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ABSTRACT

The progressive reduction in estimated glomerular filtration rate (eGFR) resulting in chronic kidney disease (CKD) is
associated with increased risk of cardiovascular disease (CVD) (i.e., cardiorenal disease). Cardiorenal disease is
associated with poor outcomes, mainly due to increased cardiovascular (CV) complications and CV death. Data from
general population–based studies and studies of cohorts with CKD and/or CVD show that compared with
creatinine-based eGFR, cystatin C–based eGFR and creatinine plus cystatin C–based eGFR detect higher risks of adverse
CV outcomes and add predictive discrimination to current CVD risk scores. On the other hand, growing clinical evidence
supports kidney and CV protective effects of sodium–glucose cotransporter-2 (SGLT2) inhibitors in cardiorenal patients.
However, recent data suggest that some detrimental effects of SGLT2 inhibitors on skeletal muscle mass may lead to
overestimation of creatinine-based eGFR and subsequent misinterpretation of associated CV risk in patients treated
with these agents. Within this framework, we suggest the advisability of using cystatin C and/or creatinine plus cystatin
C–based eGFR for routine clinical practice in cardiorenal patients to more accurately stratify CV risk and evaluate the
kidney and CV protective effects of SGLT2 inhibitors. In this regard, we make a call to action to investigate the protective
effects of these pharmacological agents using cystatin C–based eGFR.
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THE GROWING BURDEN OF CARDIOVASCULAR
DISEASE (CVD) IN CHRONIC KIDNEY DISEASE
(CKD)

CKD has amajor effect on global health, both as a direct cause of
global morbidity and mortality and as an important risk factor
for CVD either atherosclerotic (e.g. ischaemic heart disease and
cerebrovascular disease) or non-atherosclerotic [e.g. heart fail-
ure (HF) and cardiac arrhythmias] [1]. In fact, the prevalence of
CVD in people with CKD is ≈65% [2]. Therefore, CKD, defined as

decreased kidney function and/or increased albuminuria, is now
recognized as a cardiovascular (CV) risk factor in routine clinical
practice [3].

Many are the factors that facilitate CVD in CKD (Fig. 1).
Among patients with CKD, there is a high prevalence of tra-
ditional atherosclerotic risk factors, including diabetes melli-
tus, hypertension, dyslipidaemia and obesity [4, 5]. Further-
more, patients with CKD are also particularly exposed to
other emerging CV damaging factors, including oxidative stress,
inflammation and fibrosis, as well as arterial stiffening and
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Figure 1: Groups of factors that facilitate the development of CVD in patients with CKD.

calcification. Additionally, in cases of advanced CKD, neurohu-
moral activation and fluid retention as well as uraemia-related
toxins play a major role in the severity of CVD, namely HF [4, 6].
Finally, factors related to kidney replacement therapy, in partic-
ular to haemodialysis, also increase the risk of CVD [7].

CVD is the leading cause of morbidity and death in CKD pa-
tients [8, 9]. Even after adjustment for known CVD risk factors,
CVD morbidity and mortality risk progressively increases with
worsening CKD [10], especially as estimated glomerular filtration
rate (eGFR) declines below 60ml/min/1.73m2 [11]. This indepen-
dent association has been confirmed recently using Mendelian
randomization analyses [12]. Finally, the additional costs associ-
ated with management of the associated CV morbidity and re-
lated hospitalizations in patients with CKD are substantial and
increase with disease severity [13].

As recently estimated in the USA [14], with an ageing popu-
lation, the number of patients with multimorbid CKD and CVD
will increase, making clinical management more complex and
increasing the economic and social burdens on healthcare sys-
tems. Prevalence is predicted to increase across all comorbid dis-
ease states, with CKD and comorbid HF having the largest per-
centage increase of 101% between 2021 and 2030 [14]. In paral-
lel, cumulative total direct healthcare costs from 2021 to 2025
and 2030 in patients with CKD and HF have been estimated at
$4.2 billion and $10.2 billion, respectively, which gives an idea of
the growing economic impact of the concurrence of these con-
ditions on the healthcare system [14].

Therefore, early and accurate CV risk stratification and
proactive management in CKD patients, namely in those with
HF, should be a priority for healthcare providers to alleviate its
clinical, economic and societal burdens [15]. As recently em-
phasised in a position statement by the Council of the Euro-
pean Renal Association, this requires not only estimation of GFR,
but also assessment of albumin in urine [16]. In this concep-

tual framework, we propose to reconsider the routine estima-
tion of the GFR, using cystatin C as a marker instead of creati-
nine. The proposal is based on accumulated evidence that sug-
gests eGFR calculated with creatinine offers poorer CV prognos-
tic performance in CKD patients than eGFR calculated with cys-
tatin C alone or with creatinine plus cystatin C and that this
difference may impact on the way CV and kidney protective ef-
fects of recently incorporated agents such as sodium–glucose
cotransporter-2 (SGLT2) inhibitors are evaluated.

EQUATIONS FOR GFR ESTIMATION AND CVD
RISK STRATIFICATION

The eGFR is the clinical standard parameter for the assessment
and staging of kidney dysfunction in CKD [17, 18]. The Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equations
have beenwidely used to estimate GFR,measuring serum creati-
nine only (eGFRcr), serum cystatin C only (eGFRcys) or measuring
the two serum markers (eGFRcr/cys) [19, 20].

Several observational studies have been performed in gen-
eral populations [13, 21–23] and in cohorts of patients with
CKD and/or CVD [21, 24–27] to assess the CV prognostic value
of the CKD-EPI eGFRcys and eGFRcr/cys equations and compare
them with eGFRcr. The findings of these studies show that
both eGFRcys and eGFRcr/cys yielded better measurements of per-
formance (discrimination, calibration and reclassification) [28].
These results have been confirmed in a meta-analysis including
11 general population studies and 5 studies in CKD patients [29].
Collectively, these data suggest that eGFR measuring cystatin C
may be preferred to accurately estimate the risk of CVD and as-
sociated outcomes in patients with CKD.

Regarding the risk of HF, a single example analysing the
data from the Cardiovascular Health Study [24] can support the
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Table 1: Associations of decreased eGFR (<60 ml/min/1.73 m2) by creatinine and cystatin C with HF in the Cardiovascular Heart Study.

Demographic-adjusted HR (95% CI)a Fully adjusted HR (95% CI)b

CKD-EPI eGFR
not decreased

Decreased
CKD-EPI eGFRcr

Decreased
CKD-EPI
eGFRcys

Decreased
CKD-EPI
eGFRcr/cys

CKD-EPI eGFR
not decreased

Decreased
CKD-EEPI
eGFRcr

Decreased
CKD-EPI
eGFRcys

Decreased
CKD-EPI
eGFRcr/cys

1.00 (reference) 1.08 (0.91–1.27) 2.12 (1.68–2.66) 1.91 (1.64–2.23) 1.00 (reference) 0.99 (0.84–1.18) 1.69 (1.33–2.13) 1.43 (1.22–1.67)

aAdjusted for age, race and gender.
bAdjusted for age, race, gender, prevalent diabetes, prevalent hypertension, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, C-reactive protein
and prevalent CVD.
The data were adapted from Peralta et al. [24].

previous statement. The study included 5160 participants (mean
age 72 ± 5 years, 84%White, 57%women and 24%with prevalent
CVD) followed for a mean period of 12.2 years. Compared with
subjects without CKD (eGFR ≥60 ml/min/1.73 m2), both the de-
mographic and the fully adjusted hazard ratios (HRs) for incident
HF in subjects with CKD (eGFR <60 ml/min/1.73 m2) changed
non-significantly for eGFRcr (+8% and −1%, respectively) but in-
creased significantly for eGFRcys (+112% and +68%, respectively)
and for eGFRcr/cys (+91% and +43%, respectively) (Table 1) [24].
These data suggest that among adults diagnosed with CKD, the
long-term risk of HF is better identified using the eGFRcys or
eGFRcr/cys equations than the eGFRcr equation.

There aremethodological andmechanistic data to argue that
reduced eGFRcys values may have an important role in identify-
ing CKD patients who are at the highest risk of HF. First, cys-
tatin C is a marker of kidney function that approximates di-
rect measures of GFR more precisely than creatinine because
its serum concentrations are independent of muscle mass or
diet [30, 31]. In the setting of patients with CKD and HF this can
be particularly relevant because muscle wasting and sarcope-
nia are highly prevalent in both conditions [32, 33]. Second, it
is known that higher levels of serum cystatin C, but not serum
creatinine, are associated with an increased risk of HF [34–36].
Third, it has been reported that in patients with HF with pre-
served ejection fraction (HFpEF), increased serum cystatin C is
associated with diastolic dysfunction and alterations in colla-
gen metabolism (i.e. reduced extracellular degradation of colla-
gen fibres bymetalloproteinases) involved inmyocardial fibrosis
independent of eGFR [37]. Finally, the shrunken pore syndrome
(SPS) has been found to be related to poor outcomes (i.e. mortal-
ity rate and HF hospitalization) in HFpEF, where it can occur in
up to 25% of patients [38]. SPS is a phenotype of glomerular fil-
tration dysfunctionmainlymanifested by the impaired filtration
of moderate-sized molecules (e.g. cystatin C, a 13-kDa protein)
due to the narrowing pore size between endothelial cells [39]
and defined by eGFRcys being <60% of eGFRcr in the absence of
extrarenal influences on the serum levels of cystatin C or crea-
tinine [40].

There is an additional aspect that deserves to be considered.
Available data beginning at age 18 years through age 80 years
indicate that males and African Americans have more skele-
tal muscle mass than females and other ethnic groups across
the entire age range, even adjusting for weight and height [41].
In this regard, it has been reported recently that whereas the
use of serum creatinine to estimate GFR without race (or ge-
netic ancestry) introduced systematic misclassification, the es-
timation of GFR with the use of cystatin C generated simi-
lar results while eliminating the negative consequences of the
current race-based approaches [42]. Therefore, the use of eGFRcys

without the inclusion of race in the equation may be especially

indicated to accurately assess the very high CVD risk reported
in African Americans with CKD [43]. Finally, a recent published
study including 227 643 patients in Sweden showed that GFR es-
timation using the European Kidney Function Consortium equa-
tion with serum cystatin C instead of serum creatinine pre-
sented similar accuracy but allowed one to safely exclude not
only race, but also sex, thus allowing for a more complete exclu-
sion of the potential influence of these two aspects in skeletal
muscle mass [44].

EQUATIONS FOR GFR ESTIMATION
AND ORGAN-PROTECTIVE EFFECTS
OF SGLT2 INHIBITORS

Considering the expense and limited availability of cystatin C
assays in routine laboratories, and that its serum level can be
influenced by non-eGFR-dependent factors (e.g. steroid treat-
ment, thyroid dysfunction, adiposity and active inflammation),
one should balance the cost and benefits of cystatin C–based
equations to estimate CV risk. This aspect can be a limiting fac-
tor when considering the general population under the perspec-
tive of public health, but in the cardiorenal population, accurate
CV risk stratification is required and this limitation is overcome
by its potential advantages. One example may illustrate this
notion.

Increasing observations from clinical trials and subse-
quent detailed analyses have shown that the kidney- and CV-
protective effects of SGLT2 inhibitors are consistent acrossmany
patient subgroups, including those with and without type 2 di-
abetes mellitus, at different stages of CKD and in patients with
andwithout HF [45–47].A recent analysis has shown that extrap-
olating the results of reported CV and kidney outcomes trials for
SGLT2 inhibitors to a representative US population would likely
result in a substantial reduction in disease prevalence, the num-
ber of hospitalizations and the associated costs over the next
decade, especially in the case of CKD with HF [14]. Thus SGLT2
inhibitors emerge as a foundational therapy for preventing CKD
progression and its associated risk of CVD.

However, most studies reporting the beneficial kidney and
CV effects of SGLT2 inhibitors have used eGFRcr, and recent
available clinical evidence suggests that treatment with these
agents may result in a loss of skeletal muscle mass (Table 2)
[48–55]. These results should be interpreted with caution, as the
association between SGLT2 inhibitors and the loss of skeletal
muscle derives from small observational and mostly single-arm
studies that have mainly used electrical bioimpedance for body
composition assessment [48–55]. Nevertheless, it is important to
mention that a recent meta-analysis of seven randomized clini-
cal trials in patients with type 2 diabetes mellitus, including 206
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Table 2: Effects of treatment with SGLT2 inhibitors on skeletal muscle mass in patients with type 2 diabetes mellitus.

Studies showing a significant reduction in skeletal muscle mass
Studies showing non-significant changes in

skeletal muscle mass

Study with
canagliflozina

Study with
empagliflozina

Studies with
ipragliflozina

Studies with
luseogliflozinb

Studies with
dapagliflozina

Study with
ipragliflozina

Seko et al. [48] Goto et al. [49] Seko et al. [48]
Yamamoto et al. [50]

Bouchi et al. [51]
Sasaki et al. [52]

Tobita et al. [53]
Sugiyama et al. [54]

Miyake et al. [55]

Skeletal muscle mass was assessed by abioelectrical impedance or by bdual-energy X-ray absorptiometry.

Figure 2: Effects of SGLT2 inhibitors on skeletal muscle that may result in creatinine-based overestimation of GFR.

SGLT2 inhibitor users and 201 non-users, showed that SGLT2 in-
hibitors significantly reduced skeletal muscle mass compared
with other anti-hyperglycaemic agents [56]. In fact, as a catabolic
response to renal glucose loss and reduction of glycaemia, SGLT2
inhibitors may induce skeletal muscle degradation to increase
the release of amino acids into the systemic circulation, which
are transported to the liver as substrates for gluconeogenesis,
thereby preventing hypoglycaemia [57] (Fig. 2). Assuming this
hypothesis, the effect of SGLT2 inhibitors on skeletal muscle
mass renders serum creatinine (a surrogate of muscle mass)-
based kidney endpoints questionable (i.e. due to overestima-
tion of eGFR), especially in cardiorenal patients that exhibit
loss of muscle mass and sarcopenia [58] (Fig. 2). In support of
this possibility, it has been recently reported in patients with
type 2 diabetes mellitus, presenting with and without CKD and
CVD, that those treated during a mean 69.5 ± 36.2 weeks with
SGLT2 inhibitors (i.e. dapagliflozin or empagliflozin) exhibited
after treatment significantly higher eGFRcr but similar eGFRcys

when compared with the control group not treated with SGLT2
inhibitors [59]. Although this study has an observational de-
sign with a small sample size (90 patients with type 2 diabetes

mellitus) and an important imbalance between groups in terms
of history of CVD and CKD staging, the discrepancy between
eGFRcr and eGFRcys offers intriguing possibilities on the real kid-
ney function effects of SGLT2 inhibitors that will need further
confirmation in clinical trials focused on this mechanism [59].
Of interest, the landmark outcome trials of empagliflozin [60],
canagliflozin [61] and dapagliflozin [62] found that at the end of
the studies, the values of eGFRcr in the treatment groups were
2–4ml/min/1.73 m2 higher than those in the placebo groups and
could be declared to be statistically significant.

These aspects may influence the interpretation of the true
effects of SGLT2 inhibitors on CV risk and outcomes. In fact, in
the study previously mentioned [59], the post-treatment distri-
bution of CKD stages based on eGFRcr was different between
the SGLT2 inhibitors group and the non-SGLT2 inhibitors group,
where the SGLT2 inhibitors group had a lower CKD stage. In
contrast, there was no statistical difference in CKD stage based
on eGFRcys between these two groups. The relevance of this
issue is given by the data reported by Shlipak et al. [28] showing
in 11 general population studies (with 90 750 participants)
and 5 studies of cohorts with CKD (2960 participants) that the
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categorization of CKD stages by eGFRcys detected increased risks
of adverse CV and other outcomes that are not detected with
eGFRcr-based stratification.

CONCLUSIONS AND PERSPECTIVES

Accumulating evidence suggests that the use of cystatin C
(alone or in combination with creatinine) to calculate the eGFR
provides a more accurate detection and staging of CKD and
strengthens the associations between CKD stages and the risks
of CVD and CV death, as well as of total death and kidney fail-
ure, across diverse populations. These aspects have a major ef-
fect on disease labelling, risk stratification, diagnostic proce-
dures and therapeutic interventions, thus becoming an inte-
gral component of clinical nephrology [63]. Beyond the expenses
due to the use of cystatin C to estimate GFR, its incorporation
in routine clinical practice should be considered as a more ef-
ficient strategy, as more patients will benefit from early man-
agement of their cardiorenal risks. Where costs are an issue,
eGFRcys should be chosen in specific situations such as eGFRcr

>60 ml/min/1.73 m2 or 45–59 ml/min/1.73 m2 at the initial di-
agnosis of CKD and in patients with intense sarcopenia, chronic
illness ormalnutrition, as suggested by the KDIGOControversies
Conference 2021 [15, 63].

SGLT2 inhibitors have emerged as practice-changing treat-
ments for cardiorenal patients with or without type 2 diabetes
mellitus. However, post hoc analyses of existing trials or new tri-
als based on estimations of GFR independent of muscle mass
(i.e. calculation of eGFR based on cystatin C) may provide amore
accurate assessment of the proposed kidney and CV protective
effects of SGLT2 inhibitors. Although some work has been car-
ried out in this regard, further studies are greatly needed and
we thus make a call to action to investigate in this field.

These considerations fit well with strategies of precision
medicine that have been proposed to improve kidney patient
care on the basis of exploring novel or incorporating existing
biomarkers that stratify patients with greater accuracy with re-
spect to their future kidney and CV risk (prognostic) and that are
also able to predict the response to nephroprotective and car-
dioprotective treatments (predictive) [64, 65]. The content of this
review supports the notion that the time has come to step for-
ward and consider cystatin C–based eGFR as one of the biomark-
ers for precisionmedicine in cardiorenal patients.We anticipate
that routine use of cystatin C to estimate GFRwill help in obtain-
ing more robust conclusions on the effects of novel kidney and
cardioprotective drugs and, as a consequence, facilitate better
personalization of their prescription.
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