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If a given cell has a propensity to die in a certain manner, the logical step for this cell to become
a cancer cell is to insure its survival by installing mechanisms circumventing the predestined
regulated cell death. A clear example of this occurs in follicular lymphoma where chromosomal
re-arrangements result in Bcl2 overexpression, allowing escape from apoptosis and tolerance to
undesired generation of otherwise physiological mutations and double strand breaks necessary to
produce the variability necessary for antigen recognition site by immunoglobulin (1).

The predestined regulated cell death mechanism for mesothelial cells is not known, but recent
data have linked two frequent drivers of mesothelioma, NF2 and BAP1 (2, 3), to ferroptosis (4, 5).
The latter is a more recently described type of iron-dependent regulated cell death (6).

An additional driver of mesothelioma, which is however less specific to this cancer type, is loss
of CDKN2A (7–9). One of the products encoded by CDKN2A gene is p16, which is one of the
effectors of senescence (10). The latter is a state of stable cell cycle arrest with active metabolism
where resistance to ferroptosis induction has been observed due to decreased iron bioavailability,
linked to increased ferritin (FTH1) levels, and accompanied by increased levels of iron regulatory
protein 2 (IREB2) and decreased levels of iron-cluster assembly enzyme (ISCU) (11).

The aim of this Opinion paper is to complement the editorial by Fennell (12) with some
additional considerations, which include potential ideas regarding treatment, based on data from
our own model of mesothelioma development (13) and the mesothelioma TCGA database (3).

In ferroptosis (Figure 1A), cell death is executed by reactive oxygen species (ROS)-mediated
peroxidation of polyunsaturated fatty acids (PUFAs). The origin of ROS includes incomplete
reduction of oxygen during electron transport to form superoxide, and a direct generation of
superoxide by themembrane boundNADPH oxidases (NOX) (14). Lipid peroxidation is prevented
by glutathione peroxidase 4 (GPX4), which uses glutathione (GSH) as reducing agent [reviewed
in (15)]. GSH is synthesized from cysteine, which is either derived from methionine through
methionine-R-sulfide reductase B2 (MSRB2), or it is imported. Interestingly, MRSB2 expression
is significantly higher in epithelioid compared to tissues with a sarcomatoid molecular profile (2).
Import of cysteine is mediated by SLC7A10 transporter, but cysteine can also be derived from the
reduction of cystine (product of the oxidation of two cysteine molecules, which are then linked via
a disulfide bond). Cystine is transported into the cell through the system Xc− transporter, which
includes SLC7A11 subunit. It is worth noting that only cystine is present in cell culture medium,
and, as for cells like lymphocytes [reviewed in (16)], mesothelial and mesothelioma primary cells
grow better in the presence of beta-mercaptoethanol (17, 18). This effect is likely due to formation
of beta-mercaptoethanol dimers with cystine facilitating its uptake by other transporters (19).

BAP1 decreases the expression of SLC7A11 (5), leading to increased sensitivity to ROS and
erastin in mesothelioma cells.

PUFA abundance, and hence predisposition to ferroptosis, is dependent on the expression of
acyl-CoA synthetase long-chain family member 4 (ACSL4). In the absence of a negative control
downstreamNF2/Hippo pathway, the transcriptional co-activator YAP increasesACSL4 expression
(4). Resistance to ferroptosis is associated with high expression levels of aldo-keto reductase
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FIGURE 1 | Ferroptosis effectors in mesothelioma. (A) Model for ferroptosis pathway. Promoters of ferroptosis (red) include ACSL4, NOX, and ROS, while SLC7A11,

SLC7A10, MSRB2, GPX4, and AKR1C1-3 (green) are ferroptosis scavengers. ACSL4 expression is activated by YAP/TAZ while BAP1 inhibits the expression of

SLC7A11. CDKN2A-encoded p16 is one of the effectors of senescence where ferroptosis is prevented by increased expression of FTH1 and IREB2 accompanied by

decreased levels of ISCU. (B) “Oncoprint” analysis of ferroptosis effectors in TCGA data performed using cBioportal (www.cBioportal.org).
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1-3(AKR1C1-3) (20). These enzymes have been shown to
participate in the detoxification of reactive aldehyde generated
downstream of the oxidation of various PUFA.

Taking into account all this information, a mesothelial cell
losing BAP1 function becomes resistant to ROS and ferroptosis,
while mesothelial cells losing NF2 function become “primed” for
ferroptosis, while loss of p16 expression will be associated with
impaired senescence-driven ferroptosis resistance.

Loss of BAP1 is mostly associated with epithelioid histotype
(21), while loss of NF2 function is mostly associated with
high S-score, which identifies tumor samples with a high
sarcomatoid phenotype component (22). This is consistent with
the observation that cells in a mesenchymal state, which are
less sensitive to chemotherapeutics, have been shown to rely on
GPX4 function to avoid ferroptosis (23–25). Intriguingly, Nagai
et al. observed that iron chelation did not prevent mesothelioma
development in rats upon exposure to asbestos fibers, but
tumor histotype shifted toward increased incidence of epithelioid
compared to the sarcomatoid histotype observed in the control
group (26). In the absence of accompanying genomic alteration
analysis of those tumors it is not possible to know whether the
two groups had a different genetic alteration profile or whether
there was a plasticity response of cancer cells to the environment.

Recently, in our own model of mesothelioma development
(13) we observed a significant (p= 0.008971, FDR= 0.0145) 1.4-
fold increase of Acsl4 and a significant 74 and 91% decrease of
Gpx4 (p = 6.28E-22, FDR = 8.19E-21) and Msrb2 (p = 1.38E-
88, FDR = 4.95E-86) expression, respectively, when comparing
tumors to inflamed precancerous lesions. Hence, these tumors
should be predisposed to ferroptosis death, as expected from
their spindeloid phenotype and YAP activation. However, Slc7a11
undergoes a significant (p = 0.004227, FDR = 0.007263) 4.7-
fold upregulation as well, consistent with the loss of one BAP1
allele. Collectively, these observations suggest that tumors with
alterations in both pathways, NF2 and BAP1, which occur in a
significant fraction of MPM patients according to TCGA data
(3) (Figure 1B), might be more resistant to ferroptosis. However,
functional studies are necessary to verify this hypothesis.

Drugs modulating ferroptosis have been recently reviewed
(27). Inhibitors of GPX4, such as Ras-selective-lethal 3 (RSL3)
or ML210, trigger ferroptosis, while SLC7A11 inhibiting agents,
such as erastine or sorafenib, lead to glutathione depletion and
endoplasmic reticulum stress. Themechanism behind sorafetinib
inhibition of cysteine Xc− transporter is not clear and is
possibly indirect (20). Dr. Fennell pointed to two clinical trials
in mesothelioma (28, 29), where sorafenib was used and in

which objective responses were observed in only in a small
proportion of unselected patients. Therefore, it will be necessary
to have a translational study accompanying these trials to
determine if those patients that responded had a disrupted
NF2/Hippo pathway.

Relevant for the current first-line therapy of mesothelioma
patients, which includes cisplatin, erastin has been shown to have
a synergistic cancer cell killing effect with cisplatin in in vitro
models (30).

Remarkably, in a recent study ferroptosis was observed in
cells treated with some open-chain epothilones small molecules

in a manner similar to that of erastin (25). Additionally,
mesothelioma cell killing is iron-dependent in a novel therapeutic
approach using atmospheric plasma therapy (31). Plasma is the
fourth condition of physical state, in addition to solid/liquid/gas
[reviewed in (32)].

Given the propensity of mesenchymal cells to be sensitive to
ferroptosis induction, it is tempting to suggest that mesothelioma
patients with high S-score might benefit from this novel therapy.
However, a plethora of novel therapies for mesothelioma have
emerged (33–35) and it might be worth assessing whether
mesothelioma cells can undergo ferroptosis in vivo. Indeed, it
must be noted that Carbonic anhydrase 9 (CAIX) has recently
been shown to confer resistance to ferroptosis/apoptosis in
malignant mesothelioma under hypoxia (36). Given that CAIX is
ubiquitously highly expressed in mesothelioma (37, 38), this may
have to be taken into account moving forwards. Because of the
known effect of cisplatin on ROS generation [reviewed in (39)], it
may also be of use to analyze the expression of PTSG2, encoding
for COX-2, a marker of ferroptosis (40), in samples from these
cisplatin-treated patients.
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