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Abstract

A new algorithmic approach to personality prototyping based on Big Five traits was applied

to a large representative and longitudinal German dataset (N = 22,820) including behavior,

personality and health correlates. We applied three different clustering techniques, latent

profile analysis, the k-means method and spectral clustering algorithms. The resulting clus-

ter centers, i.e. the personality prototypes, were evaluated using a large number of internal

and external validity criteria including health, locus of control, self-esteem, impulsivity, risk-

taking and wellbeing. The best-fitting prototypical personality profiles were labeled accord-

ing to their Euclidean distances to averaged personality type profiles identified in a review of

previous studies on personality types. This procedure yielded a five-cluster solution: resil-

ient, overcontroller, undercontroller, reserved and vulnerable-resilient. Reliability and con-

struct validity could be confirmed. We discuss wether personality types could comprise a

bridge between personality and clinical psychology as well as between developmental psy-

chology and resilience research.

Introduction

Although documented theories about personality types reach back more than 2000 years (i.e.

Hippocrates’ humoral pathology), and stereotypes for describing human personality are also

widely used in everyday psychology, the descriptive and variable-oriented assessment of per-

sonality, i.e. the description of personality on five or six trait domains, has nowadays consoli-

dated its position in modern personality psychology.

In recent years, however, the person-oriented approach, i.e. the description of an individual

personality by its similarity to frequently occurring prototypical expressions, has amended the

variable-oriented approach with the addition of valuable insights into the description of per-

sonality and the prediction of behavior. Focusing on the trait configurations, the person-ori-

ented approach aims to identify personality types that share the same typical personality

profile [1].
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Nevertheless, the direct comparison of the utility of person-oriented vs. variable-oriented

approaches to personality description yielded mixed results. For example Costa, Herbst,

McCrae, Samuels and Ozer [2] found a higher amount of explained variance in predicting

global functioning, geriatric depression or personality disorders for the variable-centered

approach using Big Five personality dimensions. But these results also reflect a methodological

caveat of this approach, as the categorical simplification of dimensionally assessed variables

logically explains less variance. Despite this, the person-centered approach was found to

heighten the predictability of a person’s behavior [3, 4] or the development of adolescents in

terms of internalizing and externalizing symptoms or academic success [5, 6], problem behav-

ior, delinquency and depression [7] or anxiety symptoms [8], as well as stress responses [9]

and social attitudes [10]. It has also led to new insights into the function of personality in the

context of other constructs such as adjustment [2], coping behavior [11], behavioral activation

and inhibition [12], subjective and objective health [13] or political orientation [14], and has

greater predictive power in explaining longitudinally measured individual differences in more

temperamental outcomes such as aggressiveness [15].

However, there is an ongoing debate about the appropriate number and characteristics of

personality prototypes and whether they perhaps constitute an methodological artifact [16].

With the present paper, we would like to make a substantial contribution to this debate. In

the following, we first provide a short review of the personality type literature to identify per-

sonality types that were frequently replicated and calculate averaged prototypical profiles

based on these previous findings. We then apply multiple clustering algorithms on a large Ger-

man dataset and use those prototypical profiles generated in the first step to match the results

of our cluster analysis to previously found personality types by their Euclidean distance in the

5-dimensional space defined by the Big Five traits. This procedure allows us to reliably link the

personality prototypes found in our study to previous empirical evidence, an important analy-

sis step lacking in most previous studies on this topic.

The empirical ground of personality types

The early studies applying modern psychological statistics to investigate personality types

worked with the Q-sort procedure [1, 15, 17], and differed in the number of Q-factors. With

the Q-Sort method, statements about a target person must be brought in an order depending

on how characteristic they are for this person. Based on this Q-Sort data, prototypes can be

generated using Q-Factor Analysis, also called inverse factor analysis. As inverse factor analysis

is basically interchanging variables and persons in the data matrix, the resulting factors of a Q-

factor analysis are prototypical personality profiles and not hypothetical or latent variable

dimensions. On this basis, personality types (groups of people with similar personalities) can

be formed in a second step by assigning each person to the prototype with whose profile his or

her profile correlates most closely. All of these early studies determined at least three proto-

types, which were labeled resilient, overcontroler and undercontroler grounded in Block‘s the-

ory of ego-control and ego-resiliency [18]. According to Jack and Jeanne Block’s decade long

research, individuals high in ego-control (i.e. the overcontroler type) tend to appear con-

strained and inhibited in their actions and emotional expressivity. They may have difficulty

making decisions and thus be non-impulsive or unnecessarily deny themselves pleasure or

gratification. Children classified with this type in the studies by Block tend towards internaliz-

ing behavior. Individuals low in ego-control (i.e. the undercontroler type), on the other hand,

are characterized by higher expressivity, a limited ability to delay gratification, being relatively

unattached to social standards or customs, and having a higher propensity to risky behavior.

Children classified with this type in the studies by Block tend towards externalizing behavior.
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Individuals high in Ego-resiliency (i.e. the resilient type) are postulated to be able to

resourcefully adapt to changing situations and circumstances, to tend to show a diverse reper-

toire of behavioral reactions and to be able to have a good and objective representation of the

“goodness of fit” of their behavior to the situations/people they encounter. This good adjust-

ment may result in high levels of self-confidence and a higher possibility to experience positive

affect.

Another widely used approach to find prototypes within a dataset is cluster analysis. In the

field of personality type research, one of the first studies based on this method was conducted

by Caspi and Silva [19], who applied the SPSS Quick Cluster algorithm to behavioral ratings of

3-year-olds, yielding five prototypes: undercontrolled, inhibited, confident, reserved, and well-

adjusted.

While the inhibited type was quite similar to Block‘s overcontrolled type [18] and the well-

adjusted type was very similar to the resilient type, two further prototypes were added: confi-

dent and reserved. The confident type was described as easy and responsive in social interac-

tion, eager to do exercises and as having no or few problems to be separated from the parents.

The reserved type showed shyness and discomfort in test situations but without decreased

reaction speed compared to the inhibited type. In a follow-up measurement as part of the Dun-

edin Study in 2003 [20], the children who were classified into one of the five types at age 3

were administered the MPQ at age 26, including the assessment of their individual Big Five

profile. Well-adjusteds and confidents had almost the same profiles (below-average neuroti-

cism and above average on all other scales except for extraversion, which was higher for the

confident type); undercontrollers had low levels of openness, conscientiousness and openness

to experience; reserveds and inhibiteds had below-average extraversion and openness to expe-

rience, whereas inhibiteds additionally had high levels of conscientiousness and above-average

neuroticism.

Following these studies, a series of studies based on cluster analysis, using the Ward’s fol-

lowed by K-means algorithm, according to Blashfield & Aldenderfer [21], on Big Five data

were published. The majority of the studies examining samples with N < 1000 [5, 7, 22–26]

found that three-cluster solutions, namely resilients, overcontrollers and undercontrollers, fit-

ted the data the best. Based on internal and external fit indices, Barbaranelli [27] found that a

three-cluster and a four-cluster solution were equally suitable, while Gramzow [28] found a

four-cluster solution with the addition of the reserved type already published by Caspi et al.

[19, 20]. Roth and Collani [10] found that a five-cluster solution fitted the data the best. Using

the method of latent profile analysis, Merz and Roesch [29] found a 3-cluster, Favini et al. [6]

found a 4-cluster solution and Kinnunen et al. [13] found a 5-cluster solution to be most

appropriate.

Studies examining larger samples of N > 1000 reveal a different picture. Several favor a

five-cluster solution [30–34] while others favor three clusters [8, 35]. Specht et al. [36] exam-

ined large German and Australian samples and found a three-cluster solution to be suitable for

the German sample and a four-cluster solution to be suitable for the Australian sample. Four

cluster solutions were also found to be most suitable to Australian [37] and Chinese [38] sam-

ples. In a recent publication, the authors cluster-analysed very large datasets on Big Five per-

sonality comprising more than 1,5 million online participants using Gaussian mixture models

[39]. Albeit their results “provide compelling evidence, both quantitatively and qualitatively,

for at least four distinct personality types”, two of the four personality types in their study had

trait profiles not found previously and all four types were given labels unrelated to previous

findings and theory. Another recent publication [40] cluster-analysing data of over 270,000

participants on HEXACO personality “provided evidence that a five-profile solution was opti-

mal”. Despite limitations concerning the comparability of HEXACO trait profiles with FFM
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personality type profiles, the authors again decided to label their personality types unrelated to

previous findings instead using agency-communion and attachment theories.

We did not include studies in this literature review, which had fewer than 199 participants

or those which restricted the number of types a priori and did not use any method to compare

different clustering solutions. We have made these decisions because a too low sample size

increases the probability of the clustering results being artefacts. Further, a priori limitation of

the clustering results to a certain number of personality types is not well reasonable on the

base of previous empirical evidence and again may produce artefacts, if the a priori assumed

number of clusters does not fit the data well.

To gain a better overview, we extracted all available z-scores from all samples of the above-

described studies. Fig 1 shows the averaged z-scores extracted from the results of FFM cluster-

ing solutions for all personality prototypes that occurred in more than one study. The error

bars represent the standard deviation of the distribution of the z-scores of the respective trait

within the same personality type throughout the different studies. Taken together the resilient

type was replicated in all 19 of the mentioned studies, the overcontroler type in 16, the under-

controler personality type in 17 studies, the reserved personality type was replicated in 6 differ-

ent studies, the confident personality type in 4 and the non-desirable type was replicated twice.

Three implications can be drawn from this figure. First, although the results of 19 studies

on 26 samples with a total N of 1,560,418 were aggregated, the Big Five profiles for all types
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Fig 1. Average Big Five z-scores of personality types found in previous literature. Average Big Five z-scores of personality types based on clustering of FFM datasets

with N� 199 that were replicated at least once. Error bars indicate the standard deviation of the repective trait within the respective personality type found in the

literature [5, 6, 10, 22–25, 27–31, 33–36, 38, 39, 41].

https://doi.org/10.1371/journal.pone.0244849.g001
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can still be clearly distinguished. In other words, personality types seem to be a phenomenon

that survives the aggregation of data from different sources. Second, there are more than three

replicable personality types, as there are other replicated personality types that seem to have a

distinct Big Five profile, at least regarding the reserved and confident personality types. Third

and lastly, the non-desirable type seems to constitute the opposite of the resilient type. Looking

at two-cluster solutions on Big Five data personality types in the above-mentioned literature

yields the resilient opposed to the non-desirable type. This and the fact that it was only repli-

cated twice in the above mentioned studies points to the notion that it seems not to be a dis-

tinct type but rather a combined cluster of the over- and undercontroller personality types.

Further, both studies with this type in the results did not find either the undercontroller or the

overcontroller cluster or both. Taken together, five distinct personality types were consistently

replicated in the literature, namely resilient, overcontroller, undercontroller, reserved and con-

fident. However, inferring from the partly large error margin for some traits within some pro-

totypes, not all personality traits seem to contribute evenly to the occurrence of the different

prototypes. While for the overcontroler type, above average neuroticism, below average extra-

version and openness seem to be distinctive, only below average conscientiousness and agree-

ableness seemed to be most characteristic for the undercontroler type. The reserved prototype

was mostly characterized by below average openness and neuroticism with above average con-

scientiousness. Above average extraversion, openness and agreeableness seemed to be most

distinctive for the confident type. Only for the resilient type, distinct expressions of all Big Five

traits seemed to be equally significant, more precisely below average neuroticism and above

average extraversion, openness, agreeableness and conscientiousness.

Research gap and novelty of this study

The cluster methods used in most of the mentioned papers were the Ward’s followed by K-

means method or latent profile analysis. With the exception of Herzberg and Roth [30], Herz-

berg [33], Barbaranelli [27] and Steca et. al. [25], none of the studies used internal or external

validity indices other than those which their respective algorithm (in most cases the SPSS soft-

ware package) had already included. Gerlach et al. [39] used Gaussian mixture models in com-

bination with density measures and likelihood measures.

The bias towards a smaller amount of clusters resulting from the utilization of just one rep-

lication index, e.g. Cohen’s Kappa calculated by split-half cross-validation, which was ascer-

tained by Breckenridge [42] and Overall & Magee [43], is probably the reason why a three-

cluster solution is preferred in most studies. Herzberg and Roth [30] pointed to the study by

Milligan and Cooper [44], which proved the superiority of the Rand index over Cohen’s

Kappa and also suggested a variety of validity metrics for internal consistency to examine the

construct validity of the cluster solutions.

Only a part of the cited studies had a large representative sample of N> 2000 and none of

the studies used more than one clustering algorithm. Moreover, with the exception of Herz-

berg and Roth [30] and Herzberg [33], none of the studies used a large variety of metrics for

assessing internal and external consistency other than those provided by the respective cluster-

ing program they used. This limitation further adds up to the above mentioned bias towards

smaller amounts of clusters although the field of cluster analysis and algorithms has developed

a vast amount of internal and external validity algorithms and criteria to tackle this issue. Fur-

ther, most of the studies had few or no other assessments or constructs than the Big Five to

assess construct validity of the resulting personality types. Herzberg and Roth [30] and Herz-

berg [33] as well, though using a diverse variety of validity criteria only used one clustering

algorithm on a medium-sized dataset with N < 2000.
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Most of these limitations also apply to the study by Specht et. al. [36], which investigated

two measurement occasions of the Big Five traits in the SOEP data sample. They used only one

clustering algorithm (latent profile analysis), no other algorithmic validity criteria than the

Bayesian information criterion and did not utilize any of the external constructs also assessed

in the SOEP sample, such as mental health, locus of control or risk propensity for construct

validation.

The largest sample and most advanced clustering algorithm was used in the recent study by

Gerlach et al. [39]. But they also used only one clustering algorithm, and had no other variables

except Big Five trait data to assess construct validity of the resulting personality types.

The aim of the present study was therefore to combine different methodological approaches

while rectifying the shortcomings in several of the studies mentioned above in order to answer

the following exploratory research questions: Are there replicable personality types, and if so,

how many types are appropriate and in which constellations are they more (or less) useful

than simple Big Five dimensions in the prediction of related constructs?

Three conceptually different clustering algorithms were used on a large representative data-

set. The different solutions of the different clustering algorithms were compared using

methodologically different internal and external validity criteria, in addition to those already

used by the respective clustering algorithm.

To further examine the construct validity of the resulting personality types, their predictive

validity in relation to physical and mental health, wellbeing, locus of control, self-esteem,

impulsivity, risk-taking and patience were assessed.

Mental health and wellbeing seem to be associated mostly with neuroticism on the variable-

oriented level [45], but on a person-oriented level, there seem to be large differences between

the resilient and the overcontrolled personality type concerning perceived health and well-

being beyond mean differences in neuroticism [33]. This seems also to be the case for locus of

control and self-esteem, which is associated with neuroticism [46] and significantly differs

between resilient and overcontrolled personality type [33]. On the other hand, impulsivity and

risk taking seem to be associated with all five personality traits [47] and e.g. risky driving or

sexual behavior seem to occur more often in the undercontrolled personality type [33, 48].

We chose these measures because of their empirically known differential associations to Big

Five traits as well as to the above described personality types. So this both offers the opportu-

nity to have an integrative comparison of the variable- and person-centered descriptions of

personality and to assess construct validity of the personality types resulting from our analyses.

Materials and methods

The acquisition of the data this study bases on was carried out in accordance with the princi-

ples of the Basel Declaration and recommendations of the “Principles of Ethical Research and

Procedures for Dealing with Scientific Misconduct at DIW Berlin”. The protocol was approved

by the Deutsches Institut für Wirtschaftsforschung (DIW).

Sample

The data used in this study were provided by the German Socio-Economic Panel Study

(SOEP) of the German institute for economic research [49]. Sample characteristics are shown

in Table 1. The overall sample size of the SOEP data used in this study, comprising all individ-

uals who answered at least one of the Big-Five personality items in 2005 and 2009, was 25,821.

Excluding all members with more than one missing answers on the Big Five assessment or

intradimensional answer variance more than four times higher than the sample average

resulted in a total Big Five sample of N = 22,820, which was used for the cluster analyses.
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14,048 of these individuals completed, in addition to the Big Five, items relevant to further

constructs examined in this study that were assessed in other years. The 2013 SOEP data Big

Five assessment was used as a test sample to examine stability and consistency of the final clus-

ter solution.

Measures

The Big Five were assessed in 2005 2009 and 2013 using the short version of the Big Five inven-

tory (BFI-S). It consists of 15 items, with internal consistencies (Cronbach’s alpha) of the scales

ranging from .5 for openness to .73 for openness [50]. Further explorations showed strong

robustness across different assessment methods [51].

To measure the predictive validity, several other measures assessed in the SOEP were

included in the analyses. In detail, these were:

Patience. Patience was assessed in 2008 with one item: “Are you generally an impatient

person, or someone who always shows great patience?”

Risk taking. Risk-taking propensity was assessed in 2009 by six items asking about the

willingness to take risks while driving, in financial matters, in leisure and sports, in one’s occu-

pation (career), in trusting unknown people and the willingness to take health risks, using a

scale from 0 (risk aversion) to 10 (fully prepared to take risks). Cronbach’s alpha was .82 for

this scale in the current sample.

Impulsivity/Spontaneity. Impulsivity/spontaneity was assessed in 2008 with one item:

Do you generally think things over for a long time before acting–in other words, are you not

impulsive at all? Or do you generally act without thinking things over for long time–in other

words, are you very impulsive?

Affective and cognitive wellbeing. Affect was assessed in 2008 by four items asking about

the amount of anxiety, anger, happiness or sadness experienced in the last four weeks on a

scale from 1 (very rare) to 5 (very often). Cronbach’s alpha for this scale was .66. The cognitive

satisfaction with life was assessed by 10 items asking about satisfaction with work, health,

sleep, income, leisure time, household income, household duties, family life, education and

housing, with a Cronbach’s alpha of .67. The distinction between cognitive and affective well-

being stems from sociological research based on constructs by Schimmack et al. [50].

Locus of control. The individual attitude concerning the locus of control, the degree to

which people believe in having control over the outcome of events in their lives opposed to

being exposed to external forces beyond their control, was assessed in 2010 with 10 items,

comprising four positively worded items such as “My life’s course depends on me” and six

Table 1. Sample characteristics.

Type SOEP Wave N Gender Age (years)

Personality Type Derivation Sample 2005, 2009 Total 25,821 51,8% F M = 48.8, SD = 18.1, Rg = 17–100

Included 22,820 51,8% F M = 48,6, SD = 18.0, Rg = 17–99

Test Sample 2013 Total 19,982 53.2% F M = 52.3, SD = 17.9, Rg = 18–103

Included 17,549 53.2% F M = 52.1, SD = 17.8, Rg = 18–103

Longitudinal Construct Validity Sample 2008, 2009, 2010 Total 14,048 52.0% F M = 50.2, SD = 16.8, Rg = 20–98

Included 14,048

Exclusion of participants in the derivation and test samples based on missing answers or intradimensional answer variance more than four times higher than the sample

average on the Big Five assessment. Longitudinal construct validity sample consistent of participants with available data on assessments of patience, risk taking,

impulsivity, affective and cognitive wellbeing, locus of control, self-esteem and health. SOEP = German Socio-Economic Panel, M = mean, SD = standard deviation,

Rg = Range, F = female.

https://doi.org/10.1371/journal.pone.0244849.t001
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negatively worded items such as “Others make the crucial decisions in my life”. Items were

rated on a 7-point scale ranging from “does not apply” to “does apply”. Cronbach’s alpha in

the present sample for locus of control was .57.

Self-esteem. Global self-esteem–a person’s overall evaluation or appraisal of his or her

worth–was measured in 2010 with one item: “To what degree does the following statement

apply to you personally?: I have a positive attitude toward myself”.

Health. To assess subjective health, the 12-Item Short Form Health Survey (SF-12) was

integrated into the SOEP questionnaire and assessed in 2002, 2004, 2006, 2008 and 2010. In

the present study, we used the data from 2008 and 2010. The SF-12 is a short form of the SF-

36, a self-report questionnaire to assess the non-disease-specific health status [52]. Within the

SF-12, items can be grouped onto two subscales, namely the physical component summary

scale, with items asking about physical health correlates such as how exhausting it is to climb

stairs, and the mental component summary scale, with items asking about mental health corre-

lates such as feeling sad and blue. The literature on health measures often distinguishes

between subjective and objective health measures (e.g., BMI, blood pressure). From this per-

spective, the SF-12 would count as a subjective health measure. In the present sample, Cron-

bach’s alpha for the SF-12 items was .77.

Derivation of the prototypes

The first step was to administer three different clustering methods on the Big Five data of the

SOEP sample: First, the conventional linear clustering method used by Asendorpf [15, 35, 53]

and also Herzberg and Roth [30] combines the hierarchical clustering method of Ward [54]

with the k-means algorithm [55]. This algorithm generates a first guess of personality types

based on hierarchical clustering, and then uses this first guess as starting points for the k-

means-method, which iteratively adjusts the personality profiles, i.e. the cluster means to mini-

mize the error of allocation, i.e. participants with Big Five profiles that are allocated to two or

more personality types. The second algorithm we used was latent profile analysis with Mclust

in R [56], an algorithm based on probabilistic finite mixture modeling, which assumes that

there are latent classes/profiles/mixture components underlying the manifest observed vari-

ables. This algorithm generates personality profiles and iteratively calculates the probability of

every participant in the data to be allocated to one of the personality types and tries to mini-

mize an error term using maximum likelihood method. The third algorithm was spectral clus-

tering, an algorithm which initially computes eigenvectors of graph Laplacians of the

similarity graph constructed on the input data to discover the number of connected compo-

nents in the graph, and then uses the k-means algorithm on the eigenvectors transposed in a

k-dimensional space to compute the desired k clusters [57]. As it is an approach similar to the

kernel k-means algorithm [58], spectral clustering can discover non-linearly separable cluster

formations. Thus, this algorithm is able, in contrast to the standard k-means procedure, to dis-

cover personality types having unequal or non-linear distributions within the Big-Five traits,

e.g. having a small SD on neuroticism while having a larger SD on conscientiousness or a per-

sonality type having high extraversion and either high or low agreeableness.

Within the last 50 years, a large variety of clustering algorithms have been established, and

several attempts have been made to group them. In their book about cluster analysis, Bacher

et al. [59] group cluster algorithms into incomplete clustering algorithms, e.g. Q-Sort or multi-

dimensional scaling, deterministic clustering, e.g. k-means or nearest-neighbor algorithms,

and probabilistic clustering, e.g. latent class and latent profile analysis. According to Jain [60],

cluster algorithms can be grouped by their objective function, probabilistic generative models

and heuristics. In his overview of the current landscape of clustering, he begins with the group
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of density-based algorithms with linear similarity functions, e.g. DBSCAN, or probabilistic

models of density functions, e.g. in the expectation-maximation (EM) algorithm. The EM

algorithm itself also belongs to the large group of clustering algorithms with an information

theoretic formulation. Another large group according to Jain is graph theoretic clustering,

which includes several variants of spectral clustering. Despite the fact that it is now 50 years

old, Jain states that k-means is still a good general-purpose algorithm that can provide reason-

able clustering results.

The clustering algorithms chosen for the current study are therefore representatives of the

deterministic vs. probabilistic grouping according to Bacher et. al. [59], as well as representa-

tives of the density-based, information theoretic and graph theoretic grouping according to

Jain [60].

Determining the number of clusters

There are two principle ways to determine cluster validity: external or relative criteria and

internal validity indices.

External validity criteria. External validity criteria measure the extent to which cluster

labels match externally supplied class labels. If these external class labels originate from

another clustering algorithm used on the same data sample, the resulting value of the external

cluster validity index is relative. Another method, which is used in the majority of the cited

papers in section 1, is to randomly split the data in two halves, apply a clustering algorithm on

both halves, calculate the cluster means and allocate members of one half to the calculated clus-

ters of the opposite half by choosing the cluster mean with the shortest Euclidean distance to

the data member in charge. If the cluster algorithm allocation of one half is then compared

with the shortest Euclidean distance allocation of the same half by means of an external cluster

validity index, this results in a value for the reliability of the clustering method on the data

sample.

As allocating data points/members by Euclidean distances always yields spherical and

evenly shaped clusters, it will favor clustering methods that also yield spherical and evenly

shaped clusters, as it is the case with standard k-means. The cluster solutions obtained with

spectral clustering as well as latent profile analysis (LPA) are not (necessarily) spherical or

evenly shaped; thus, allocating members of a dataset by their Euclidean distances to cluster

means found by LPA or spectral clustering does not reliably represent the structure of the

found cluster solution. This is apparent in Cohen’s kappa values <1 if one uses the Euclidean

external cluster assignment method comparing a spectral cluster solution with itself. Though

by definition, Cohen’s kappa should be 1 if the two ratings/assignments compared are identi-

cal, which is the case when comparing a cluster solution (assigning every data point to a clus-

ter) with itself. This problem can be bypassed by allocating the members of the test dataset to

the respective clusters by training a support vector machine classifier for each cluster. Support

vector machines (SVM) are algorithms to construct non-linear “hyperplanes” to classify data

given their class membership [61]. They can be used very well to categorize members of a data-

set by an SVM-classifier trained on a different dataset. Following the rationale not to disadvan-

tage LPA and spectral clustering in the calculation of the external validity, we used an SVM

classifier to calculate the external validity criteria for all clustering algorithms in this study.

To account for the above mentioned bias to smaller numbers of clusters we applied three

external validity criteria: Cohen’s kappa, the Rand index [62] and the Hubert-Arabie adjusted

Rand index [63].

Internal validity criteria. Again, to account for the bias to smaller numbers of clusters,

we also applied multiple internal validity criteria selected in line with the the following
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reasoning: According to Lam and Yan [64], the internal validity criteria fall into three classes:

Class one includes cost-function-based indices, e.g. AIC or BIC [65], whereas class two com-

prises cluster-density-based indices, e.g. the S_Dbw index [66]. Class three is grounded on geo-

metric assumptions concerning the ratio of the distances within clusters compared to the

distances between the clusters. This class has the most members, which differ in their underly-

ing mathematics. One way of assessing geometric cluster properties is to calculate the within-

and/or between-group scatter, which both rely on summing up distances of the data points to

their barycenters (cluster means). As already explained in the section on external criteria, cal-

culating distances to cluster means will always favor spherical and evenly shaped cluster solu-

tions without noise, i.e. personality types with equal and linear distributions on the Big Five

trait dimensions, which one will rarely encounter with natural data.

Another way not solely relying on distances to barycenters or cluster means is to calculate

directly with the ratio of distances of the data points within-cluster and between-cluster.

According to Desgraupes [67], this applies to the following indices: the C-index, the Baker &

Hubert Gamma index, the G(+) index, Dunn and Generalized Dunn indices, the McClain-

Rao index, the Point-Biserial index and the Silhouette index. As the Gamma and G(+) indices

rely on the same mathematical construct, one can declare them as redundant. According to

Bezdek [68], the Dunn index is very sensitive to noise, even if there are only very few outliers

in the data. Instead, the authors propose several ways to compute a Generalized Dunn index,

some of which also rely on the calculation of barycenters. The best-performing GDI algorithm

outlined by Bezdek and Pal [68] which does not make use of cluster barycenters is a ratio of

the mean distance of every point between clusters to the maximum distance between points

within the cluster, henceforth called GDI31. According to Vendramin et al. [69], the Gamma,

C-, and Silhouette indices are the best-performing (over 80% correct hit rate), while the worst-

performing are the Point-Biserial and the McClain-Rao indices (73% and 51% correct hit rate,

respectively).

Procedure

Fig 2 shows a schematic overview of the procedure we used to determine the personality types

Big Five profiles, i.e. the cluster centers. To determine the best fitting cluster solution, we

adopted the two-step procedure proposed by Blashfield and Aldenfelder [21] and subsequently

used by Asendorpf [15, 35, 53] Boehm [41], Schnabel [24], Gramzow [28], and Herzberg and

Roth [30], with a few adjustments concerning the clustering algorithms and the validity

criteria.

First, we drew 20 random samples of the full sample comprising all individuals who

answered the Big-Five personality items in 2005 and 2009 with N = 22,820 and split every sam-

ple randomly into two halves. Second, all three clustering algorithms described above were

performed on each half, saving the 3-, 4-,. . .,9- and 10-cluster solution. Third, participants of

each half were reclassified based on the clustering of the other half of the same sample, again

for every clustering algorithm and for all cluster solutions from three to 10 clusters. In contrast

to Asendorpf [35], this was implemented not by calculating Euclidean distances, but by train-

ing a support vector machine classifier for every cluster of a cluster solution of one half-sample

and reclassifying the members of the other half of the same sample by the SVM classifier. The

advantages of this method are explained in the section on external criteria. This resulted in 20

samples x 2 halves per sample x 8 cluster solutions x 3 clustering algorithms, equaling 960 clus-

tering solutions to be compared.

The fourth step was to compute the external criteria comparing each Ward followed by k-

means, spectral, or probabilistic clustering solution of each half-sample to the clustering by the
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SVM classifier trained on the opposite half of the same sample, respectively. The external cal-

culated in this step were Cohen’s kappa, Rand’s index [62] and the Hubert & Arabie adjusted

Rand index [63]. The fifth step consisted of averaging: We first averaged the external criteria

Fig 2. Schematic overview of the procedure to determine the best fitting personality type solution. LPA = latent profile analysis,

SVM = Support Vector Machine.

https://doi.org/10.1371/journal.pone.0244849.g002
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values per sample (one value for each half), and then averaged the 20x4 external criteria values

for each of the 3-,4-. . ., 10-cluster solutions for each algorithm.

The sixth step was to temporarily average the external criteria values for the 3-,4-,. . .

10-cluster solution over the three clustering algorithms and discard the cluster solutions that

had a total average kappa below 0.6.

As proposed by Herzberg and Roth [30], we then calculated several internal cluster validity

indices for all remaining cluster solutions. The internal validity indices which we used were, in

particular, the C-index [70], the Baker-Hubert Gamma index [71], the G + index [72], the

Generalized Dunn index 31 [68], the Point-Biserial index [44], the Silhouette index [73], AIC

and BIC [65] and the S_Dbw index [66]. Using all of these criteria, it is possible to determine

the best clustering solution in a mathematical/algorithmic manner.

The resulting clusters where then assigned names by calculating Euclidean distances to the

clusters/personality types found in the literature, taking the nearest type within the 5-dimen-

sional space defined by the respective Big Five values.

To examine the stability and consistency of the final cluster solution, in a last step, we then

used the 2013 SOEP data sample to calculate a cluster solution using the algorithm and param-

eters which generated the solution with the best validity criteria for the 2005 and 2009 SOEP

data sample. The 2013 personality prototypes were allocated to the personality types of the

solution from the previous steps by their profile similarity measure D. Stability then was

assessed by calculation of Rand-index, adjusted Rand-index and Cohen’s Kappa for the com-

plete solution and for every single personality type. To generate the cluster allocations between

the different cluster solutions, again we used SVM classifier as described above.

To assess the predictive and the construct validity of the resulting personality types, the

inversed Euclidean distance for every participant to every personality prototype (averaged Big

Five profile in one cluster) in the 5-dimensional Big-Five space was calculated and correlated

with further personality, behavior and health measures mentioned above. To ensure that longi-

tudinal reliability was assessed in this step, Big Five data assessed in 2005 were used to predict

measures which where assessed three, four or five years later. The selection of participants

with available data in 2005 and 2008 or later reduced the sample size in this step to N = 14,048.

Results

Internal and external cluster fit indices

Table 2 shows the mean Cohen’s kappa values, averaged over all clustering algorithms and all

20 bootstrapped data permutations.

Whereas the LPA and spectral cluster solutions seem to have better kappa values for fewer

clusters, the kappa values of the k-means clustering solutions have a peak at five clusters, which

is even higher than the kappa values of the three-cluster solutions of the other two algorithms.

Table 2. Averaged Cohen’s kappa values for all cluster solutions with 3–10 clusters.

3 Clusters 4 Clusters 5 Clusters 6 Clusters 7 Clusters 8 Clusters 9 Clusters 10 Clusters

k-Means 0.65 0.74 0.90 0.64 0.62 0.62 0.60 0.63

LPA 0.80 0.38 0.38 0.29 0.30 0.32 0.30 0.19

Spectral 0.89 0.88 0.81 0.70 0.76 0.75 0.75 0.67

Mean 0.78 0.66 0.70 0.54 0.56 0.56 0.55 0.50

Each cell is an average value over 20 independent cluster computations on random data permutations; the mean value in the last row is the average over all cluster

algorithms. LPA = latent profile analysis, k-Means = k-Means Clustering algorithm, Spectral = Spectral clustering algorithm.

https://doi.org/10.1371/journal.pone.0244849.t002
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Considering that these values are averaged over 20 independent computations, there is very

low possibility that this result is an artefact. As the solutions with more than five clusters had

an average kappa below .60, they were discarded in the following calculations.

Table 3 shows the calculated external and internal validity indices for the three- to five-clus-

ter solutions, ordered by the clustering algorithm. Comparing the validity criterion values

within the clustering algorithms reveals a clear preference for the five-cluster solution in the

spectral as well as the Ward followed by k-means algorithm.

Looking solely at the cluster validity results of the latent profile models, they seem to favor

the three-cluster model. Yet, in a global comparison, only the S_Dbw index continues to favor

the three-cluster LPA model, whereas the results of all other 12 validity indices support five-

cluster solutions. The best clustering solution in terms of the most cluster validity index votes

is the five-cluster Ward followed by k-means solution, and second best is the five-cluster spec-

tral solution. It is particularly noteworthy that the five-cluster K-means solution has higher val-

ues on all external validity criteria than all other solutions. As these values are averaged over 20

Table 3. Internal and external validity criterion values for the 3-, 4-, and 5-cluster solutions generated by the different clustering methods.

Validity Criterion 3 Cluster

Spectral

4 Cluster

Spectral

5 Cluster

Spectral

3 Cluster

LPA

4 Cluster

LPA

5 Cluster

LPA

3 Cluster

K-Means

4 Cluster

K-Means

5 Cluster

K-Means

Inter-

pretation

Vote for

Internal

C-Index 0.266 0.242 0.220 0.176 0.161 0.153 0.128 0.113 0.102 min 5 Cluster

K-Means

GDI31 0.336 0.320 0.338 0.145 0.137 0.135 0.173 0.178 0.176 max 5 Cluster

Spectral

Baker-Hubert 0.412 0.454 0.499 0.126 0.150 0.163 0.214 0.244 0.268 max 5 Cluster

SpectralGamma

G+ 0.323 0.277 0.256 0.147 0.134 0.126 0.159 0.141 0.124 min 5 Cluster

K-Means

Point Biserial 0.388 0.386 0.399 0.120 0.132 0.137 0.199 0.206 0.208 max 5 Cluster

Spectral

Silhouette 0.178 0.165 0.174 0.026 0.021 0.031 0.084 0.079 0.080 max 3 Cluster

Spectral

S_Dbw 452606.0 803940.0 127385.0 159617.0 281694.0 425446.0 483406.0 708070.0 119891.0 min 3 Cluster

LPA

AIC 78059.8 72675.5 69713.5 41196.9 39966.8 39076.8 77718.8 73269.9 68945.2 min 5 Cluster

LPA

BIC 78300.8 72996.9 70115.3 41317.4 40127.5 39277.7 77959.9 73591.3 69346.9 min 5 Cluster

LPA

External

Cohen‘s Kappa 0.892 0.877 0.808 0.796 0.378 0.383 0.649 0.737 0.898 max 5 Cluster

K-Means

Rand Index 0.909 0.913 0.892 0.841 0.691 0.723 0.821 0.863 0.939 max 5 Cluster

K-Means

Hubert Arabie 0.818 0.827 0.784 0.683 0.381 0.447 0.642 0.725 0.877 max 5 Cluster

K-Meansadjusted Rand

Best value within

algorithm count

3 2 7 5 0 7 2 1 9 5 Clusters

Best value

between

algorithm count

1 0 3 1 0 2 0 0 6 5 Cluster

K-Means

Best value across all solutions for each validity criterion is highlighted in yellow, best value within the respective algorithm in blue. GDI31 = Generalized Dunn Index 31,

AIC = Akaike’s information criterion, BIC = Bayesian information criterion, LPA = latent profile analysis, k-Means = k-Means Clustering algorithm, Spectral = Spectral

clustering algorithm.

https://doi.org/10.1371/journal.pone.0244849.t003
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independent cluster computations on random data permutations, and still have better values

than solutions with fewer clusters despite the fact that these indices have a bias towards solu-

tions with fewer clusters [42], there seems to be a substantial, replicable five-component struc-

ture in the Big Five Data of the German SOEP sample.

Description of the prototypes

The mean z-scores on the Big Five factors of the five-cluster k-means as well as the spectral

solution are depicted in Fig 2. Also depicted is the five-cluster LPA solution, which is, despite

having poor internal and external validity values compared to the other two solutions, more

complicated to interpret. To find the appropriate label for the cluster partitions, the respective

mean z-scores on the Big Five factors were compared with the mean z-scores found in the liter-

ature, both visually and by the Euclidean distance.

The spectral and the Ward followed by k-means solution overlap by 81.3%; the LPA solu-

tion only overlaps with the other two solutions by 21% and 23%, respectively. As the Ward fol-

lowed by k-means solution has the best values both for external and internal validity criteria,

we will focus on this solution in the following.

The first cluster has low neuroticism and high values on all other scales and includes on

average 14.4% of the participants (53.2% female; mean age 53.3, SD = 17.3). Although the simi-

larity to the often replicated resilient personality type is already very clear merely by looking at

the z-scores, a very strong congruence is also revealed by computing the Euclidean distance

(0.61). The second cluster is mainly characterized by high neuroticism, low extraversion and

low openness and includes on average 17.3% of the participants (54.4% female; mean age 57.6,

SD = 18.2). It clearly resembles the overcontroller type, to which it also has the shortest Euclid-

ean distance (0.58). The fourth cluster shows below-average values on the factors neuroticism,

extraversion and openness, as opposed to above-average values on openness and conscien-

tiousness. It includes on average 22.5% of the participants (45% female; mean age 56.8,

SD = 17.6). Its mean z-scores closely resemble the reserved personality type, to which it has the

smallest Euclidean distance (0.36). The third cluster is mainly characterized by low conscien-

tiousness and low openness, although in the spectral clustering solution, it also has above-aver-

age extraversion and openness values. Computing the Euclidean distance (0.86) yields the

closest proximity to the undercontroller personality type. This cluster includes on average

24.6% of the participants (41.3% female; mean age 50.8, SD = 18.3). The fifth cluster exhibits

high z-scores on every Big Five trait, including a high value for neuroticism. Computing the

Euclidean distances to the previously found types summed up in Fig 1 reveals the closest

resemblance with the confident type (Euclidean distance = 0.81). Considering the average

scores of the Big Five traits, it resembles the confident type from Herzberg and Roth [30] and

Collani and Roth [10] as well as the resilient type, with the exception of the high neuroticism

score. Having above average values on the more adaptive traits while having also above average

neuroticism values reminded a reviewer from a previous version of this paper of the vulnerable

but invincible children of the Kauai-study [74]. Despite having been exposed to several risk

factors in their childhood, they were well adapted in their adulthood except for low coping effi-

ciency in specific stressful situations. Taken together with the lower percentage of participants

in the resilient cluster in this study, compared to previous studies, we decided to name the 5th

cluster vulnerable-resilient. Consequently, only above or below average neuroticism values

divided between resilient and vulnerable resilient. On average, 21.2% of the participants were

allocated to this cluster (68.3% female; mean age 54.9, SD = 17.4).

Summarizing the descriptive statistics, undercontrollers were the “youngest” cluster

whereas overcontrollers were the “oldest”. The mean age differed significantly between clusters
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(F[4, 22820] = 116.485, p<0.001), although the effect size was small (f = 0.14). The distribution

of men and women between clusters differed significantly (c2[4] = 880.556, p<0.001). With

regard to sex differences, it was particularly notable that the vulnerable-resilient cluster com-

prised only 31.7% men. This might be explained by general sex differences on the Big Five

scales. According to Schmitt et al. [75], compared to men, European women show a general

bias to higher neuroticism (d = 0.5), higher conscientiousness (d = 0.3) and higher extraver-

sion and openness (d = 0.2). As the vulnerable-resilient personality type is mainly character-

ized by high neuroticism and above-average z-scores on the other scales, it is therefore more

likely to include women. In turn, this implies that men are more likely to have a personality

profile characterized mainly by low conscientiousness and low openness, which is also sup-

ported by our findings, as only 41.3% of the undercontrollers were female.

Concerning the prototypicality of the five-cluster solution compared to the mean values

extracted from previous studies, it is apparent that the resilient, the reserved and the overcon-

troller type are merely exact replications. In contrast to previous findings, the undercontrollers

differed from the previous findings cited above in terms of average neuroticism, whereas the

vulnerable-resilient type differed from the previously found type (labeled confident) in terms

of high neuroticism.

Stability and consistency

Inspecting the five cluster solution using the k-means algorithm on the Big Five data of the

2013 SOEP sample seemed to depict a replication of the above described personality types.

This first impression was confirmed by the calculation of the profile similarity measure D

between the 2005/2009 and 2013 SOEP sample cluster solutions, which yielded highest similar-

ity for the undercontroler (D = 0.27) and reserved (D = 0.36) personality types, followed by the

vulnerable-resilient (D = 0.37), overcontroler (D = 0.44) and resilient (D = 0.50) personality

types. Substantial agreement was confirmed by the values of the Rand index (.84) and Cohen’

Kappa (.70) whereas the Hubert Arabie adjusted Rand Index (.58) indicated moderate agree-

ment for the comparison between the kmeans cluster solution for the 2013 SOEP sample and

the cluster allocation with an SVM classifier trained on the 2005 and 2009 kmeans cluster

solution.

Predictive validity

In view of the aforementioned criticisms that (a) predicting dimensional variables will mathe-

matically favor dimensional personality description models, and (b) using dichotomous pre-

dictors will necessarily provide less explanation of variance than a model using five continuous

predictors, we used the profile similarity measure D [76] instead of dichotomous dummy vari-

ables accounting for the prototype membership. Correlations between the inversed Euclidean

similarity measure D to the personality types and patience, risk-taking, spontaneity/impulsiv-

ity, locus of control, affective wellbeing, self-esteem and health are depicted in Table 4.

Patience had the highest association with the reserved personality type (r = .19, p< .001).

The propensity to risky behavior, e.g. while driving (r = .17, p< .001), in financial matters (r =

.17, p< .001) or in health decisions (r = .13, p< .001) was most highly correlated with the

undercontroller personality type. This means that the more similar the Big-Five profile to the

above-depicted undercontroller personality prototype, the higher the propensity for risky

behavior. The average correlation across all three risk propensity scales with the undercontrol-

ler personality type is r = .21, with p< .001. This is in line with the postulations by Block and

Block and subsequent replications by Caspi et al. [19, 48], Robins et al. [1] and Herzberg [33]

about the undercontroller personality type. Spontaneity/impulsivity showed the highest
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correlation with the overcontroller personality type (r = -.18, p<0.001). This is also in accor-

dance with Block and Block, who described this type as being non-impulsive and appearing

constrained and inhibited in actions and emotional expressivity.

Concerning locus of control, proximity to the resilient personality profile had the highest

correlation with internal locus of control (r = .25, p< .001), and in contrast, the more similar

the individual Big-Five profile was to the overcontroller personality type, the higher the pro-

pensity for external allocation of control (r = .22, p< .001). This is not only in line with Block

and Block’s postulations that the resilient personality type has a good repertoire of coping

behavior and therefore perceives most situations as “manageable” as well as with the findings

by [33], but is also in accordance with findings regarding the construct and development of

resilience [77, 78].

Also in line with the predictions of Block and Block and replicating the findings of Herz-

berg [33], self-esteem was correlated the highest with the resilient personality profile similarity

(r = .33, p< .001), second highest with the reserved personality profile proximity (r = .15, p<

.001), and negatively correlated with the overcontroller personality type (r = -.27, p< .001).

This pattern also applies to affective and cognitive wellbeing as well as physical and mental

health measured by the SF-12. Affective wellbeing was correlated the highest with similarity to

the resilient personality type (r = .27, p< .001), and second highest with the reserved personal-

ity type (r = .23, p< .001). The overcontroller personality type, in contrast, showed a negative

correlation with affective (r = -.16, p< .001) and cognitive (r = -21, p< .001) wellbeing. Con-

cerning health, a remarkable finding is that lack of physical health impairment correlated the

highest with the resilient personality profile similarity (p = -.23, p< .001) but lack of mental

health impairment correlated the highest with the reserved personality type (r = -.15, p<

.001). The highest correlation with mental health impairments (r = .11, p< .001), as well as

physical health impairments (r = .16, p< .001) was with the overcontroller personality profile

similarity. It is striking that although the undercontroller personality profile similarity was

associated with risky health behavior, it had a negative association with health impairment

measures, in contrast to the overcontroller personality type, which in turn had no association

Table 4. Pearson correlations between the inversed Euclidean distances of personality types constructed on the Big Five assessed in 2005 and patience, risk-taking,

spontaneity/impulsivity, locus of control, self-esteem, wellbeing and health assessed longitudinally between 2008 and 2010.

Inversed Euclidean Distance to Personality Type

Measure Resilient Vulnerable-Resilient Undercontroller Reserved Overcontroller

Patience .16 -.04 -.03 .19 -.07

Risk-Taking (Mean) .11 (.01) .21 -.03 -.06

While Driving .07 (-.02) .17 (-.02) -.03

Financial Matters .07 (.01) .17 (.01) (.01)

Health (.01) (.00) .13 -.06 (.00)

Spontaneity/ Impulsivity .15 .07 .12 -.08 -.18

(internal) Locus of Control .25 -.06 .03 .10 -.22

Self-Esteem .33 (-.02) .08 .15 -.27

Affective Wellbeing .27 -.10 .09 .23 -.16

Cognitive Wellbeing .28 (-.02) .07 .13 -.21

SF-12 Health (mean) -.23 .08 -.08 -.16 .16

Physical -.23 .06 -.10 -.14 .16

Mental -.15 .08 (-.02) -.15 .11

N = 14048. Except the ones in brackets, only correlations with a significance level� 0.001 are depicted. The highest and lowest correlation in each row are marked in

bold. SF-12 = 12-Item Short Form Health Survey.

https://doi.org/10.1371/journal.pone.0244849.t004
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with risky health behavior. This result is in line with the link of internalizing and externalizing

behavior with the overcontroller and undercontroller types [79], respectively. Moreover, it is

also in accordance with the association of internalizing problems with somatic symptoms and/

or symptoms of depressiveness and anxiety [80].

A further noteworthy finding is that these associations cannot be solely explained by the

high neuroticism of the overcontroller personality type, as the vulnerable-resilient type showed

a similar level of neuroticism but no correlation with self-esteem, the opposite correlation with

impulsivity, and far lower correlations with health measures or locus of control. The vulnera-

ble-resilient type showed also a remarkable distinction to the other types concerning the corre-

lations to wellbeing. While for all other types, the direction and significance of the correlations

to affective and cognitive measures of wellbeing were alike, the vulnerable-resilient type only

had a significant negative correlation to affective wellbeing while having no significant correla-

tion to measures of cognitive wellbeing.

To provide an overview of the particular associations of the Big Five values with all of the

above-mentioned behavior and personality measures, Table 5 shows the bivariate correlations.

Investigating the direction of the correlation and the relativity of each value to each other

row-wise reveals, to some extent, a clear resemblance with the z-scores of the personality types

shown in Fig 3. Correlation profiles of risk taking, especially the facet risk-taking in health

issues and locus of control, clearly resemble the undercontroller personality profile (negative

correlations with openness and conscientiousness, positive but lower correlations with extra-

version and openness). Patience had negative correlations with neuroticism and extraversion,

and positive correlations with openness and conscientiousness, which in turn resembles the z-

score profile of the reserved personality profile. Spontaneity/impulsivity had moderate to high

positive correlations with extraversion and openness, and low negative correlations with open-

ness and neuroticism, which resembles the inverse of the overcontroller personality profile.

Self-esteem as well as affective and cognitive wellbeing correlations with the Big Five clearly

resemble the resilient personality profile: negative correlations with neuroticism, and positive

correlations with extraversion, openness, openness and conscientiousness. Inspecting the SF-

12 health correlation, in terms of both physical and mental health, reveals a resemblance to the

inversed resilient personality profile (high correlation with neuroticism, low correlation with

Table 5. Pearson correlations between Big Five scores assessed in 2005 and patience, risk-taking, spontaneity/impulsivity, locus of control, self-esteem, wellbeing

and health assessed longitudinally.

Measure Neuroticism Extraversion Openness Agreeablen. Conscientousn.

Patience -.23 -.05 (.00) .28 .08

Risk-Taking (Mean) -.11 .11 .17 -.21 -.12

While Driving -.10 .10 .09 -.22 -.08

Financial Matters -.09 .03 .10 -.15 -.11

Health -.03 .04 .10 -.17 -.16

Spontaneity/ Impulsivity -.04 .27 .18 -.09 .00

(internal) Locus of Control -.29 .15 .12 .12 .15

Self-Esteem -.33 .22 .15 .16 .18

Affective Wellbeing -.40 .10 .04 .13 .11

Cognitive Wellbeing -.28 .15 .13 .12 .16

SF-12 Health (mean) .32 -.11 -.06 -.07 -.11

Physical .30 -.12 -.10 -.05 -.08

Mental .25 -.07 .03 -.07 .13

N = 14,048. Except the one in brackets, only correlations with a significance level� 0.001 are depicted. SF-12 = 12-Item Short Form Health Survey.

https://doi.org/10.1371/journal.pone.0244849.t005
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extraversion, openness, openness and conscientiousness, as well as a resemblance with the

overcontroller profile (positive correlation with neuroticism, negative correlation with

extraversion).

Fig 3. Mean Big Five values of the five cluster solution calculated with the Ward followed by k- means, the

spectral and latent profile analysis clustering algorithm.

https://doi.org/10.1371/journal.pone.0244849.g003
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On the variable level, neuroticism had the highest associations with almost all of the pre-

dicted variables, with the exception of impulsivity, which was mainly correlated with extraver-

sion and openness. It is also evident that all variables in question here are correlated with three

or more Big Five traits. This can be seen as support for hypothesis that the concept of personal-

ity prototypes has greater utility than the variable-centered approach in understanding or pre-

dicting more complex psychological constructs that are linked to two or more Big Five traits.

Discussion

The goal of this study was to combine different methodological approaches while overcoming

the shortcomings of previous studies in order to answer the questions whether there are repli-

cable personality types, how many of them there are, and how they relate to Big Five traits and

other psychological and health-related constructs. The results revealed a robust five personality

type model, which was able to significantly predict all of the psychological constructs in ques-

tion longitudinally. Predictions from previous findings connecting the predicted variables to

the particular Big Five dimensions underlying the personality type model were confirmed.

Apparently, the person-centered approach to personality description has the most practical

utility when predicting behavior or personality correlates that are connected to more than one

or two of the Big Five traits such as self-esteem, locus of control and wellbeing.

This study fulfils all three criteria specified by von Eye & Bogat [81] regarding person-ori-

ented research and considers the recommendations regarding sample size and composition by

Herzberg and Roth [30]. The representative and large sample was analyzed under the assump-

tion that it was drawn from more than one population (distinct personality types). Moreover,

several external and internal cluster validity criteria were taken into account in order to vali-

date the groupings generated by three different cluster algorithms, which were chosen to rep-

resent broad ranges of clustering techniques [60, 82]. The Ward followed by K-means

procedure covers hierarchical as well as divisive partitioning (crisp) clustering, the latent pro-

file algorithm covers density-based clustering with probabilistic models and information theo-

retic validation (AIC, BIC), and spectral clustering represents graph theoretic as well as kernel-

based non-linear clustering techniques. The results showed a clear superiority of the five-clus-

ter solution. Interpreting this grouping based on theory revealed a strong concordance with

personality types found in previous studies, which we could ascertain both in absolute mean

values and in the Euclidean distances to mean cluster z-scores extracted from 19 previous stud-

ies. As no previous study on personality types used that many external and internal cluster

validity indices and different clustering algorithms on a large data set of this size, the present

study provides substantial support for the personality type theory postulating the existence of

resilient, undercontroller, overcontroller, vulnerable-resilient and reserved personality types,

which we will refer to with RUO-VR subsequently. Further, our findings concerning lower

validity of the LPA cluster solutions compared to the k-means and spectral cluster solutions

suggest that clustering techniques based on latent models are less suited for the BFI-S data of

the SOEP sample than iterative and deterministic methods based on the k-means procedure or

non-linear kernel or graph-based methods. Consequently, the substance of the clustering

results by Specht et. al. [36], which applied latent profile analysis on the SOEP sample, may

therefore be limited.

But the question, if the better validity values of the k-means and spectral clustering tech-

niques compared to the LPA indicate a general superiority of these algorithms, a superiority in

the field of personality trait clustering or only a superiority in clustering this specific personal-

ity trait assessment (BFI-S) in this specific sample (SOEP), remains subject to further studies

on personality trait clustering.
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When determining the longitudinal predictive validity, the objections raised by Asendorpf

[53] concerning the direct comparison of person-oriented vs. variable-oriented personality

descriptions were incorporated by using continuous personality type profile similarity based

on Cronbach and Gleser [75] instead of dichotomous dummy variables as well as by predicting

long-term instead of cross-sectionally assessed variables. Using continuous profile similarity

variables also resolves the problem that potentially important information about members of

the same class is lost in categorical personality descriptions [15, 53, 83]. Predictions regarding

the association of the personality types with the assessed personality and behavior correlates,

including risk propensity, impulsivity, self-esteem, locus of control, patience, cognitive and

affective wellbeing as well as health measures, were confirmed.

Overcontrollers showed associations with lower spontaneity/impulsivity, with lower mental

and physical health, and lower cognitive as well as affective wellbeing. Undercontrollers were

mainly associated with higher risk propensity and higher impulsive behavior. These results

can be explained through the connection of internalizing and externalizing behavior with the

overcontroller and undercontroller types [5–7, 78] and further with the connection of internal-

izing problems with somatic symptoms and/or symptoms of depressiveness and anxiety [79].

The dimensions or categories of internalizing and externalizing psychopathology have a long

tradition in child psychopathology [84, 85] and have been subsequently replicated in adult psy-

chopathology [86, 87] and are now basis of contemporary approaches to general psychopathol-

ogy [88]. A central proceeding in this development is the integration of (maladaptive)

personality traits into the taxonomy of general psychopathology. In the current approach, mal-

adaptive personality traits are allocated to psychopathology spectra, such as the maladaptive

trait domain negative affectivity to the spectrum of internalizing disorders. However, the find-

ings of this study suggests that not specific personality traits are intertwined with the develop-

ment or the occurrence of psychopathology but specific constellations of personality traits, in

other words, personality profiles. This hypothesis is also supported by the findings of Meeus

et al. [8], which investigated longitudinal transitions from one personality type to another with

respect to symptoms of generalized anxiety disorder. Transitions from resilient to overcontrol-

ler personality profiles significantly predicted higher anxiety symptoms while the opposite was

found for transitions from overcontroller to resilient personality profiles.

The resilient personality type had the strongest associations with external locus of control,

higher patience, good health and positive wellbeing. This not only confirms the characteristics

of the resilient type already described by Block & Block [18] and subsequently replicated, but

also conveys the main characteristics of the construct of resilience itself. While the develop-

ment of resiliency depends on the quality of attachment experiences in childhood and youth

[89], resiliency in adulthood seems to be closely linked to internal locus of control, self-efficacy

and self-esteem. In other words, the link between secure attachment experiences in childhood

and resiliency in adulthood seems to be the development of a resilient personality trait profile.

Seen the other way around, the link between traumatic attachment experiences or destructive

environmental factors and low resiliency in adulthood may be, besides genetic risk factors, the

development of personality disorders [90] or internalizing or externalizing psychopathology

[91]. Following this thought, the p-factor [92], i.e. a general factor of psychopathology, may be

an index of insufficient resilience. Although from the viewpoint of personality pathology, hav-

ing a trait profile close to the resilient personality type may be an index of stable or good per-

sonality structure [93], i.e. personality functioning [94], which, though being consistently

associated with general psychopathology and psychosocial functioning, should not be con-

fused with it [95].

The reserved personality type had the strongest associations with higher patience as well as

better mental health. The vulnerable-resilient personality type showed low positive

PLOS ONE Personality types revisited

PLOS ONE | https://doi.org/10.1371/journal.pone.0244849 January 7, 2021 20 / 27

https://doi.org/10.1371/journal.pone.0244849


correlations with spontaneity/impulsivity and low negative correlations with patience as well

as health and affective wellbeing.

Analyzing the correlations of the dimensional Big Five values with the predicted variables

revealed patterns similar to the mean z-scores of the personality types resilient, overcontrollers,

undercontrollers and reserved. Most variables had a low to moderate correlation with just one

personality profile similarity, while having at least two or three low to moderate correlations

with the Big Five measures. This can be seen as support for the argument of Chapman [82]

and Asendorpf [15, 53] that personality types have more practical meaning in the prediction of

more complex correlates of human behavior and personality such as mental and physical

health, wellbeing, risk-taking, locus of control, self-esteem and impulsivity. Our findings fur-

ther underline that the person-oritented approach may better be suited than variable-oriented

personality descriptions to detect complex trait interactions [40]. E.g. the vulnerable-resilient

and the overcontroller type did not differ in their high average neuroticism values, while differ-

ing in their correlations to mental and somatic health self-report measures. It seems that high

neuroticism is far stronger associated to lower mental and physical health as well as wellbeing

if it occurs together with low extraversion and low openness as seen in the overcontroller type.

This differential association between the Big-Five traits also affects the correlation between

neuroticism and self-esteem or locus of control. Not differing in their average neuroticism

value, the overcontroller personality profile had moderate associations with low self-esteem

and external locus of control while the vulnerable-resilient personality profile did only show

very low or no association. Further remarkable is that the vulnerable-resilient profile similarity

had no significant correlation with measures of cognitive wellbeing while being negatively cor-

related with affective wellbeing. This suggests that individuals with a Big-Five personality pro-

file similar to the vulnerable-resilient prototype seem not to perceive impairments in their

wellbeing, at least on a cognitive layer, although having high z-values in neuroticism. Another

explanation for this discrepancy as well as for the lack of association of the vulnerable-resilient

personality profile to low self-esteem and external locus of control though having high values

in neuroticism could be found in the research on the construct of resilience. Personalities with

high neuroticism values but stable self-esteem, internal locus of control and above average

agreeableness and extraversion values may be the result of the interplay of multiple protective

factors (e.g. close bond with primary caregiver, supportive teachers) with risk factors (e.g.

parental mental illness, poverty). The development of a resilient personality profile with below

average neuroticism values, on the other hand, may be facilitated if protective factors outweigh

the risk factors by a higher ratio.

An interesting future research question therefore concerns to what extent personality types

found in this study may be replicated using maladaptive trait assessments according to DSM-

5, section III [96] or the ICD-11 personality disorder section [97] (for a comprehensive over-

view on that topic see e.g. [98]). As previous studies showed that both DSM-5 [99] and ICD-11

[100] maladaptive personality trait domains may be, to a large extent, conceptualized as mal-

adaptive variants of Big Five traits, it is highly likely that also maladaptive personality trait

domains align around personality prototypes and that the person-oriented approach may

amend the research field of personality pathology [101].

Taken together, the findings of this study connect the variable centered approach of person-

ality description, more precisely the Big Five traits, through the concept of personality types to

constructs of developmental psychology (resiliency, internalizing and externalizing behavior

and/or problems) as well as clinical psychology (mental health) and general health assessed by

the SF-12. We could show that the distribution of Big Five personality profiles, at least in the

large representative German sample of this study, aggregates around five prototypes, which in
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turn have distinct associations to other psychological constructs, most prominently resilience,

internalizing and externalizing behavior, subjective health, patience and wellbeing.

Limitations

Several limitations of the present study need to be considered: One problem concerns the

assessment of patience, self-esteem and impulsivity. From a methodological perspective, these

are not suitable for the assessment of construct validity as they were assessed with only one

item. A further weakness is the short Big Five inventory with just 15 items. Though showing

acceptable reliability, 15 items are more prone to measurement errors than measures with

more items and only allow a very broad assessment of the 5 trait domains, without information

on individual facet expressions. A more big picture question is if the Big Five model is the best

way to assess personality in the first place. A further limitation concerns the interpretation of

the subjective health measures, as high neuroticism is known to bias subjective health ratings.

But the fact that the vulnerable-resilient and the overcontroler type had similar average neurot-

icism values but different associations with the subjective health measures speaks against a

solely neuroticism-based bias driven interpretation of the associations of the self-reported

health measures with the found personality clusters. Another limitation is the correlation

between the personality type similarities: As they are based on Euclidean distances and the

cluster algorithms try to maximize the distances between the cluster centers, proximity to one

personality type (that is the cluster mean) logically implies distance from the others. In the

case of the vulnerable-resilient and the resilient type, the correlation of the profile similarities

is positive, as they mainly differ on only one dimension (neuroticism). These high correlations

between the profile similarities prevents or diminishes, due to the emerging high collinearity,

the applicability of general linear models, i.e. regression to calculate the exact amount of vari-

ance explained by the profile similarities.

The latter issue could be bypassed by assessing types and dimensions with different ques-

tionnaires, i.e. as in Asendorpf [15] with the California Child Q-set to determine the personal-

ity type and the NEO-FFI for the Big Five dimensions. Another possibility is to design a new

questionnaire based on the various psychological constructs that are distinctly associated with

each personality type, which is probably a subject for future person-centered research.
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