], although it is not clear 

as to how miRNAs regulate ICAM-1 expression in 

OA. The proinflammatory adipokine visfatin is 

produced by visceral white adipose tissue in the bone 

marrow, skeletal muscles and liver [17]. By 

stimulating the expression of interleukin 6 (IL-6) and 

tumor necrosis factor alpha (TNF-α) in OASFs, 

visfatin contributes to synovial joint damage [18]. It is 

not known how visfatin affects ICAM-1-dependent 

monocyte adhesion during OA progression. We 

describe how visfatin increases monocyte adhesion to 

OASFs by increasing ICAM-1 expression. The 

reduction in miR-320a expression via the adenosine 

monophosphate-activated protein kinase (AMPK) and 

p38 signaling pathways is mediated by the effects of 

visfatin, indicating that this adipokine may be an 

appropriate therapeutic target in OA. 
 

RESULTS 
 

Visfatin and ICAM-1 expression are positively 

correlated in OA  
 

Our analysis of records from the Gene Expression 

Omnibus (GEO) database revealed higher levels of 

visfatin and ICAM-1 expression in inflamed synovial 

tissue compared with normal synovial tissue (Figure 

1A, 1B). A positive correlation was observed for levels 

of visfatin and ICAM-1 expression (Figure 1C). An 

ELISA assay confirmed significantly higher serum 

visfatin and ICAM-1 concentrations in patients with OA 

compared with healthy controls (Figure 2A, 2B). Serum 

visfatin and ICAM-1 concentrations were positively 

correlated (Figure 2C). 
 

Visfatin increases ICAM-1 expression and monocyte 

adhesion in OASFs 
 

In this study, visfatin (1–30 ng/mL) dose-dependently 

stimulated transcription of ICAM-1 mRNA and also 

increased the translation of ICAM-1 at the protein level 

(Figure 3A, 3B) and also the excretion of ICAM-1 protein 

by OASFs (Figure 3C). Visfatin markedly increased the 

adhesiveness between OASFs and monocytes (THP-1 

cells) in a concentration-dependent manner (Figure 3D), 

indicating that visfatin promotes ICAM-1 expression and 

monocyte adhesion in human OASFs. 

 

 

 

Figure 1. Visfatin expression is positively correlated with ICAM-1 expression in inflammatory synovial tissues. (A, B) Expression 
levels of visfatin and ICAM-1 in 12 paired normal and inflammatory synovial tissues retrieved from the GEO dataset (accession code: 
GSE46750). (C) Correlation between levels of visfatin and ICAM-1 expression in inflammatory synovial tissues. Mann-Whitney testing was 
applied in (A, B). 
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Visfatin promotes ICAM-1 expression and monocyte 

adhesion via the AMPK and p38 signaling pathways 

 

OASFs were pretreated with AMPK inhibitors (Ara A 

and compound C) or were transfected with AMPKα1 

and AMPKα2 small interfering RNAs (siRNAs). RT-

qPCR, Western blot and ELISA assays confirmed that 

the AMPK inhibitors and AMPK siRNAs significantly 

reduced visfatin-increased ICAM-1 synthesis in OASFs 

(Figure 4A–4C). These compounds also mitigated 

monocyte adhesion to OASFs (Figure 4D). In Western 

blot analysis, visfatin time-dependently promoted 

AMPK phosphorylation (Figure 4E). 

 

Treatment of OASFs with a p38 inhibitor (SB203580) 

or transfection of OASFs with p38 siRNA prior to 

visfatin stimulation markedly diminished visfatin-

induced increases in ICAM-1 expression and 

monocyte adhesion (Figure 5A–5D). In Western blot 

analysis, the time-dependent promotion of p38 

phosphorylation by visfatin (Figure 5E) was reduced 

by AMPK inhibitors (Figure 5F). These findings 

suggest that visfatin facilitates ICAM-1 production 

and monocyte adhesion in human OASFs through the 

AMPK and p38 signaling pathways. 

 

Visfatin increases ICAM-1 production and monocyte 

adhesion via the inhibition of miR-320a synthesis 

 

Open-source software (TargetScan, miRMap, 

RNAhybrid, and miRWalk) suggested that miR-320a 

interferes with ICAM-1 transcription (Figure 6A). 

 

 
 

Figure 2. Visfatin expression is positively correlated with ICAM-1 expression in OA patients. (A, B) ELISA analysis showing higher 
serum visfatin and ICAM-1 levels among OA patients (n=30) compared with healthy controls (n=30). (C) Correlation between levels of visfatin 
and ICAM-1 expression in serum samples retrieved from OA patients. All ELISA procedures were independently repeated three times. Mann-
Whitney testing was applied in (A, B). 
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Visfatin treatment of OASFs concentration-dependently 

reduced miR-320a expression (Figure 6B). ICAM-1 

expression and monocyte adhesion in visfatin-treated 

OASFs was lower after transfection with miR-320a 

mimic compared with after mimic control (serving as 

the vehicle control) (Figure 6C–6F). 

 

The luciferase reporter vector with the wild-type 3’UTR 

of ICAM-1 mRNA (wt-ICAM-1-3’UTR) and a mutated 

vector harboring mismatches in the predicted miR-320a 

binding site (mut-ICAM-1-3’UTR) were used to 

determine whether miR-320a controls transcription of 

the ICAM-1 gene (Figure 7A). The miR-320a mimic 

inhibited visfatin-increased luciferase activity in the wt- 

ICAM-1-3’UTR plasmid only (Figure 7B). AMPK and 

p38 inhibitors reversed the effects of visfatin on miR-

320a expression (Figure 7C). These results suggest that 

visfatin inhibits miR-320a expression via the AMPK 

and p38 signaling pathways. Visfatin shRNA reduced 

visfatin and ICAM-1 expression in OASFs (Figure 8A, 

8B) and also monocyte adhesion (Figure 8C), 

confirming that visfatin regulates the expression of 

ICAM-1 and adhesion of monocytes in OASFs. 

 

DISCUSSION 
 

OA pathogenesis remains poorly understood, although 

it is established that synovium inflammation has a 

 

 
 

Figure 3. Visfatin stimulates ICAM-1 expression and monocyte adhesion in OASFs. (A–C) OASFs were incubated with visfatin (1–30 
ng/mL) for 24 h, and ICAM-1 expression was examined by RT-qPCR, Western blot and ELISA analysis. (D) OASFs were incubated with visfatin 
(1–30 ng/mL) for 24 h. THP-1 cells loaded with BCECF-AM were added to OASFs for 6 h, then THP-1 cell adherence was measured by 
fluorescence microscopy. * p<0.05 compared with the control group. 
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Figure 4. The AMPK pathway is involved in visfatin-induced ICAM-1 synthesis and monocyte adhesion. (A–C) OASFs were 
pretreated with AMPK inhibitors (Ara A, compound C) or transfected with AMPK siRNAs, then incubated with visfatin for 24 h. ICAM-1 levels 
were examined by RT-qPCR, Western blot and ELISA assays. (D) OASFs were treated with the same conditions as those described in (A). THP-
1 cells loaded with BCECF-AM were added to OASFs for 6 h, then THP-1 cell adherence was measured by fluorescence microscopy. (E) OASFs 
were incubated with visfatin for the indicated time intervals, and AMPK phosphorylation was examined by Western blot. * p<0.05 compared 
with the control group; # p<0.05 compared with the visfatin-treated group. 
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Figure 5. The p38 pathway is involved in visfatin-induced ICAM-1 synthesis and monocyte adhesion. (A–C) OASFs were 
pretreated with a p38 inhibitor (SB203580) or transfected with p38 siRNA, then incubated with visfatin for 24 h. ICAM-1 levels were 
examined by RT-qPCR, Western blot and ELISA assays. (D) OASFs were treated with the same conditions as those described in (A). THP-1 cells 
loaded with BCECF-AM were added to OASFs for 6 h, then THP-1 cell adherence was measured by fluorescence microscopy. (E, F) OASFs were 
incubated with visfatin for the indicated time intervals or pretreated with AMPK inhibitors then stimulated with visfatin, and p38 
phosphorylation was examined by Western blot. * p<0.05 compared with the control group; # p<0.05 compared with the visfatin-treated 
group. 
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Figure 6. Visfatin promotes ICAM-1 production and monocyte adhesion by suppressing miR-320a. (A) Open-source software 
(TargetScan, miRMap, RNAhybrid, and miRWalk) was used to identify which miRNAs could possibly interfere with ICAM-1 transcription. (B) 
OASFs were incubated with visfatin (1–30 ng/mL). miR-320a expression was examined by RT-qPCR. (C–E) OASFs were transfected with miR-
144-3p mimic and mimic control (serving as the vehicle control) and then stimulated with visfatin. ICAM-1 levels were examined by RT-qPCR, 
Western blot and ELISA assays. (F) OASFs were treated with the same conditions as those described in (C). THP-1 cells loaded with BCECF-AM 
were added to OASFs for 6 h, then THP-1 cell adherence was measured by fluorescence microscopy. * p<0.05 compared with the control 
group; # p<0.05 compared with the visfatin-treated group. 
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pivotal part in its pathogenesis [19], which highlights 

the importance of synovium-targeted therapy in this 

disease [6, 20]. Adhesion molecules in the synovial 

lining assist with monocyte infiltration into inflamed 

OA synovium [14]. In this study, we found that ICAM-

1 acts as a target protein for visfatin and facilitates 

monocyte adhesion to OASFs. We also found that 

visfatin enhances ICAM-1 production by inhibiting 

miR-320a expression via the AMPK and p38 signaling 

pathways, and facilitates monocyte adhesion to human 

OASFs. 

 

Previous findings of higher visfatin concentrations in 

synovial fluid from OA patients compared with healthy 

synovial fluid [21, 22] were confirmed in this study. 

Our analysis of records from the GEO database also 

found higher visfatin levels in inflammatory synovial 

tissue than in normal synovial tissue. Those records and 

our study findings revealed positive correlations 

between visfatin and ICAM-1 concentrations, high-

lighting the importance of visfatin as a molecular target 

in OA therapy. Adiponectin and leptin are also key 

adipokines in OA disease [23]. Adiponectin has been 

documented to promote inflammatory cytokine release 

and matrix metalloproteinase production in OASFs [24, 

25], while leptin increases inflammatory cytokine 

production and ADAM expression during OA patho-

genesis [26–28]. Clearly, visfatin, adiponectin and 

leptin play critical roles in OA disease. We have also 

confirmed novel functioning of visfatin that is similar to 

activities of the previously identified adipokines in OA 

pathogenesis. 

 

 
 

Figure 7. Visfatin suppresses miR-320a synthesis via the AMPK and p38 pathways. (A) Schematic 3′-UTR representation of human 
ICAM-1 containing the miR-320a binding site. (B) OASFs were transfected with the indicated luciferase plasmid with or without miR-320a 
mimic, then stimulated with visfatin. Relative luciferase activity was examined. (C) OASFs were pretreated with Ara A, compound C and 
SB203580 for 30 min, then incubated with visfatin for 24 h. The expression of miR-320a was examined by qPCR. * p<0.05 compared with the 
control group; # p<0.05 compared with the visfatin-treated group. 
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Activation of AMPK signaling regulates multiple 

cellular functions [29], including the expression of 

adhesion molecules [30, 31]. We have found that 

visfatin facilitates AMPK phosphorylation, while 

AMPK inhibitors and siRNAs attenuate visfatin-

enhanced ICAM-1 production and monocyte adhesion 

to OASFs. AMPK-dependent p38 activation is  

critical for controlling cell adhesion and motility [30, 

32]. Some papers have mentioned that p38 activates 

AMPK and is upstream of AMPK [31]. Thus, our 

evidence indicates that visfatin facilitates p38 

phosphorylation, and that this is reversed by  

AMPK inhibitors. Our data therefore confirms that 

AMPK is upstream of p38 and that p38 is required for 

visfatin-promoted ICAM-1 production and monocyte 

adhesion. 

 

Regulating miRNA expression should help to lessen 

OA inflammation [33, 34]. Open-source miRNA 

software identified that miR-320a potentially interferes 

with ICAM-1 transcription, which was supported by our 

findings showing that visfatin reduced miR-320a 

synthesis, while overexpression of miR-320a mimic 

mitigated the stimulatory effects of visfatin on ICAM-1 

expression and monocyte adhesion. It appears that 

visfatin facilitates ICAM-1 production and monocyte 

adhesion by reducing miR-320a expression through 

AMPK and p38 signaling. 

 

 
 

Figure 8. Knockdown visfatin reduces ICAM-1 expression and monocyte adhesion in OASFs. (A, B) OASFs were transfected with 
visfatin shRNA. Visfatin and ICAM-1 expression was examined by Western blot and ELISA. (C) OASFs were treated with the same conditions as 
those described in (A). THP-1 cells loaded with BCECF-AM were added to OASFs for 6 h, then THP-1 cell adherence was measured by 
fluorescence microscopy. (D) The schematic diagram summarizes the mechanism whereby visfatin promotes ICAM-1 expression and 
monocyte adhesion in OASFs. Visfatin promotes ICAM-1 expression and enhances monocyte adhesion to OASFs by downregulating miR-320a 
through the AMPK and p38 signaling pathways. * p<0.05 compared with the control group. 



 

www.aging-us.com 18644 AGING 

A limitation of our research is that demographic details 

and any other general information of our study 

participants were not recorded, to maintain patient 

confidentiality. Thus, we could not compare demo-

graphic details with levels of visfatin and ICAM-1 

expression. 

 

Previous research has described how 3 months of garlic 

supplementation in postmenopausal overweight or 

obese women with knee OA was associated with 

significant reductions from baseline in resistin levels 

and also pain scores, which suggests that effectively 

lowering concentrations of a proinflammatory adipo-

cytokine such as resistin may reduce pain severity [35]. 

Our study focused on whether changes in visfatin 

concentrations induce changes in monocyte adhesion to 

the synovium and consequently the severity of OA 

disease. We observed that knockdown of visfatin 

resulted in lower levels of monocyte adhesion, which 

may attenuate OA disease. For the purposes of this 

study, we did not seek to determine levels of any other 

proinflammatory cytokines, such as TNF-α. More 

research is needed in this area. 

 

 

In summary, visfatin increased ICAM-1 expression and 

promoted monocyte adhesion to OASFs by inhibiting 

miR-320a synthesis through the AMPK and p38 

signaling pathways (Figure 8D). Targeting visfatin may 

improve the pathogenesis of OA. 

 

MATERIALS AND METHODS 
 

Antibodies against ICAM-1 (SC-107), p-AMPK (SC-

33524), AMPK (SC-25792), p-p38 (SC-166182), p38 

(SC-271120) and β-actin (SC-47778) were all bought 

from Santa Cruz (Santa Cruz, CA, USA). All ON-

TARGETplus siRNAs were purchased from 

Dharmacon (Lafayette, CO, USA). Cell culture 

supplements were purchased from Invitrogen (Carlsbad, 

CA, USA). A Dual-Luciferase® Reporter Assay System 

was bought from Promega (Madison, WI, USA). qPCR 

primers and probes, as well as the Taqman® one-step 

PCR Master Mix, were supplied by Applied Biosystems 

(Foster City, CA, USA). All other chemicals not 

mentioned above were supplied by Sigma-Aldrich (St. 

Louis, MO, USA). 

 

Cell culture 
 

Synovial tissue from the suprapatellar pouch of the knee 

was obtained from patients whose radiographically-

detected OA of the knee was classified under the 

Ahlbäck criteria as stage IV OA [36]. Synovial 

fibroblasts were cultured in DMEM medium 

supplemented with 10% fetal bovine serum (FBS), 50 

units/mL penicillin and 50 μg/mL streptomycin, as 

previously described [37, 38].  

 

THP-1, a human leukemia cell line of monocyte/ 

macrophage lineage, was obtained from the American 

Type Culture Collection (Manassas, VA, USA) and 

grown in RPMI-1640 medium containing 10% FBS. 

 

Clinical samples 

 

Clinical samples were collected from patients meeting 

the following inclusion criteria: (1) aged over 20 years 

presenting with an accidental or sports injury requiring 

joint replacement and repair; or (2) degenerative 

arthritis. Exclusion criteria specified patients who did 

not satisfy either of these two categories. Serum (2 mL) 

and synovial tissue samples (which could be of 

unlimited sizes) were obtained from patients with OA 

undergoing knee replacement surgery and also from 

those undergoing arthroscopy after trauma/joint 

derangement (who served as healthy controls) at China 

Medical University Hospital, Taichung, Taiwan. The 

study protocol was approved by the Institutional 

Review Board (IRB) of China Medical University 

Hospital and all methods were performed in accordance 

with the IRB’s guidelines and regulations. Informed 

written consent was obtained from all patients. 

 

Real-time quantitative PCR analysis of mRNA and 

miRNA 
 

Total RNA was extracted from OASFs by TRIzol; 

reverse transcription used 1 μg of total RNA transcribed 

into cDNA by oligo (dT) primers. RT-qPCR used the 

Taqman® One-Step RT-PCR Master Mix. All RT-qPCR 

assays were performed using the StepOnePlus sequence 

detection system (Applied Biosystems) [39, 40]. 

 

Western blot analysis 
 

Cell lysate was separated by SDS-PAGE electro-

phoresis then transferred to polyvinylidene difluoride 

(PVDF) membranes, following the method described in 

our previous work [41, 42]. After blocking the blots 

with 4% bovine serum albumin, the blots were treated 

with primary antibody and then secondary antibody. 

Enhanced chemiluminescent imaging of the blots was 

visualized with the UVP Biospectrum system (UVP, 

Upland, CA, USA) [43–45]. 

 

ELISA assay 

 

OASFs were cultured in 24-well plates until they 

reached 90% confluence, when they were then changed 

to serum-free medium, in which they were treated with 

visfatin for 24 h with or without the transfection of 
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siRNAs or inhibitors. The CM was collected and 

ICAM-1 levels were quantified with the ICAM-1 

ELISA kit.  

 

Serum was collected from patients with OA or normal 

healthy controls. Visfatin and ICAM-1 levels were 

quantified by the Visfatin ELISA kit (EIA-VIS-1; 

RayBiotech, Peachtree corners, GA, USA; detection 

ranges 100–1,000,000 pg/mL) and the ICAM-1 

ELISA kit (DY720; R&D Systems, Minneapolis, MN, 

USA).  
 

Analysis of the GEO database 
 

Data on visfatin and ICAM-1 mRNA expression for 

normal healthy controls and OA patients were retrieved 

from the GEO dataset records [46]. 

 

Luciferase assays 
 

Wild-type and mutant ICAM-1 3’-UTR plasmids were 

purchased from Invitrogen (Carlsbad, CA, USA). 

Luciferase activity was assayed using the method 

described in our previous publications [2, 37, 47]. 

 

Cell adhesion assay 
 

THP-1 cells were loaded with BCECF-AM (10 μM) for 

1 h at 37°C in RPMI-1640 medium and subsequently 

washed by centrifugation. OASFs grown on glass 

coverslips were incubated with visfatin then incubated 

with THP-1 cells at 37°C for 1 h. Nonadherent THP-1 

cells were removed and gently washed with PBS. The 

number of adherent THP-1 cells was counted using a 

fluorescent microscope. 
 

Statistics 

 
All values are given as the mean ± standard error of the 

mean ± S.D. All ELISA procedures were repeated three 

times. The Student’s t-test assessed between-group 

differences. A p value of <0.05 was considered to be 

statistically significant. 
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