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Abstract
Purpose: Markerless navigation in minimally invasive surgery is still an unsolved challenge. Many proposed navigation
systems for minimally invasive surgeries rely on stereoscopic images, while in clinical practice oftentimes monocular endo-
scopes are used. Combined with the lack of automatic video-based navigation systems for prostatectomies, this paper explores
methods to tackle both research gaps at the same time for robot-assisted prostatectomies.
Methods: In order to realize a semi-automatic augmented reality overlay for navigated prostatectomy, the camera pose w.r.t.
the prostate needs to be estimated. We developed a method where visual cues are drawn on top of the organ after an initial
manual alignment, simultaneously creating matching landmarks on the 2D and 3D data. Starting from this key frame, the cues
are then tracked in the endoscopic video. Both PnPRansac and differentiable rendering are then explored to perform 2D–3D
registration for each frame.
Results: We performed experiments on synthetic and in vivo data. On synthetic data differentiable rendering can achieve a
median target registration error of 6.11 mm. Both PnPRansac and differentiable rendering are feasible methods for 2D–3D
registration.
Conclusion: We demonstrated a video-based markerless augmented reality overlay for navigated prostatectomy, using visual
cues as an anchor.
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Introduction

Radical prostatectomy comes with multiple risks, including
incontinence, impotency and other operative complications.
Although nerve-sparing surgery can partly mitigate them, it
has a higher risk of worse oncological outcome. On the other
hand, intraoperative visualization of sensitive structures such
as tumours or neurovascular bundles could possibly improve
both functional and oncological outcome. One intuitive solu-
tion to this task could be the use of augmented reality on a
screen or directly inside the console of the surgery robot.

In order to make laparoscopic navigation systems a clin-
ical reality, these systems need to be easy to set up and
accurate, and should ideally work with commonly available
hardware. This paper explores the field of urology, more
specifically radical prostatectomy, as an exemplary appli-
cation area to develop methods that aim for these goals.
Most approaches in this field use other modalities besides
the endoscopic video stream, oftentimes ultrasound [1–3],
but also optical [4] or magnetic [5] tracking as well as fluo-
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rescence [6]. However, thesemodalities are disruptive as they
are usually not part of the clinical workflow. Furthermore, the
existing methods that focus mainly on video as input usually
require continuous interaction with the surgeons as can be
seen in the following.

Porpiglia et al. [7, 8] describe an approach which relies
on manually moving, rotating and scaling a 3D model of the
patient’s prostate throughout the surgery. The rendered image
is then overlaid on the endoscopic video stream. In addition,
the user can bend and stretch the virtual prostate to mimic
the current deformation of the real prostate. In a similar way,
in Ukimura et al. [9] a 3D model is manually oriented and
displayed alongside the endoscopic video. Using a convolu-
tional neural network, Tanzi et al. [10] segment the bladder
catheter in a specific phase of the surgery. The obtainedmask
is then used to predict its anchor point and orientation to
finally overlay the prostate model correctly. Building upon
that, Padovan et al. [11] extends the usage of the CNN to the
estimation of rotation of the catheter. Under ideal conditions,
this works also without a visible catheter. This leads to the
goal of exploring navigation systems that (a) rely only on
video information and (b) minimize manual interaction by
the users. In order to strive for a generally applicable solu-
tion, amonocular approach based on 2D–3D registrationwas
chosen.

These registration methods have gained popularity for
other surgical navigation tasks, such as liver surgery [12],
neurosurgery [13] and surgery of the uterus [14]. These
methods often rely on detection of landmarks in 3D and
2D modality [12, 14, 15], which can be very challenging
in prostatectomy, as geometric features are rare and contours
are difficult to identify uniquely. Other methods rely on tex-
ture or shading cues [13, 16], whichmay fail due to occlusion
of the target structures.

Methods

We propose a novel approach for a video-based marker-
less augmented reality overlay for navigated prostatectomy.
It uses flexible user-defined cues on anatomical structures
which are tracked in the endoscopic video stream and rigid
2D–3D registration based on differentiable rendering in order
to estimate the pose of the anatomical structures with respect
to the virtual camera. It is an easy-to-set up semi-automatic
approach that requires some manual interaction in a key
frame and no user input afterwards.

Initial steps

A 3D model is created from the preoperative MRI scan of
the prostate and its neighbouring structures, the neurovascu-
lar bundles and vesicular glands. Afterwards, in a key frame

Fig. 1 A cue is drawn on the surface of the prostate and neurovascular
bundles. The selected faces are used to create a 3D mesh of the cue,
and the projected image is used as a mask for tracking it throughout the
surgery

chosen for initialization, two steps have to be completed in
order to start the automatic tracking: first, the 3D model is
manually aligned to match the visible anatomical structures
in the endoscopic video stream. Afterwards, visual cues are
drawn on top of (Fig. 1). This approach allows simultane-
ous acquisition of both 2D and 3D data about the cue. The
obtained segmentation mask is used as an initialization to
track the cue in subsequent frames, while a 3D mesh of the
cue is constructed by projecting the 2D cue onto the preop-
erative model.

Tracking

The drawn cues are approximated by key points connected
with lines as shown in Fig. 2. For tracking these points in
the endoscopic video stream, CoTracker [17] is used. It is a
methodwhich is initializedwith a set of coordinates of points
and the corresponding image and predicts the position of the
key points in the following frames.

Registration

Two different methods for 2D–3D registration are investi-
gated: PnPRansac and differentiable rendering. The former
is used as a baseline.

Differentiable rendering [18] is a method where the stan-
dard forward pass of a rendering pipeline is modified in such
a way that it is differentiable. The rendered output is then
comparedwith a reference image to compute an image loss in
2D, which can back-propagated through the render pipeline
to optimize the desired parameters.

For this paper, a differentiable renderer was implemented
using PyTorch3D [18]. It draws only the silhouette of the
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Fig. 2 Masks of the cue are created by drawing lines between the
tracked key points

given cue and then calculates themean squared error between
the rendered image and the 2D mask provided by the tracker
described above. This loss is then minimized by optimiz-
ing the parameters position and orientation of the cue in the
virtual camera coordinate space by using Adam [19]. More
specifically, the orientation is expressed in a 6D representa-
tion by Zhou et al. [20]. The estimated pose with the lowest
loss is chosen and used as an initialization for the next frame.
This procedure is then repeated until the end of the video.

User-defined cues on the surface of the organ instead of
silhouettes of anatomical structures were selected as features
for the 2D–3D registration in order to minimize occlusion
issues. For instance, rendering the silhouette of a 3D model
of the isolated prostate could create a mask that includes
regions that are always obscured by other organs such as the
bladder in the intraoperative view. The resulting difference
between rendered and reference mask is then challenging to
handle in the differentiable rendering process.

Experiments

To validate the described method, experiments were carried
out on two different datasets:

Synthetic dataset:The synthetic dataset comprises of 504
scenes of generated, random organ-like 3D shapes (simulat-
ing the intraoperative state of an organ) inside a larger, hollow
shape (simulating the inflated abdominal cavity). The shapes
have an average size of 26.1 mm. The cues are randomly
generated on the surface of the organ. In each scene, images
of the simulated organ and the cues are rendered from 15
different randomly placed camera poses. Examples of such
images are shown in Fig. 3. The method was developed on a
split of 4 scenes, in the following named as the parameteriza-
tion set and a much larger test set of 500 scenes. To create a
realistic scenario, both splits were filtered to discard samples
with too small or too large cues and samples where cues are
occluded by other anatomical structures. This leads to a total

of 15 frames across all scenes in the parameterization set and
45 frames in the test set, respectively.

In vivo dataset: Videos of the staging phase of two
robot-assisted prostatectomies with the DaVinci Xi (Intuitive
Surgical, Sunnyvale, USA) were captured at the University
Hospital Carl Gustav Carus in Dresden. To obtain the cam-
era parameters, a calibration using a method fromHardner et
al. [21] was performed before each surgery. In addition, for
each patient, a preoperative MRI was carried out. Important
anatomical structures like prostate, neurovascular bundles
and vesicular glands were manually annotated by a radiolo-
gist in 3D Slicer [22] and a patient-specific 3D model built.
Similar to the synthetic dataset, patient 1was used for param-
eterization and patient 2 for evaluation. In addition, 5 salient
key points were manually annotated in both patient videos
every 1 s as a ground truth for evaluating the tracker.

Experiments on synthetic dataset:Weused the synthetic
dataset to parameterize the differentiable rendering approach
for camera alignment. Due to the synthetic nature of the data,
perfect cues are available, allowing us to use the samples for
parameterizationwithout the effects of noise in anymanually
annotated labels.

To simulate the pose of the camera before alignment, noise
was applied to the ground-truth pose. More specifically, uni-
formly sampled noise between −5 and 5mm was added to
each coordinate of the position of the camera. In addition, to
each Euler angle of the rotation of the camera uniformly sam-
pled noise between −5 and 5◦ was added. For each frame,
this procedure was repeated 3 times on the parameterization
set and 5 times on the test set. On this dataset, we treat each
camera pose individually as the camera does not follow a
smooth path but is placed randomly for each frame.

To find suitable learning rates for translation and rotation,
these hyperparameters were optimized on the parameteriza-
tion set using Optuna [23]. The cost for this parameter search
was defined as the lowest loss during the alignment of one
frame averaged over all frames.

Afterwards, with the best parameters chosen according
to this criterion, the method was evaluated on the test set.
For each sample, the initial and aligned camera pose was
comparedwith the ground truthwith respect to the translation
and rotation error. In addition, the target registration error
was calculated for each organ-like shape based on 100 points
randomly sampled inside the mesh.

Experiments on in vivo dataset: For each patient in the
in vivo dataset, the described initial steps were carried out
for the first frame, resulting in a manually aligned ground-
truth camera pose and a corresponding mask and key points
in 2D as well as the mesh of the cue and key points in 3D.
This information was then used to apply both PnPRansac
and differentiable rendering for all following frames in the
recording. For the latter method, we use the alignment result
of frame i as the initialization for frame i+1, as the cam-
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Fig. 3 Examples of rendered
images from synthetic dataset.
The pink and white faces on the
organ-like shape are the cues, fat
is shown in light yellow, the
abdominal wall is shown in
brown and additional organ-like
shapes are shown in grey

Fig. 4 An example of an
alignment of a cue rendered by
the differentiable renderer
(moving mask) to the reference
obtained from the scene
(stationary mask). Initial
position: a, during alignment: b,
final position: c

era performs a continuous movement. Learning rates were
first optimized on patient 1 analogous to the approach on the
synthetic dataset, then fixed and applied to patient 2. Further-
more, CoTracker was evaluated quantitatively by applying it
not only to the annotated ground-truth key points in the first
frame but also on additional constructed key points. These
are derived by placing them on the midpoint on all connect-
ing lines between the annotated ones in order to not skew the
results by using key points that are easily trackable.

Results

Theapplicationof thedifferential rendering-based approach
to a sample of the test set of the synthetic dataset is shown in
Figs. 4 and 5, whereas the distribution of the metrics over all
samples is shown in Fig. 6. The median translation error of
the camera pose was reduced from 4.86 to 3.04 mm and the
median rotation error from 3.66 to 1.43◦. The median target
registration error after alignment is 6.11 mm.

The median tracking error of CoTracker regarding the
aforementioned constructed key points is 2,46 px for patient 1

Fig. 5 Rendering of the scene used for the alignment in Fig. 4. The
reference mask corresponds to the silhouette of the coloured cues

Fig. 6 Application of differentiable rendering to the test set of the
synthetic dataset: translation and rotation error of the initial and aligned
camera pose each with respect to the ground-truth pose

and 5,36 px for patient 2. The qualitative results of tracking a
rectangle cue on in vivo data are shown in Fig. 7, whereas the
corresponding augmented reality overlay based on the pre-
dicted camera pose of the 2D–3D registration is displayed in
Figs. 8 and 9. In addition, results for a triangle and a more
complex shape similar to the cues in the synthetic dataset
are shown in Fig. 10. Frames were selected that show the
behaviour of the methods on key moments of the camera
trajectory.
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Fig. 7 Results of tracking the
rectangle cue throughout the
video—top row a–c: patient 1,
bottom row d–f : patient 2

Fig. 8 Augmented reality
overlay for patient 1
(parameterization) using the
rectangle cue—top row a–c:
PnPRansac, bottom row d–f :
differentiable rendering

Discussion

Our proposed method depends on a good initial alignment,
which is currently performed manually. We have an ongoing
clinical trial in which we want to determine its feasibility.
In the future, this step could be replaced by an automatic
method such as Koo et al. [12].

The measured tracking errors as well as the qualitative
results presented in Fig. 7 show that a CoTracker-based
approach allows a robust and relatively accurate tracking of
a cue that can handle fast camera movements, deformation
as well as occlusion by the instruments. This provides a very
good basis for the 2D–3D registration that builds upon it.

The results on the test set of the synthetic dataset show
that an alignment method based on differentiable rendering
using the silhouette of a cue is feasible. The median tar-
get registration error is in the acceptable range of 5–10mm

for tumours in navigated prostatectomy, showing potential
for future clinical application. However, the accuracy of the
alignment could be further improved. Two causes for the
remaining error were identified: first, the image is blurred by
the differentiable renderer so that a change in camera pose
has a less noisy effect on the loss. This reduces however the
accuracy as the rendered cue is systematically diluted on the
edges. Here, a better trade-off between blur parameters and
optimization behaviour could be found.

Second, as the synthetic dataset is designed to cover a
general setup, edge cases can occur that were not identified
before. The sample that has the highest translation error in
Fig. 6 for example could not be aligned correctly as the virtual
camera was not able to render the cue properly as it is too
close to the cue after random perturbation.

On in vivo data, both PnPRansac and differentiable ren-
dering are able to track the movement of the anatomical
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Fig. 9 Augmented reality
overlay for patient 2 (test) using
the rectangle cue—top row a–c:
PnPRansac, bottom row d–f :
differentiable rendering

Fig. 10 Augmented reality overlay for patient 2 (test) using the triangle a, b and complex shape cue c, d—both using differentiable rendering

structures. Misalignments of the differentiable renderer for
the rectangular cue can be see in Figs. 8e and 9f, where
the predicted rotation overshoots or the estimated cue flips
counterclockwise. The latter can be prevented by choosing a
non-rotationally symmetric cue like the non-equilateral tri-
angle (see Fig. 10b). The differentiable rendering approach
is also less robust than PnPRansac if key points are not
tracked properly anymore (see Fig. 10d). A failure case of
the PnPRansac approach is shown in Fig. 9c. Here, the organ
suddenly switches to a different solution of the pose estima-
tion. Probable cause is the fact that if the 3D points lie in a
plane, there exist two symmetrical solutions for the camera
pose that lead to the same 2D projection. This effect seems to
occur also if the condition is only partially met by the chosen
cue. Both methods can still follow the anatomical structures
during deformation as shown in Fig. 8c and f.

PnPRansac works naturally with key points, whereas dif-
ferentiable rendering provides a flexible framework where
different types of information gathered from the scene can
be processed, such as masks, contours and depth. In addi-
tion, as the whole rendering pipeline is differentiable, other
parameters could be optimized in the future aswell, for exam-

ple the position of the vertices themselves, opening up the
possibility to capture deformation.

Conclusion

A proof of concept for a video-based markerless augmented
reality overlay for navigated prostatectomy was shown.
Adding cues on the fly that are tracked throughout the surgery
in combination of both PnPRansac and differentiable ren-
dering provide a 2D–3D registration framework that does
not rely on the visibility and correct segmentation of certain
anatomical structures. However, due to its flexible nature, it
could also be an option to use automatically detectable cues
in addition to user-defined ones. The possibility of interaction
could also allow the user to correct the predicted cues. Fur-
thermore, the ability to optimize the vertices of the organ’s
3D model opens up the chance to capture its deformation.
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Supplementary information

Six videos are provided alongside the paper: the first three
use the rectangle cue, while the last three use both triangle
and complex shape cue: results of tracking for both patients
(Online Resource (OR) 1, corresponding to Fig. 7), aug-
mented reality overlay for patient 1 (OR 2, Fig. 8) and patient
2 (OR3, Fig. 9), aswell as results of tracking for patient 2 (OR
4, Fig. 10a, c) and augmented reality overlays for patient 2 for
differentiable rendering (OR 5, Fig. 10b, d) and PnPRansac
(OR 6).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-025-03374-
5.
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