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Minor Histocompatibility (H) antigens aremajor histocompatibility complex (MHC)/Human

Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic

stem cell transplantation (HCT) recipients and their donors as a result of genetic

polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to

augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia

relapse after HCT. Graft engineering and post-HCT immunotherapies are being

developed to optimize delivery of T cells specific for selected minor H antigens. These

strategies have the potential to reduce relapse risk and thereby permit implementation

of HCT approaches that are associated with less toxicity and fewer late effects, which

is particularly important in the growing and developing pediatric patient. Most minor

H antigens are expressed ubiquitously, including on epithelial tissues, and can be

recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD)

as well as GVL. However, those minor H antigens that are expressed predominantly on

hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic

chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present

only on residual recipient malignant hematopoietic cells, and these minor H antigens

serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are

delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute

to relapse prevention. However, in some cases the minor H antigen-specific T cells

delivered with the graft may be quantitatively insufficient or become functionally impaired

over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy

can be used to treat or prevent relapse by delivering large numbers of donor T cells

targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H

antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and

for post-HCT immunotherapy. We will highlight the importance of these developments

for pediatric HCT.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HCT) is
widely employed in the management of very high-risk leukemia
in children, adolescents, and young adults (1, 2), because HCT
as consolidation therapy is generally associated with a reduced
relapse risk compared to chemotherapy alone (3, 4). Although
HCT reduces the risk, relapse remains the major cause of death
following HCT for leukemia (5). Reported post-HCT relapse
rates are variable, with rates of 10–30% for patients transplanted
with leukemia in minimal residual disease (MRD) negative
remission, 20–70% for those in remission but with MRD, and
50–90% for those in relapse (6, 7). Long-term survival following
relapse after HCT is infrequent (8–10).

HCT involves two important elements that confer protection
from relapse: first, “conditioning” incorporating chemotherapy
and/or radiotherapy as the pre-HCT preparative regimen, and
second, donor lymphocytes in the hematopoietic cell graft
as cellular therapy. Donor T cells respond to non-donor
antigens on recipient cells, including minor histocompatibility
(H) antigens, and thereby lead to a graft-vs.-leukemia (GVL)
effect when those antigens are presented on leukemic cells. Minor
Histocompatibility (H) antigens are Human Leukocyte Antigen
(HLA)-presented peptides derived fromnormal self-proteins that
differ in amino acid sequence between donor and recipient
due to genetic polymorphisms outside of the chromosome 6
HLA loci (11). The GVL effect and intensive conditioning both
substantially contribute to relapse prevention in myeloablative
HCT, while the GVL effect is particularly critical with use of
less intensive, “non-myeloablative” and “reduced intensity” HCT
preparative regimens.

The efficacy of HCT for pediatric leukemia currently depends
highly on both the GVL effect and on delivery of myeloablative
chemo(radio)therapy in the pre-HCT conditioning regimen.
Intense myeloablative conditioning, particularly involving total
body irradiation (TBI), causes serious short- and long-
term adverse effects, including growth and neurocognitive
impairments in pediatric patients (12–16). Thus, there is a
critical need to advance HCT strategies that allow reduced
conditioning intensity and associated toxicity, while mitigating
relapse risk. Furthermore, avoiding severe and chronic graft-vs.-
host disease (GVHD) in children is highly desirable due to the
morbidity, mortality, disability, and social handicaps, and late
effects associated with chronic GVHD (12, 15, 17).

In this review, we discuss minor H antigens as T cell targets
for augmenting the GVL effect in engineered HCT grafts and for
post-HCT immunotherapy. We will highlight the importance of
these developments for pediatric HCT.

MINOR HISTOCOMPATIBILITY ANTIGENS

The GVL effect in allogeneic HLA-matched related or unrelated
donor HCT is largely attributed to T cell responses to recipient
minor H antigens. Specifically, when a HCT recipient has
a homozygous or heterozygous polymorphism that encodes
a minor H antigen and their HLA-matched donor is
homozygous for the “negative” allele, the donor may have

T cells in their repertoire that recognize the minor H antigen
peptide/HLA complex on the recipient’s leukemia cell surface,
and those cells may eliminate any residual leukemia after
HCT (Figure 1).

From the perspective of the donor T cells, minor H
antigens are foreign antigens and consequently donor T
cells specific for minor H antigens are not subject to self-
tolerance mechanisms, allowing for highly avid minor H
antigen-specific T cell responses. Most known minor H
antigens arise from single nucleotide substitutions in the
coding sequences of homologous donor and recipient genes,
which change peptide-HLA binding or T cell receptor (TCR)
recognition of the peptide-HLA complex. There are at least
660,000,000 single nucleotide polymorphisms (SNPs) and
insertion-deletion polymorphisms (indels) in the human genome
(18) although less than 1% of SNPs are non-synonymous
limiting the number of potential minor H antigens (19).
Moreover, only non-synonymous SNPs that give rise to recipient
donor mismatches in the graft-vs.-host direction (recipient
homozygous positive or heterozygous, donor homozygous
negative for the immunogenic allelic variant) are relevant
to the GVL effect. T cell recognition of most minor H
antigens is unidirectional, mostly due to the lack of T
cell recognition of the allelic variant peptide despite cell
surface presentation with HLA molecules (20). Alternatively,
the corresponding donor peptide may not be generated
(21–25), transported by antigen processing machinery (26),
escape proteasomal degradation (27), or stably bind to MHC
molecules (28–31).

MINOR H ANTIGENS AND SELECTIVE GVL

HCT outcome data demonstrate the potency of the GVL effect,
with reduced relapse rates noted in patient cohorts that develop
acute and/or chronic GVHD following allogeneic HCT (32–34).
However, the GVL effect is apparently separable from GVHD;
reduced relapse rates are still observed in patients who underwent
allogeneic HCT and did not develop clinically significant GVHD,
as compared to relapse rates in syngeneic HCT recipients (33).

Most minor H antigens are expressed ubiquitously, including
on epithelial tissues. Recognition of such minor H antigens by
donor T cells following HCT can potentially lead to GVHD as
well as GVL (35, 36). However, those minor H antigens that are
expressed predominantly on hematopoietic cells can be targets
of a selective GVL effect (37, 38) (Figure 2). Once full donor
normal hematopoietic chimerism is achieved after HCT, only
residual or recurrent recipient malignant hematopoietic cells will
present hematopoietic-restricted minor H antigens, and these
minor H antigens serve as tumor-specific antigens for donor T
cells (Figure 3). Over 100 fully-characterized or candidate human
minor H antigens have been identified (22, 25, 28, 39–52). Of
these, an important minority are expressed predominantly or
exclusively on hematopoietic cells and are of particular interest as
targets for GVL-augmenting therapeutic T cells delivered with or
following HCT (Table 1). Examples, of well-characterized minor
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FIGURE 1 | The figure illustrates the GVHD and/or GVL effect in allogeneic HLA-matched donor HCT which is largely attributed to donor T cell responses to recipient

cell minor H antigens. When an HCT recipient has a homozygous or heterozygous polymorphism that encodes a minor H antigen and their donor is homozygous

negative for the allele, the donor may have T cells in their repertoire that can target the minor H antigen peptide/HLA complex on the recipient’s leukemia cell surface

leading to an elimination of any residual leukemia following HCT.

H antigens of high therapeutic interest include HA-1, ACC-1,
ACC-2, and LRH1, described below.

There is direct evidence for the anti-leukemic activity of
minor H antigen-specific T cells. In humans, donor-derived
CD4+ and CD8+ T cells that have been activated and
expanded in vivo following recognition of minor H antigens
on recipient cells can be isolated and grown in vitro and
evaluated for anti-leukemic activity (38). Additionally, minor
H antigen-specific T cells can be generated by primary in
vitro stimulation (53). Minor H antigen-specific CD8+ T
cell clones can inhibit acute myelogenous leukemia (AML)

colony growth and lyse primary AML and acute lymphoblastic
leukemia (ALL) cells in vitro (38, 53–55). Furthermore,
minor H antigen-targeting T cells prevent the engraftment
of AML in immunodeficient murine models, supporting the
hypothesis that early leukemic progenitors are targets of these
cells (56).

In vivo anti-leukemic efficacy of minor H antigen-specific
T cells has also been demonstrated in murine models of HCT
and GVL. Perreault and colleagues demonstrated that adoptive
transfer of T cells specific for a single immunodominant murine
minor H antigen (B6dom1, also known as H7a) can eradicate
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FIGURE 2 | The figure illustrates that most minor H antigens are ubiquitously expressed on epithelial tissues and hematopoietic cells. Donor T cell recognition of such

antigens leads to GVHD as well as GVL. However, minor H antigens expressed predominantly on hematopoietic cells can be targets of a selective GVL effect.

leukemia and has anti-cancer activity in solid tumor models (57–
60). Shlomchik and colleagues demonstrated antigen-specific
memory T cell (TM)-mediated GVL against chronic phase
and blast crisis chronic myeloid leukemia (CML) when they
transferred CD8+ TM from murine donors vaccinated against
the H60 minor H antigen (61). In both the Perreault and
Shlomchik studies, little to no GVHD was observed when
the transferred T cells were specific for a single minor H
antigen, even if expression of the minor H antigen was not
restricted to the hematopoietic system. However, the anti-
tumor efficacy was improved if the minor H antigen was
not ubiquitously expressed (57, 59–61). Better efficacy of
T cells specific for minor H antigens with hematopoietic-
restricted vs. ubiquitous expression can be explained by less
activation-induced cell death and T cell exhaustion, and better

expansion of T cells targeting hematopoietic-restricted minor H
antigens (61).

Focusing the T cell response on a limited number of minor
H antigens may favor GVL over GVHD. In mice, leukemia was
eradicated following adoptive transfer of CD8+ T cells specific
for a single broadly-expressed minor H antigen (B6dom/H7a),
without the development of GVHD. However, GVHD occurred
if B6dom-specific T cells from vaccinated donors were delivered
with naïve T (TN) cells specific for other minor H antigens (57).
Earlier experiments by Korngold and colleagues, using numerous
combinations of congenic mouse strains, also did not reveal
GVHD in any experiment where donors and recipients were
incompatible for single minor H antigens (62). Research by the
Falkenburg group using human cells also demonstrated that
the magnitude and diversity of the immune response influences
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FIGURE 3 | The schematic illustrates that patient normal hematopoietic and leukemia cells with minor H antigens are eliminated by the transplant conditioning regimen

and replaced with donor hematopoietic cells. Once full donor normal hematopoietic cell chimerism is achieved only recipient malignant hematopoietic cells present

hematopoietic-restricted minor H antigens if disease persists or recurs following HCT. These minor H antigens serve as tumor-specific antigens for donor T cells.

the balance between GVHD and GVL (51). They characterized
alloreactive CD8+ T cell responses in recipients of T cell-
depleted (TCD) HLA-matched HCT who achieved a clinical
complete response and/or full donor chimerism after donor
lymphocyte infusion (DLI). Minor H antigen-specific T cell
frequency and diversity was lower in patients with who cleared
residual leukemia but did not develop GVHD (i.e., selective
GVL) compared to those who developed GVHD and although,
patients who developed selective GVL had predominantly
hematopoietic-restricted minor H antigen-specific T cells, some
did also have T cells that recognized more broadly expressed
minor H antigens.

Together, these studies imply that minor H antigens targeted
with T cells to augment GVL may not need to be absolutely
hematopoietic-restricted from a safety perspective, particularly if
the T cell infusion occurs beyond the pro-inflammatory period
immediately post-HCT and if a limited number of minor H
antigens are targeted. However, targeting minor H antigens that
are predominantly expressed on hematopoietic tissue may still be
safer, and may be more effective as T cells specific for broadly-
expressed antigens tend to become exhausted and dysfunctional
(60, 61).

MINOR H ANTIGEN DISCOVERY

A major challenge for developing minor H antigen-targeting,
GVL-augmenting strategies is to create therapeutics for all
patients who may benefit from them, which will require the
identification of multiple minor H antigens presented by
various HLA types. Techniques used for minor H antigen
discovery have been reviewed and include forward and reverse
immunology approaches. Forward immunology approaches
involve several combinations of different component methods
of isolation of activated T cells from HCT recipients, primary
in vitro stimulation of normal donor T cells, haplotype
mapped (HapMap) cell line screening, genetic linkage
analysis, genome-wide association studies and cDNA library
screening. Combinations of in silico analysis, mass spectrometry,
HLA/multimer and functional T cell screening have been used in
reverse immunology approaches (63, 64).

As there are numerous non-synonymous SNPs (ns-SNPs)
with a variant allele frequency between 0.1 and 0.9 across the
human genome and a significant minority are encoded by genes
that are predominantly expressed in hematopoietic cells, it is
anticipated that there remain many minor H antigens that will
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TABLE 1 | Selected hematopoietic-restricted minor H antigens of interest for therapeutic targeting.

Minor H antigen

(reference)

Gene/Chromosome HLA allele Heme/non-heme

expression

Polymorphism Immunogenic peptide

Epitope (underlined)

Genotype-phenotype

frequencies (%)

Estimated

disparity

MSD (%)

Estimated

disparity

MUD (%)

HA-1(28, 39) HMHA1/19p13.3 A*02:01

A*02:06

1–2 logs higher in

heme.

rs1801284 VL[H/R] DDLLEA H/H = 13

H/R = 45.8

R/R = 41.2

6.4

+A206 < 1

11.6

+A206 <1

LRH-1(22) P2X5/17p13.3

(frameshift mutation)

B*07:02 1.5–2.0 logs higher

in heme

rs3215407 TPNQRQNVC +/+ = 4

+/– = 50

–/– = 46

4.9 7.5

LB-EBI3-1(40) EBI3/

19p13.3

B*07:02 2 logs higher in

heme

rs4740 RPRARYY[I/V] QV I/I = 10.6

I/V38.1

V/V = 51.3

3.7 7.5

HB-1(41–43) HMHB1/

5q31.3

B*4402

B*4403

B cell rs161557 EEKRGSL[Y/H] VW Y/Y = 5.2

H/Y = 41.2

H/H = 53.7

3.9 (Y)

1.2 (H)

6.8 (Y)

1.3 (H)

ACC-2 (44) BCL2A1/

15q24.3

B*44:03 1–2 logs higher in

heme.

rs3826007 KEFED[D/G] IINW D/D = 6.4

D/G = 38.1

G/G = 55.5

3.6 6.7

ACC-1 (44, 45) BCL2A1/

15q24.3

A*24:02 1–2 logs higher in

heme.

rs1138357 DYLQ[Y/C] VLQI Y/Y = 6.7

Y/C = 39.5

C/C = 53.5

2.8 (Y)

<1 (C)

5.2 (Y)

<1 (C)

ACC-6 (46) HMSD/

18q21.3

B*4402

B*4403

Leukemia.

Not

normal hematopoietic

rs9945924 MEIFIEVFSHF V/V = 10

V/wt = 23

wt/wt = 66.7

2.3 5.9

HA-2 (47) MYO1G/

7p13

A*02:01 1–2 logs higher in

heme

rs61739531 YIGEVLVS[V/M] V/V = 57

V/M = 38

MM = 6

1.8 2.5

HA-1/B60 (48) HMHA1/

19p13.3

B*40:01 1–2 logs higher in

heme

rs1801284 KECVL[H/R] DDL H/H = 13

H/R = 46

R/R = 42

1.4 2

LB-ITGB2-1 (25) ITGB2/

21q22.3 (transcript

variant)

B*15:01 1–2 log higher in

heme

rs760462 GQAGFFPSPF +/+- = 5

+/– = 31

–/– = 63

1 2

Minor H antigens were selected for inclusion in the table based on (a) having a predominantly hematopoietic gene expression pattern; (b) there being published functional T cell data

that clearly demonstrates recognition of hematopoietic cells that endogenously present the minor H antigen(not only peptide-pulsed target cell recognition or tetramer binding); and (c)

a reasonably common HLA-restricting allele and a balanced minor H antigen genotype/phenotype distribution such that >1% of the HCT recipients would have the correct HLA and

minor H antigen genotype and a donor with the alternative minor H antigen allele.

be suitable targets for therapeutic T cell yet to be discovered.
An in silico analysis was performed by Lansford et al. to predict
minor H antigens. Analysis of recurrent SNPs among 101 HLA-
matched HCT recipient donor pairs resulted in the identification
of 102 peptides with desirable properties for public, leukemia-
associated minor H antigens, specifically with: (a) predicted high
binding affinity to a commonHLAmolecule; (b) RNA expression
in AML, but not in GVHD target organs; and (c) optimal allele
frequencies to give rise to common minor H antigen mismatches
and therefore feasible T cell targeting (52). A proportion of these
candidate minor H antigens would be expected to be naturally
processed and presented onHLAmolecules in leukemic cells, and
to elicit a T cell response.

In a second example of the potential for additional minor
H antigen discovery, Granados et al. focused on identifying
HLA-A∗02:01 or -B∗44:03-restricted polymorphic peptides using
a mass spectrometry-based proteogenomic approach and cells
from 13 volunteer donors and found thousands of candidate
minor H antigens (50). Of the nearly 6,773 candidate minor
H antigens generated by ns-SNPs, the authors identified 100
relatively common candidates with a minor allele frequency of

>0.05, including a set of 39 putative minor H antigens with RNA
expression at least two times higher in bone marrow cells than in
skin cells. Two of the 39 were tested and induced a T cell response
in vitro. A proportion of the 39 candidate minor H antigens with
predominantly hematopoietic expression would be expected to
be both adequately hematopoietically-restricted for therapeutic
targeting and immunogenic to have therapeutic utility.

EXAMPLES OF HLA CLASS I MINOR H
ANTIGENS WITH POTENTIAL FOR
THERAPEUTIC TARGETING

HA-1
HA-1 is the most comprehensively investigated human minor H
antigen and is selectively expressed on normal and malignant
hematopoietic cells, including AML, myelodysplastic syndromes
(MDS), B lineage ALL, and T lineage ALL. The HA-1 peptide
epitope is presented on the cell surface in association with HLA-
A∗02:01 and is recognized by HA-1-specific T cells.
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The HA-1H peptide (VLHDDLLEA) is encoded by a
nucleotide sequence spanning a single nucleotide polymorphism
(RS_1801284) within the HMHA1 gene (28). Individuals with a
rs1801284 A/A or A/G genotype express the histidine variant
(HA-1H, also referred to as HA-1) and are considered HA-
1 “positive.” Conversely, HA-1 “negative” people with the
G/G genotype express only the arginine allelic variant (HA-
1R, VLRDDLLEA), and may have T cells in their repertoire
that can respond to HA-1H. Both HA-1H and HA-1R undergo
similar intracellular processing from the HMHA1 protein, with
appropriate proteasomal cleavage and transporter associated
with antigen processing (TAP) (29, 30). However, the presence
of an arginine at position three of the peptide reduces the
affinity of VLRDDLLEA binding to HLA-A∗02:01, relative to
VLHDDLLEA (29, 30). HA-1H-specific T cells do not recognize
VLRDDLLEA at peptide concentrations that are naturally
presented on cells. Therefore, HA-1-specific T cells can be
employed following HCT to selectively target residual leukemic
cells from a HA-1 positive patient, without damaging normal
hematopoietic cells of HA-1 negative donor origin.

Approximately 50% of the population presents HLA-A∗02:01,
and HA-1 allelic variants are phenotypically balanced in the
population (rs1801284 A/A 16%, A/G 36%, G/G 48%; HA-
1 positive 52%, HA-1 negative 48%). This means that ∼10–
15% of the HCT population will express both HA-1H and
the HLA-A∗02:01-restricting allele and also have a suitably
mismatched HA-1 negative or HLA-A∗02:01 negative donor,
making HA-1 a relatively feasible minor H antigen target for T
cell immunotherapy.

Multiple publications have documented that HMHA1 gene
expression is very low to absent in non-hematopoietic cells (65–
67), and that HA-1 genotypically-positive hematopoietic cells but
not non-hematopoietic cells are recognized by HA-1 -specific T
cells in vitro (37). Furthermore, HA-1-specific T cells induce little
or no tissue damage when co-cultured with HA-1 positive skin
biopsy specimens (68). Following HCT from an HA-1 negative
donor to an HLA-A∗02:01 HA-1 positive recipient, HA-1-specific
T cells can be identified in approximately one-third of patients
(69). One study reported a temporal relationship between the
presence of HA-1-specific T cells and GHVD early post-HCT
(70), but HA-1-specific T cells have been identified in patients
without GVHD following DLI therapy (51, 71–73). Additionally,
associations between HA-1 donor-recipient genotypic disparity
and GVHD have been observed in some (74–77) but not all (78–
81) HCT studies. One explanation for this apparent inconsistency
is that patient hematopoietic cells remain in the tissues for several
months before being replaced by donor-derived cells (72). Thus,
HA-1-specific T cells generated by in vivo priming following
HCT may contribute to GVHD early post-HCT but are less
likely to do so in the context of DLI or delayed HA-1 targeted
T cell immunotherapy.

Circumstantial evidence suggests that HA-1 can serve as a
therapeutic target in the context of HCT and unmanipulated
DLI. Specifically, there have been several reports in which
patients with hematological malignancies responded DLI to treat
recurrent disease following HCT and coincident emergence of
HA-1-specific T cells in vivowas documented using peptide/HLA

tetramer analysis and/or isolation of the HA-1-specific T cells
from the peripheral blood (29, 51, 71–73). In some of these
reports HA-1-specific T cell clones isolated from the patients
were further evaluated and demonstrated specific killing of HLA-
A∗02 positive+ HA-1H -pulsed target cells and primary leukemic
cells (71–73). There have also been reports of HA-1 positive
patients with multiple myeloma who were treated with dendritic
cell vaccines loaded with minor H antigen peptides and adjuvant
followed by DLI. Several patients developed a detectable HA-
1-specific T cell responses, without adverse effects and two
achieved disease control for 6–7 months (82, 83). Together, these
observations suggest HA-1 will be a safe and effective target for
T cell immunotherapy. HA-1-directed T cell immunotherapy is
currently in development, as discussed below.

BCL2A1/ACC-1 and ACC-2
BCL2A1 is a member of the Bcl-2 family of anti-apoptotic
genes. Two minor H antigens, ACC-1Y and ACC-2D, result
from distinct nucleotide polymorphisms in the BCL2A1 gene and
are presented by HLA-A∗24:02 and HLA-B∗44:03, respectively
(44). BCL2A1 is frequently highly expressed in hematologic
malignancies and may contribute to the malignant phenotype,
making ACC-1 and ACC-2 attractive targets for T cell
immunotherapy (84, 85).

The polymorphisms, rs1138357 and rs3826007, lead to single
amino acid substitutions in exon 1 of BCL2A1, creating the
immunogenic HLA-A∗24:02-restricted ACC-1Y [DYLQYVLQI,
rs1138357 AA (6%) or AG (39%)] and B∗44:03-restricted ACC-
2D [KEFEDDIINW, rs3826007 AA (4%) or AG (50%)] (44).
ACC-1-specific T cells can be generated from HLA-A∗24:02
positive ACC-1 “homozygous negative” donors (rs1138357, GG
encoding DYLQCVLQI) and distinguish the single amino acid
difference (tyrosine vs. cysteine in ACC-1). Similarly, ACC-2-
specific T cells from homozygous negative donors (rs3826007,
GG encoding KEFEDGIINW) can distinguish the aspartic acid
from the glycine.

ACC-1 and ACC-2 are feasible targets for T cell
immunotherapy. Based on the prevalence of the HLA-A∗24:02
and HLA-B∗44:03 restricting alleles and the frequency of
distribution of immunogenic and non-immunogenic variants
of ACC-1 and ACC-2, the calculated estimate of finding a
polymorphism-discrepant, matched related and unrelated
donor is 2.8 and 5.2% for ACC-1, and 3.6 and 6.7% for ACC-2,
respectively (86).

There has been controversy regarding how selectively
BCL2A1 is expressed in hematopoietic cells. Gene expression
analysis by Northern blot (44), quantitative polymerase chain
reaction (67), and database microarray (http://biogps.gnf.org)
suggests hematopoietic-restricted expression. Although the
Goulmy group showed that BCL2A1 expression could be
upregulated in non-hematopoietic cells (mesenchymal stromal
cells) by simultaneous exposure to interferon gamma (IFNγ)
and tumor necrosis factor alpha (TNFα), but not to IFNγ

alone (87), Akatsuka’s research group subsequently demonstrated
comparable up-regulation of BCL2A1 and HMHA1 after
administration of IFNγ and TNFα (67). In any case, the clinical
relevance of upregulation of minor H antigen-encoding genes
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after exposure to high doses of cytokines in vitro has not been
established. ACC-1Y and ACC-2D genotypically positive non-
hematopoietic cells are not recognized in cellular assays without
exogenous cytokines (44, 67, 87). Moreover, an analysis of
HCT outcomes in 320 patients expressing HLA-A∗24:02 did not
show an increase in GVHD in recipients with an immunogenic
BCL2A1 allele and an antigen negative donor (88). Together these
data suggest that ACC-1Y is likely to be a safe target.

ACC-1- and ACC-2-specific T cells lysed primary leukemic
cells in vitro after isolation from HCT recipients (44). In a
subsequent study, direct tetramer analysis was used to identify
ACC-1-specific T cells in the bone marrow and peripheral
blood in a patient who received an HLA-matched, ACC-1-
disparate HCT for CML 14 months earlier (89). The bone
marrow ACC-1-specific T cells proliferated in response to ACC-
1 peptide stimulation and demonstrated cytotoxicity against a
cell line endogenously presenting ACC-1, demonstrating the
presence of functional ACC-1 specific T cells that may contribute
to protection against post-HCT relapse. Gene expression data
suggests that BCL2A1 is not expressed at high levels in all
leukemia cells. Although high-level expression is not necessarily
required to render leukemia susceptible to lysis by high-avidity
minor H antigen-specific T cells, functional assays demonstrating
lysis of numerous ACC-1 and ACC-1 genetically positive
leukemia will be necessary before ACC-1 and 2 directed T cell
immunotherapy is advanced to the clinic.

P2X5/P2RX5/LRH-1
The P2RX5 gene is a member of the P2X purinergic ATP-
gated non-selective cation channel protein group and has
been recognized as promoting cancer growth and aggression
(90–93). A frameshift polymorphism (rs3215407) in P2RX5
leads to major differences in the P2RX5-transcribed sequence,
including the immunogenic HLA-B∗07:02-restricted LRH-
1 minor H antigen TPNQRQNVC (22). On the basis of
the frequency of the HLA-B∗07:02 restricting allele and
46% prevalence of the homozygous cytosine deletion, the
calculated estimate of finding discrepant matched related
and unrelated donors is 4.9 and 7.5%, respectively (86). If
HCT donors have the rs3215407 polymorphic sequence with
a homozygous deletion of a cytosine at position 732, they
may generate T cells that recognize the TPNQRQNVC
minor H antigen generated in individuals without the
cytosine deletion.

The P2RX5 gene is expressed in normal lymphocytes, B
and T lineage ALL, a range of lymphoma and multiple
myeloma cases, the CD34+ fractions of CML and AML, and
possibly at low levels in brain and skeletal muscle, but there
is minimal expression in GVHD target tissues (intestine, liver,
lung, skin) (22). LRH-1 genotypically-positive fibroblasts, a
representative non-hematopoietic tissue, are not recognized in
cellular assays (22).

LRH-1-specific T cells kill ALL CD34+, AML CD34+,
CML CD34+, and multiple myeloma CD138+ cells in vitro
(22, 94, 95). Moreover, LRH-1-specific T cells have been
detected in the peripheral blood of patients responding

to DLI (22, 95, 96). Dolstra’s group studied seven HLA-
B∗07:02+ LRH-1 positive patients who received HCT and
DLI from a HLA-B∗07:02 positive LRH-1 negative donor, and
detected LRH-1-specific T responses coinciding with declines
in detectable leukemia in three of the seven patients, including
two patients with CML and one with AML (22, 95). Gene
expression data indicates that LRH-1 is not expressed at
high levels in all leukemia blasts or progenitors, although
progenitors with relatively low levels of LRH-1 expression
can be inhibited by LRH-1-specific T cells in functional
assays (22, 95). Further functional assays demonstrating
activity of LRH-1-specific T cells against multiple LRH-1
genetically positive leukemia cell targets in vitro, and ideally
in patient-derived murine xenograft models, are required
before translation of LRH-1-specific T cell immunotherapy to
the clinic.

HLA CLASS II MINOR H ANTIGENS

The primary focus of minor H antigen discovery has been
on HLA class I-restricted minor H antigens as targets for
CD8+ T cells. However, class II-restricted minor H antigens
are also of interest particularly given that HLA class II
molecules are generally expressed at relatively low levels on
non-hematopoietic cells under non-inflammatory conditions.
As such, class II-restricted minor H antigens may be more
likely to induce a selective GVL response even if the gene
encoding the minor H antigen is relatively broadly expressed.
In a recent study of CD4+ enriched DLI from HLA-identical
sibling donors, GVL reactivity without GVHD was associated
with CD4+ T cells targeting HLA class II-restricted minor
H antigens, some of which were associated with genes
expressed in non-hematopoietic cells (97). However, HLA
class II gene expression is often downregulated on leukemic
cells after HCT (98, 99), which implies that while class II-
restricted minor H antigen-specific T cells may make a major
contribution to GVL after HCT and drive the HLA class II
downregulation, class II-restricted minor H antigens may not
be optimal targets for T cell immunotherapy to treat post-
HCT relapse.

T CELL IMMUNOTHERAPY TARGETING
MINOR H ANTIGENS (FIGURE 4)

Minor H antigens have several advantages as targets for
therapeutic T cells aimed to prevent or manage relapse. First,
minor H antigens arise from germline variants and are therefore
likely to be expressed, at least initially, in all leukemia cells
in an individual, unlike neoantigens that are often subclonal,
permitting escape from neoantigen-specific T cells. Second,
minor H antigens are foreign to donor T cells, like neoantigens
and unlike overexpressed non-polymorphic leukemia-associated
antigens. High-affinity minor H antigen-specific TCRs can be
relatively readily found in the repertoire of normal donors
and exploited as therapeutics (100). Lastly, as described above,
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FIGURE 4 | The schematic depicts the development and potential therapeutic use of donor derived minor H antigen targeting T cell therapy. A patient, with the

hematopoietically-restricted minor H antigen target, would undergo allogeneic HCT. The donor, lacking the minor H target, would donate hematopoietic cells for the

HCT graft and T cells for the immunotherapy product. The T cells would undergo depletion of the naïve T cell fraction (to reduce GVHD risk) and then undergo

modification using a lentiviral construct containing a potent TCR targeting the minor H antigen of interest. Following this modification, the cell product would be

expanded to develop a therapeutically active cell dose which could be infused soon after the HCT as a relapse prevention strategy or following relapse detection to

treat post-HCT relapse.

minor H antigen expression is inherently specific to HCT-
recipient cells, and therefore specific to recipient leukemia after
myeloablative HCT. This inherent specificity avoids many of
the challenges for chimeric antigen receptor T cells (CAR-T)
that target cell surface antigens that are shared with normal
recipient or donor hematopoietic cells, leading to problems
with prolonged marrow aplasia in the case of AML CAR-T,
for example.

Immunotherapy employing T cells genetically modified with
transgenic TCR alpha and beta chains is a promising strategy
for treating hematologic malignancies and solid tumors (101,
102). Genetic TCR transfer into a selected T cell subset
facilitates relatively rapid production of a T cell immunotherapy
product with high potential for expansion, function and
persistence after infusion into the patient. We developed T
cell immunotherapy employing donor TM cells transduced with
a lentiviral vector encoding a TCR specific for HA-1 and
are currently evaluating this novel therapeutic in a phase I
clinical trial for the treatment of post-HCT MRD or relapse

(NCT03326921) (100). The cell product incorporates multiple
elements designed to optimize efficacy and safety: (1) a high-
avidity HA-1 specific TCR with potent anti-leukemic activity;
(2) a CD8+ co-receptor to promote function of the class I-
restricted TCR in CD4+ T cells; (3) an inducible caspase 9 safety
switch that can be triggered by the dimerizer AP1903/rimiducid
in the event of unexpected side effects; (4) a CD34-CD20
epitope to facilitate selection and tracking of the engineered
T cells; and (5) predominantly central memory T cells to
promote persistence after infusion and to avoid infusing GVHD-
inducing TN cells (100, 103, 104). This is the currently the
only minor H antigen targeting clinical trial enrolling pediatric
patients that we are aware of. Another HA-1 TCR T cell
immunotherapy trial (MDG1021) will open in Europe this
year, employing a HA-1 TCR T cell product developed in
Leiden (105, 106).

Of note, while current clinical trials targeting minor H
antigens are evaluating the safety profile of minor H antigen-
specific T cells as treatment for post-HCT leukemia recurrence,
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a longer-term goal is to deliver hematopoietic-restricted minor H
antigen-specific T cells soon after the HCT graft to augment GVL
and prevent relapse.

GRAFT ENGINEERING TO AUGMENT THE
T CELL RESPONSE TO SELECTED MINOR
H ANTIGENS

The term “graft engineering” refers to manipulation of the
composition of cells collected from an allogenic HCT donor
prior to infusion into the patient. To date, graft engineering
has primarily involved selections and/or depletions of particular
cell subsets for the purpose of mitigating the risk of GVHD.
However, more complex manipulations can be considered with
emerging technology, including enrichment for rare antigen-
specific T cells, genetic modification of cells with CAR-T or TCR-
T, and/or knockdown of genes in order to protect certain cells
or augment their function. Here we will discuss recent progress
in graft engineering to create an improved platform for delivery
of antigen-specific T cells, and to develop strategies for enhanced
delivery of leukemia-associated minor H antigen-specific T cells.

Minimizing the risk of serious GVHD is a critical first
step to enabling the effective delivery and function of
hematopoietic-restricted, minor H antigen-specific T cells,
since the management of GVHD requires pharmacologic
immunosuppression that is not conducive to T cell expansion
and function. Non-selective removal of T cells from the
donor graft can be achieved through pre-infusion physical
depletion of T cells or enrichment of CD34+ stem cells
using immunomagnetic beads, or by in vivo depletion using T
cell antibody-directed therapy. Non-selective T cell depletion
strategies have led to reduced GVHD rates but also increased
infection risk due to prolonged immune reconstitution (107–
111). Selective T cell depletion strategies, including CD45RA+

TN depletion and αβ TCR T cell depletion, are aimed at
reducing GVHD but retaining lymphocytes with activity against
pathogens and malignant cells and are being evaluated in
children and adults.

TN-Depletion
Mature αβ TCR T cells can be divided into categories based
on differentiation: naïve, T memory stem cells, central memory,
effector memory, and effectors (112). Naïve T cells (TN) which
are antigen inexperienced, include cells that can react to minor
H antigens expressed on epithelial tissues following recipient
infusion, resulting in GVHD. Murine modeling using MHC
matched and mismatched mice have demonstrated that antigen
experienced TM cells cause less or no GVHD compared to TN

(113–121). They do, however, show appropriate antigen-specific
T cell responses and beneficial GVL (114, 120). Additionally,
in vitro studies found that human minor H antigen-specific T
cells were more prevalent among TN than TM cells (53). Bleakley
et al. developed a technique to engineer CD34+ cell-enriched,
TN-depleted peripheral blood stem cells (PBSC) for HCT (122).
Initial published experience has demonstrated remarkably low
levels of chronic GVHD without increases in relapse or infection

rates following HCT of TN-depleted HLA-matched related donor
PBSC in patients with leukemia (104). Additional unpublished
data shows comparable results in a larger cohort of pediatric
and adult recipients of TN-depleted PBSC from HLA-matched
related and unrelated donors. This approach is currently being
further studied in randomized prospective trials comparing the
TN-depleted PBSC to conventional bone marrow stem cells for
pediatric patients (NCT03779854) and to alternative strategies
for GVHD reduction in adults (NCT03970096).

αβ TCR T Cell Depletion (αβ-TCD)
HCT strategies that deplete the donor stem cell graft of all
αβ TCR T cells to remove alloreactive T cells and CD19 B
cells to avoid EBV post-transplant lymphoproliferative disorder,
while retaining γδ TCR T cells and NK cells, are also being
investigated. HCT with αβ-TCD grafts shows promise as a
platform to reduce GVHD, especially in pediatric patients (123–
128). γδ TCR T cells and NK cells both have activity against
pathogens and malignant cells, so their retention in the graft
may protect patients against infection and relapse, respectively
(128–134). In long-term analysis of 98 pediatric patients with
leukemia, the outcomes of patients who received haploidentical
αβ-TCD grafts were encouraging with 3-year DFS, relapse, severe
acute and extensive chronic GVHD rates of 62, 29, 0, and
1%, respectively (126, 127). Moreover, in a large retrospective
analysis comparing outcomes of unmanipulated HLA matched
or mismatched unrelated donor HCT (MUD; MMURD) with
haploidentical αβ-TCD HCT, 5-year chronic GVHD free, relapse
free survival (GRFS) was superior in the haploidentical αβ-TCD
compared to the MMURD (135).

Assuming continued success in reducing GVHD by graft
engineering, the next challenge is to augment HCT grafts for
enhanced anti-leukemic activity, including but not limited to
enriching for hematopoietic-restricted minor H antigen-specific
T cells. The primary aim of this approach would be to overcome
quantitative deficiencies in minor H antigen-specific T cells in
the donor HCT graft. Minor H antigen-specific T cells will be
numerically deficient in grafts that have been depleted of TN or of
all αβ TCR T cells. Additionally, minor H antigen-specific T cells
are rare in the donor T cell repertoire even in the absence of any T
cell depletion (53) and may not consistently adequately expand,
migrate to the bone marrow, and persist with durable anti-
leukemic activity after HCT. Antigen-specific T cells are effective
at controlling and eliminating cancer cells only when the T cells
are present in sufficient numbers relative to the cancer cells.
Therefore, particularly for patients with residual disease at the
time of HCT, increasing the number of hematopoietic-restricted
minor H antigen-specific T cells delivered with the graft should
facilitate the GVL effect. Delayed sequential infusion of antigen-
specific T cells after infusion of the HCT graft (i.e., a “split graft”)
may also be considered to allow the pro-inflammatory state
resulting from chemo/radiotherapy conditioning to abate and the
recipient tissue-resident normal hematopoietic cells to be largely
replaced by cells of donor origin, in order to mitigate the risk
of inducing GVHD. Delayed sequential T cell infusions should
also circumvent the antigen-induced T cell death that may occur
when hematopoietic-restricted minor H antigen-specific T cells
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encounter residual recipient hematopoietic cells immediately
post-HCT, improving persistence. Multiple infusions of cells will
also avoid the functional limitation of the donor T cells that
results from progressive expression of inhibitory molecules over
time (99, 136).

Current hurdles to augmenting HCT grafts for hematopoietic-
restricted minor H antigen-specific T cells include the relatively
limited number of suitable target minor H antigens that have
been discovered and characterized (Table 1) and technical issues
largely related to inadequate options for clinical-grade sorting of
rare cells. Streptamer technology is being evaluated for isolating
antigen-specific T cells (137–140). The technology is based on
the direct labeling of CD8+ T cells with HLA I-Streptamers
composed of peptide-loaded HLA I-Strep-tag fusion proteins
reversibly multimerized on magnetically labeled Strep-tactin.
After separation, the HLA I-Streptamers can be dissociated from
the positively selected cells by the addition of D-Biotin, allowing
for rapid enrichment of unlabeled antigen-specific T cells under
GMP conditions. However, in a clinical trial of Streptamer-
enriched multi-antigen-specific T cells to prevent complications
early after T cell-depleted HCT, neither tumor associated antigen
or minor H antigen-specific T cells could be confirmed in
the majority of antigen-specific T cell products or after HCT,
although EBV and CMV-specific T cells were readily detected in
the products and sometimes after HCT (140). The greater success
in isolating virus-specific T cells compared to minor H antigen-
or other tumor-associated antigen-specific T cells, may be due
to the relatively high frequencies of virus-specific T cells in the
repertoire of normal viral antigen-experienced donors.

Next-generation high-speed cell sorting technology may
solve the challenge of isolating very rare cells from donor
cell collections. For example, a novel cell sorting technology
called OrcaSortTM is being developed by OrcaBio. OrcaSortTM

uses fluorescent markers for identification of target cells and
high-speed laser pulses to sort cells in fully-enclosed, sterile,
disposable cassettes (141). The technology will first be evaluated
in clinical trials that require sorting of multiple cell populations
for GVHD reduction (NCT03802695, NCT01660607) but
could also be adapted to positive selection of antigen-specific
T cells.

An alternative strategy for enriching selected minor H
antigen-specific T cells in donor cell collections is to first
vaccinate the HCT donor against minor H antigens to generate
a memory T cell response and increase the frequency of
the minor H antigen-specific T cells (61). Shlomchik et al.
demonstrated that donor vaccination with recipient minor H
antigens, and subsequent transplantation of donor T memory
T cells, transferred leukemia- and pathogen-specific immunity
in murine bone marrow transplantation (BMT) recipients (61).
The transferred memory T cells expanded after BMT and
augmented GVL. This approach could be translated to humans
by vaccinating donors months before HCT or intended post-
HCT infusion and then specifically selecting the minor H
antigen T cells using a immunomagnetic bead-based technique,
such as Streptamer selection (137–140) or the Miltenyi Biotec
CliniMACs Cytokine Capture System (142, 143). Alternatively,
after donor vaccination with hematopoietic-restricted minor H

antigens, donor T cells could be collected and depleted of naïve
T cells to avoid GVHD (104), and the minor H antigen-specific
T cell enriched memory T cells could be delivered with or
following the stem cell graft. Minor H antigen vaccination of
donors is likely to be safe, given that clinical trials of vaccination
of HCT recipients against minor H antigens have been completed
without excess toxicity (82, 83). Donor vaccination could also
be employed to improve the efficacy of DLI to prevent or treat
post-HCT relapse by producing a product enriched for particular
minor H antigen-specific TM cells. The DLI product could be
further engineered by depletion of TN.

HEMATOPOIETIC CELL
TRANSPLANTATION FOR PEDIATRIC
LEUKEMIA IN THE CURRENT ERA AND
FUTURE

Allogeneic HCT is the current standard of care for pediatric
patients with very high-risk hematologic malignancies (1, 2).
The overall success of HCT as a treatment for pediatric
leukemia has improved, with reduced non-relapse mortality
rates (144) and leukemia-free survival rates in the range of 60–
80% (145, 146) in the current era. However, conditioning
regimens and GVHD have long lasting adverse effects,
particularly for the pediatric population who undergo significant
neurologic and physical development. Long-term effects of
HCT, particularly of conditioning and especially related to TBI,
include growth disturbance, hormone deficiencies, cataracts,
seizures, cerebrovascular events, dyslipidemia, and secondary
malignancies (12–16). GVHD can also lead to long-lasting
morbidity involving multiple organs, most commonly the skin,
gut, and liver, but also lungs, mouth, eyes and joints in the
chronic setting (15, 17).

The mortality and morbidity of HCT may be improved by
graft engineering and adjunctive T cell immunotherapy to reduce
GVHD and to augment GVL. Because T cell immunotherapy has
the potential to prevent relapse, it may permit de-escalation of
conditioning intensity, which will be critically important for the
youngest HCT recipients in whom myeloablative HCT can be
associated with devastating neurodevelopmental complications
(13). In infants, leukemia is often refractory to chemotherapy
and relapse occurs frequently (147). HCT is indicated for infants
with ALL in first remission with the highest risk of relapse,
and for those who achieve a second remission after relapse.
Unfortunately, the youngest infants with ALL generally have the
highest risk of relapse with chemotherapy alone, but also the
greatest risk of late effects of HCT conditioning. Because of this
combination of high risk from both disease and complications of
therapy, there is an urgent need to develop reduced toxicity HCT
strategies for infants, supplemented by add-back of minor H
antigen-specific T cells and/or post-HCT T cell immunotherapy
to prevent relapse.

The presence of detectable disease at the time of HCT
is consistently and strongly associated with an increased risk
of relapse post-HCT (6, 7). As such, other important recent
developments that enable reduction of conditioning intensity
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include sensitive techniques for detecting measurable residual
disease (MRD) and therapies for reducing MRD prior to
HCT. These advances are particularly important when one
contemplates HCT strategies that rely on the T cell-dependent
GVL effect, which is relatively delayed compared to the
immediate anti-leukemic effect of intensive conditioning. MRD
detection has moved from morphologic evaluation to the use
of flow cytometry or PCR, which have sensitivities of 0.1%
for AML and 0.01% for ALL (148, 149). Technologies to
detect even lower levels of disease have been developed and
the clinical implications are being studied. Next-generation
sequencing (NGS) measuring immunoglobulin heavy chain
(variable, diversity and joining) have been developed for ALL;
patients who are NGS negative prior to HCT have been shown
to have a reduced risk of relapse (150). NGS is also currently
being evaluated for AML (151, 152) and may prove useful for
risk stratification and perhaps monitoring, but is likely to be
complex (153). Highly sensitive MRD evaluation in the pre-
HCT period may be used to guide which pediatric patients
can undergo HCT with reduced intensity/toxicity conditioning
without an excessive risk of relapse, and which patients do
have a high risk of relapse and may benefit from the addition
of novel relapse prophylaxis, such as minor H antigen-specific
T cells. In cases where MRD is detected pre-HCT, new
targeted strategies, particularly CAR-T cell immunotherapy and
bispecific T cell engagers, can also produce deep MRD negative
remissions prior to HCT and thereby may improve post-HCT
prognosis (154–158).

Significant success has been achieved using CAR-T cell
immunotherapy targeting lineage-specific antigens to treat
pediatric and adult patients with acute leukemia. This is
highlighted by the efficacy of some CAR-T cell products targeting
CD19, an antigen expressed on normal and leukemic B cells
in some acute leukemias and lymphomas (154, 156). Patients
who have received effective CD19 CAR-T cell therapy develop
B cell aplasia and hypogammaglobulinemia as a result. Given
hypogammaglobulinemia can be supported with intravenous
immunoglobulin administration, and patients do not have
significant infectious complications (159), B cell aplasia is
not a major barrier for CD19 CAR-T cell immunotherapy.
Targeting myeloid-lineage antigens, such as CD33 or CD123,
is likely to be more problematic due to the risk of marrow
suppression or aplasia placing patients at risk for severe
associated complications including infection (160, 161). Minor H
antigen-targeted therapies are not suitable for use in patients who
have not received allogeneic HCT and therefore have a recipient
hematopoietic system. However, following HCT the presence of a
normal donor hematopoietic system lacking the minor H antigen
target limits the therapeutic targets to neoplastic cells or residual
recipient normal cells that are no longer necessary, and should
protect the recipient from marrow suppression, B cell aplasia,
and other hematopoietic complications. Additionally, many
CAR constructs incorporate non-human components, frequently
using murine derived svFc, which can be immunogenic
leading to a rejection response, whereas the TCR in minor
H antigen-specific T cells and TCR-T cell products are of

human origin and are inherently less immunogenic favoring
in vivo persistence (162). Lastly, although minor H antigen-
targeted therapy is restricted to patients with the restricting
HLA-allele and appropriate recipient-donor mismatch for
the polymorphism, minor H antigen-targeted therapy is not
limited to one leukemia subtype, in contrast to most CAR-T
cell immunotherapy.

Ultimately, superior survival with reduced morbidity after
pediatric HCT could be achieved by a combination of
(a) therapies to achieve remission without any detectable
disease, potentially including CAR-T cell therapy or other
immunotherapy (b) a reduced-intensity/toxicity conditioning
regimen, (c) a HCT graft selectively depleted of GVHD-inducing
T cells and augmented with T cells specific for a limited
number of hematopoietic restricted minor H antigens, and (d)
post-HCT minor H antigen-targeted T cell immunotherapy.
Although this vision has not yet been reached, and minor
H antigen-targeted T cell therapies are currently in early
phase clinical trials without proven benefit for pediatric
or other patients, steady progress is being made in the
fields of antigen discovery, graft engineering and genetically-
modified T cell therapy. We anticipate that these advances
will continue and come together to benefit children with very
high-risk leukemia.

CONCLUSIONS

Donor-derived T cell responses to minor H antigens with
hematopoietic-restricted expression are a key component of
effective GVL. Targeting leukemia-associated minor H antigens
with T cells in hematopoietic grafts and/or with post-HCT T
cell immunotherapy are potentially low-toxicity, high-efficacy
prophylactic and therapeutic strategies for pediatric patients.
Pre-clinical studies and clinical trials of T cell immunotherapies
to enhance the response to hematopoietic-restricted minor
H antigens are underway. These advancing technologies
should enable a reduction in HCT conditioning intensity
without sacrificing protection from post-HCT relapse, thereby
mitigating dangerous late effects of HCT for pediatric patients
with leukemia.
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