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Abstract

Of the 285 species of Carnivora 71 are threatened, while many of these species fulfill important ecological roles in their
ecosystems as top or meso-predators. Population transition matrices make it possible to study how age-specific survival and
fecundity affect population growth, extinction risks, and responses to management strategies. Here we review 38 matrix
models from 35 studies on 27 Carnivora taxa, covering 11% of the threatened Carnivora species. We show that the elasticity
patterns (i.e. distribution over fecundity, juvenile survival and adult survival) in Carnivora cover the same range in triangular
elasticity plots as those of other mammal species, despite the specific place of Carnivora in the food chain. Furthermore,
reproductive loop elasticity analysis shows that the studied species spread out evenly over a slow-fast continuum, but also
quantifies the large variation in the duration of important life cycles and their contributions to population growth
rate. These general elasticity patterns among species, and their correlation with simple life history characteristics like body
mass, age of first reproduction and life span, enables the extrapolation of population dynamical properties to unstudied
species. With several examples we discuss how this slow-fast continuum, and related patterns of variation in reproductive
loop elasticity, can be used in the formulation of tentative management plans for threatened species that cannot wait for
the results of thorough demographic studies. We argue, however, that such management programs should explicitly
include a plan for learning about the key demographic rates and how these are affected by environmental drivers and
threats.
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Introduction

Carnivora is a highly threatened order with a quarter of its

species being in the Red List categories of Vulnerable, Endangered

or Critically Endangered and with five species already listed as

Extinct [1]. Carnivorous species are among the most threatened

mammals [2,3]. Because species of Carnivora exert an important

ecological role in their communities, either as top or mesopreda-

tors [4], it is essential to manage their populations if we aim to

conserve ecosystems and slow down the current extinction trends.

Extinction is ultimately a demographic process; the result of

changes in mortality and fertility that lead to a negative population

growth. Therefore demographic data are essential for the

development of population management programs. However,

the lack of data for most threatened species makes population

analyses and forecasting unreliable [5]. Reliable demographic data

are particularly hard to obtain for Carnivora due to their tendency

to be elusive, nocturnal and occasionally dangerous [6]. In this

paper we analyze if generalizations can be made among Carnivora

to inform demographic models for population management of

species for which no data are available.

Carnivora species often fit all the labels of conservation urgency.

They are both indicator species, (i.e. their occurrence being an

indicator for the ‘health’ of the ecosystem), and keystone species;

some are at the top of the food chain [7] and others play an

important role as mesopredators in their ecosystems [4]. Especially

large Carnivora species play an important role since they shape

prey communities [8]. Also, they serve as umbrella species for

many other species; protecting carnivores generally requires

protecting entire ecosystems. Carnivores are also very appealing

to the public, usually ranking in the top of popular animals, serving

as flagship species. And, maybe most importantly, many of the

characteristics that are generally used to describe vulnerable

species apply to many Carnivora [9]. This vulnerability includes a

narrow geographical range, in many cases large home ranges, low

population densities, specialized niche requirements, and being

hunted by humans. Many conservation activities are meant to

increase populations of a certain species because of its rarity and

extinction risk [10]. However, rarity provides an additional

challenge since studying large numbers of individuals of rare

species is difficult while long periods of extensive monitoring are

required to obtain sound data. Moreover, monitoring and research
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activities such as radio tracking require expensive equipment or

even the use of helicopters. These factors together make it

extremely difficult to gather long-term datasets of Carnivora

populations.

Transition matrix models provide a transparent way to model

the population dynamics of a species, and to project the growth

rate and extinction risk of a population [11],[12],[13]. Using

matrix models, it is feasible to identify which critical phases in the

life cycle should be targeted by management strategies [12],[14].

This is possible by assessing the elasticity values in the matrix,

quantifying how the population growth rate is affected if a

perturbation occurs on a particular vital rate (e.g. juvenile survival

or adult survival). For example, by estimating the elasticity

patterns of sea turtles, Crowder et al. [15] found that a

management intervention will have more effect if it is directed

towards survival rather than fertility.

However, for many species sufficient demographic data to

develop a model are not available, take too long or are too

expensive to collect. To inform management about the population

dynamical responses of such species it would be very useful if

elasticity values of life cycle components could be estimated from

simple life history characteristics. Comparisons of multiple species

can reveal general relationships between elasticity values and

species characteristics, as previously been done for plants

[16],[17], birds [18],[19], turtles [20],[21] and mammals [22].

Animal life histories are generally classified along a ‘slow-fast

continuum’ [18],[23],[24]. Slow animals mature and reproduce

late, live long, and produce few offspring. Fast animals start

reproducing early, die young, and generally produce large litters.

Heppell et al. [22], comparing elasticity values across 50

mammals, suggested that management strategies towards either

increasing or reducing population growth rates should target

offspring survival for ‘fast’ mammals, and adult or juvenile survival

rates for ‘slow’ mammals. However, it is important to assess if these

generalizations can be applied particularly to the order Carnivora.

Although Carnivora species expand through the fast and slow

continuum, the fact that they have a specific place in the food

chain, as top or mesopredators, means that population densities

are usually low, causing them to be more vulnerable for known

threats. Moreover, Carnivora shape other Carnivora population

dynamics. For example the removal of one Carnivora species can

profoundly affect the density of other Carnivora [25]. Interactions

between Carnivora are likely to differ from interactions among

other groups, since they can often result in the death of one of the

individuals involved (referred as interference intraguild interac-

tions, reviewed by Linnell and Strand [26]). These particular

characteristics of Carnivora as apex or mesopredators and the

interference intraguild interactions among them, could be

reflected in different elasticity patterns from other mammals.

The aim of this paper is therefore to investigate if there are rules of

thumb for elasticity patterns in Carnivora across the slow and fast

continuum and compare them to those described for mammals in

general [22]. If elasticity patterns of Carnivora are similar to the

ones of other mammals this will facilitate to inform management

programs, for one of the most threatened groups of mammals.

Population attributes specific to Carnivora
The order of the Carnivora is a well-defined taxon representing

a wide range of life histories [7]. It contains ca. 285 species of

placental mammals, and includes many carnivorous species such

as canids and felids, but also omnivores, such as the black bear,

and a few herbivores, like the giant panda. Other life history

aspects are diverse as well: the Carnivora include both the stoat

(body mass 140 g) and the walrus (1500 kg), both the cheetah

(savannah habitat) and the sea otter (oceanic), both the red fox

(home range 0.20 km2) and the African wild dog (2000 km2), and

both the island fox (forming monogamous pairs) and the grey wolf

(living in social groups). Beside this large trait diversity, the

conservation status of Carnivora is also highly variable. Some

species, such as raccoons, are considered pests, while extinction

seems inevitable in the wild for some others, such as the giant

panda [27]. Many Carnivora live in complex social groups, and

show coordinated behavior within these groups, such as cooper-

ative hunting. Species living in social groups are more complicated

to model, because their group composition influences vital rates

such as survival and fecundity. Grey wolves for example

experience a much higher mortality when living as individuals

than when living in a group, and only the dominant male and

female in a group generally reproduce [28].

Perhaps the most conspicuous fact about Carnivora is that most

of them are hunters. Therefore, their prey also regulates the

dynamics of Carnivora populations. These predator-prey dynam-

ics may be counterintuitive, because an increase in prey density

can sometimes increase the effect of competition among carni-

vores, instead of weakening it [29]. More than other taxa, many

Carnivora species have difficulties living alongside each other and

people. They often cause property damage, and large carnivores

kill cattle and could even kill people. Large carnivores require vast

areas to survive, and they compete with each other for prey and

hunting territories, and they compete with people for game, space

and resources [30]. In almost every large carnivore population,

people are responsible for most mortality [30]. Additionally, within

carnivore guilds it is common to have complex interactions such as

exploitative completion for resources and interspecific interference

interactions [31]. Both types of interactions have as a result that

population changes of one Carnivora species could lead to

mesopredator-release or suppression [26]. These population

attributes specific to Carnivora complicate the modeling of their

population dynamics as well as their conservation.

Methods

We performed a literature search in Thomson’s on-line Web of

Science database and in Google Scholar using the strings or search

terms: ‘‘population dynamics’’ or ‘‘demography’’ and ‘‘matrix’’ or

‘‘elasticity’’. Articles about non-Carnivora species were discarded.

We reviewed the title and abstract of the remaining articles, along

with the full text if necessary, and we added some articles found

through cross-referencing. Only articles were selected that 1)

comprised a wild Carnivora population, and 2) used matrix

modeling, and 3) provided the transition matrix or allowed for

reconstruction of the matrix by showing the used data.

We found a total of 35 studies about wild Carnivora

populations, comprising 27 taxa (Table 1), and reconstructed 38

matrices used in these studies. If a study presented multiple

matrices for different scenarios, only the matrix for the average

scenario was used. If a study presented different matrices for

consecutive years, the average matrix was used. We calculated the

population growth rate l, elasticity matrices and generation time

(defined here as log(R0)/log(l), where R0 is the net reproductive

rate) using the popbio package in R [32]. We made all data and

parameters obtained available in the COMADRE database of the

Max Planck Institute for Demographic Research, which will be

available online in July 2013.

Elasticity as a tool for conservation
Perturbation analyses are a tool to determine the importance of

transitions in a transition matrix for the population growth rate (l).

Carnivora Population Dynamics
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Most commonly used for questions of species conservation are

elasticities or proportional sensitivities, given by eij = (aij/l) (hl/

haij), with matrix element aij as the transition from stage j to stage i

in the transition matrix [14],[33]. The l-elasticities of all matrix

elements sum up to one, and quantify the relative contributions of

the matrix transitions to l. High elasticity values indicate on which

transitions in the life cycle population growth relies most. If

interpreted with care (e.g. in conjunction with actual l values),

elasticity values indicate targets for conservation [12],[14].

The l-elasticity values of the matrix elements were summarized

into three groups, namely juvenile survival (Sj), adult survival (Sa)

and fecundity (F). All individuals that are able, or have been able,

to reproduce were classified as adults, and all younger individuals

were referred to as juveniles. The elasticity values of Sj, Sa and F

Table 1. The Carnivora species included in this paper.

Family Species
IUCN
statusa

Body
mass

Life
span

Mat
dimb R1c ld

Gen.
timee

Age 50%
elas Reference

Canidae Grey Wolf (Canis lupus) LC 38 10 6 2 1.33 6.2 5.1 [28]

Grey Wolf (Canis lupus) LC 38 10 10 2 1.35 4.3 3.7 [45]

African Wild Dog (Lycaon pictus) E 36 10 3 2 1.29 5.5 4.3 [66]

Culpeo Fox (Pseudalopex culpaeus) LC 12 6 3 1 1.29 4.1 3.4 [67]

Island Fox (Urocyon littoralis) CE 2.8 7 2 0 0.87 4.4 5.3 [36]

Island Fox (Urocyon littoralis) CE 2.8 7 3 1 0.64 3.7 4.8 [50]

Red Fox Urban 1 (Vulpes vulpes) LC 11 5 6 0 1.03 3.9 1.6 [39]

Red Fox Urban 2 (Vulpes vulpes) LC 11 6 6 0 1.08 3.9 1.8 [39]

Red Fox Rural 1 (Vulpes vulpes) LC 11 6 5 0 1.06 3.8 3.0 [39]

Red Fox Rural 2 (Vulpes vulpes) LC 11 6 6 0 0.95 4.0 2.8 [39]

Felidae Cheetah (Acinonyx jubatus) V 65 12 8 2 0.96 15 21 [68]

Ocelot (Leopardus pardalis) LC 35 11 4 3 1.05 9.7 9.5 [69]

Leopard (Panthera pardus) NT 60 15 4 3 1.09 9.0 8.1 [70]

Cougar (Puma concolor) LC 48 12 12 2 0.92 4.9 6.2 [41]

Cougar (Puma concolor) LC 48 12 5 2 0.88 6.7 7.6 [46]

Florida panther (Puma concolor coryi) LC 73 18 19 2 1.06 5.0 5.2 [71]

Mustelidae Eurasian Otter (Lutra lutra) NT 7 16 2 1 1.26 4.4 3.8 [72]

Sea Otter (Enhydra lutris) E 33 20 20 3 1.13 9.0 8.9 [73]

River Otter (Lontra canadensis) LC 8 15 3 1 1.02 5.8 6.2 [74]

Badger (Meles meles) LC 13 15 15 2 0.99 5.8 7.3 [75]

Stoat (Mustela erminea) LC 0.14 4 3 0 1.26 5.8 1.5 [42]

Odobenidae Walrus (Odobenus rosmarus) – 1500 25 26 6 0.98 34 63 [76]

Otariidae Steller Sea Lion (Eumetopias jubatus) NT 300 31 32 3 1.00 10 11 [77]

Steller Sea Lion (Eumetopias jubatus) NT 300 31 14 3 1.01 13 14 [78]

New Zealand Sea Lion (Phocarctos hookeri) V 160 25 26 4 1.00 10 12 [79]

California sea lion (Zalophus californianus) LC 100 20 3 1 0.95 7.6 9.2 [40]

Phocidae Grey Seal (Halichoerus grypus) LC 150 25 7 5 1.08 16 14 [43]

Ursidae Giant Panda (Ailuropoda melanoleuca) E 100 25 13 6 1.00 12 12 [38]

Black Bear (Ursus americanus) LC 180 24 69 2 1.02 9.2 11 [37]

Black Bear (Ursus americanus) LC 180 24 5 5 0.95 11 14 [54]

Black Bear (Ursus americanus) LC 180 24 4 4 0.78 6.1 7.2 [80]

Florida Black Bear (Ursus americanus floridanus) LC 82 10 5 2 1.01 13 17 [81]

Eurasian Brown Bear (Ursus arctos arctos) LC 150 20 4 4 1.19 10 7.6 [82]

Grizzly Bear (Ursus arctos horribilis) LC 160 20 50 3 1.05 9.6 10 [49]

Grizzly Bear (Ursus arctos horribilis) LC 160 20 10 4 1.01 9.2 10 [47]

Grizzly Bear (Ursus arctos horribilis) LC 160 20 21 5 1.03 12 12 [48]

Japanese Brown Bear (Ursus arctos yesoensis) LC 190 25 5 5 1.06 17 16 [83]

Polar bear (Ursus maritimus) V 680 25 6 6 0.99 19 26 [84]

a)LC = Least Concern, V = Vulnerable, NT = Near Threatened, E = Endangered, CE = Critically Endangered.
b)Matrix dimensions.
c)Age of first reproduction according to matrix.
d)Projected population growth rate.
e)Generation time (log(R0)/log(l)).
doi:10.1371/journal.pone.0070354.t001
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sum to one and were plotted in a triangular graph (see also [22]),

giving information on the distribution of the elasticity values of Sj,

Sa and F, compared among species.

Since the distinction between juveniles and adults might not

always be strict (sometimes only part of the animals of a certain

age become reproductive adults, while others wait until later

years), we also investigated the l-elasticity values of life cycle loops

[34]. Reproductive loops in the life cycle are the actual pathways

that individuals follow from birth to reproduction and offspring

formation. Each transition matrix can be decomposed into a finite

number of closed loops, the elasticities of which also sum to one as

with regular elasticity analysis [34],[35]. Loop analysis is

particularly useful for comparison of the relative importance of

reproductive loops of various duration for population growth. In

an age-based model, loops differ by the age of reproduction. One

way to quantify the relative position of a species on the slow-fast

continuum is by arranging loops from short to long and

quantifying the age (i.e. loop length) by which the cumulative

loop elasticity reaches 50% of total elasticity. To allow this analysis

for all species, all transition matrices must be age-based (Leslie

matrices) and we have turned transition matrices that were partly

stage-based into age-based matrix models (see Appendix S1 for

more details). The resulting age-based models had exactly the

same, or very comparable, l values as the original stage-based

models. In the cases of simple Leslie matrices it was easy to

distinguish the loops, but in more complex cases we applied the

loop detection algorithm of Güneralp [35], starting with shorter

loops as further explained in Appendix S1.

Finally, we investigated the relationships of these elasticity

distributions (of Sj, Sa and F, as well as the age associated with a

cumulative 50% loop elasticity) to several life history traits and

matrix model characteristics, to detect which traits are most

strongly related to life history strategies and can be used as

predictors of population dynamics.

Results

Carnivora matrix models in the literature
The size of the Carnivora transition matrices in the literature

ranged from 262 [36] to 69669 [37] with an average of 12612

and a median of 666. More than half [24] of the 35 studies used

elasticity analyses. Only three studies explicitly modeled popula-

tions from different locations [38],[39],[40], but 27 papers

incorporated temporal variation.

Many authors struggled to obtain sufficient demographic data

for constructing a matrix model. Some species occurred in such

low densities that even sampling the whole population was not

sufficient to get reliable estimates for all parameters (e.g. for

cougars [41]). Another study used an impressive 23 papers to

estimate the parameters of their black bear model [37].

Most studies aimed to provide information that can be used to

optimize conservation management and many authors discussed

management implications in a separate section. Some of them (13

studies) argued which transition should be targeted with conser-

vation efforts, some explored the possible effects of different

management strategies (3 studies), and others (11 studies) provided

a population viability analysis (PVA), estimating extinction risks.

Some studies focused on other applications, such as pest

management (e.g. for stoats [42]) or assessing the possibility of

sustainable harvest (e.g. of grey seals [43]). From the literature we

finally analyzed a total of 27 taxa, which accounts for 9% of the

285 carnivores. Those include 11% of the threatened Carnivora

species within Red List categories (e.g. Vulnerable, Endangered

and Critically Endangered).

Relationship between l -elasticity distributions and life
history traits

We plotted the Sj, Sa and F elasticity sums of each of the 38

matrix models in triangular elasticity graphs (Fig. 1). The foremost

distinguishable pattern is the division of the data points in three

distinct groups (Fig. 1a.). Many Carnivora are slow reproducers,

which commonly have a low elasticity for fecundity. These animals

are represented towards the left axis of the graph. There are also

some very fast reproducing Carnivora species such as the red fox

and the stoat. These animals start reproducing within their first

year, so they do not have a juvenile stage. Therefore, their data

points are located on the fecundity axis (at the right in Fig. 1a).

Between these slow and very fast reproducing groups, a group of

fast reproducing animals is visible: they start reproducing in their

second year (Fig. 1b). Especially in age-based matrix models, age

at first reproduction thus has a large impact on the contribution

(i.e. elasticity value) of juvenile survival to the population growth

rate. This can directly be seen in these models: age of first

reproduction determines how many juvenile classes there are

[22],[44]. In age-based matrix models, as determined by loop

analysis, the summed elasticity value of juvenile survival is equal to

the summed elasticity value of fecundity times the number of

juvenile classes.

There was no relationship between the distribution of elasticity

values and the taxonomic family (Fig. 1c). The elasticity of F seems

to increase with smaller body mass (Fig. 1d) and smaller matrix

sizes (Fig. 1e), because fecundity is usually more important in

short-lived animals (Fig. 1f), for which smaller matrices tend to

have been constructed. Too small matrices may have unrealistic

biases towards reproduction loops, hereby artificially inflating F

elasticities. The elasticity of F may also be increasing with

increasing l, as is generally the case [14], but this trend is only

very weak in this dataset (Fig. 1g).

One way to investigate the role of the choice for a particular

matrix model is to compare different studies of the same species.

Different studies on the same Carnivora species give fairly similar

results (Fig. 1h). For the wolf, cougar, island fox, black bear and

grizzly bear, the studies differed in how the elasticity of survival

was distributed over the juvenile and adult phases. Since for all of

these species, the l of the different populations did not differ

much, the reason for these differences was likely the use of very

different life cycle models. Of the wolf studies, one used an age-

based life cycle with one non-breeding juvenile stage [45], while

the other one used a stage-based life cycle with 6 stages, of which

only the ‘dominants’ reproduce [28]. Both cougar studies used

age-based life cycle models, but the difference in elasticity pattern

was mostly caused by the number of juvenile classes, which was

three in one study [46], and only one in the other [41]. The same

goes for the grizzly bear studies, where the outlier study [47] has a

much smaller number of adult classes then the other two studies

[48],[49]. The data point of one of the island fox studies is located

on the upper right axis because the matrix in this study [36] did

not have a juvenile stage, while the other study had one [50].

Overall, the emerging picture is that species characteristics

determine especially the elasticity partitioning in F and S, but

that model characteristics can affect the partitioning in Sj and Sa.

Demographic loop elasticities and the slow – fast
continuum

To overcome the effect of the abrupt transition from juvenile to

adult stages on the elasticity sums of Sj and Sa, we also studied the

elasticity patterns of the age-based matrices into which each of the

studied matrices were converted. These age-based matrices only
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contain life cycle loops that include a reproduction event. Plotting

the cumulative elasticity values of loops against their duration, a

continuum along the slow-fast gradient emerged rather than

discrete groups (Fig. 2). The ‘slow’, ‘fast’ and ‘very fast’ groups of

Fig. 1 are distinct, but there is also some overlap between the

groups. The two cougar studies are now displayed much closer

together, with comparable age (6.2 and 7.6) at which 50% of the

reproductive loop elasticity is reached (Table 1). Of the grizzly

bear studies, the Pease and Mattson [47] study was now closer to

the Wielgus et al. [49] study (both with 50% cumulative loop

elasticity age of 10 years), than to the Wielgus [48] study (12 years).

Variation between studies in the age of 50% cumulative loop

elasticity can be understood as differences in generation time (see

Table 1 and Appendix S1), since these two metrics were strongly

correlated (r = 0.95, n = 37, p,0.001) and show a more or less 1:1

relation (Fig. 3). Age of 50% cumulative loop elasticity was also

strongly positively correlated with body mass (r = 0.94, p,0.001)

and age of first reproduction (r = 0.66, p,0.001), positively

correlated with the estimated life span (r = 0.48, p = 0.002), but

not correlated with the projected population growth rate

(r = 20.20, p = 0.23) or matrix dimension (r = 0.24, p = 0.15).

Discussion

Slow-fast continuum
The aim of our study was to investigate whether the range and

patterns of life histories among Carnivora species are similar to

those of other mammalian groups; and we show that they are very

similar. Based on this similarity, extrapolation of elasticity patterns

to other species is possible for species on which little research has

been done and for which few demographic data are available. If

information is available on key species characteristics, which we

show to correlate with the elasticity distribution over the different

components, then it should be possible to base certain predictions

on this information. Species characteristics that showed a clear

correlation with the elasticity distribution in this study were body

mass and the reproduction speed (Figs. 1 and 2); the former

suggesting that allometric relationships [51] also apply to

population dynamics to some extent, while the latter being well

characterized by the age at first reproduction (Fig. 1b and 2) and

adult life span (Fig. 1f).

Along the slow-fast continuum, fast Carnivora generally have a

higher elasticity for fecundity than slow Carnivora, which have a

higher elasticity for survival. This is similar to results found for

other animals, including birds [52], reptiles [53] and other

mammals [22]. Based on the‘se results, it is possible to estimate for

a certain species how high its elasticity for fecundity or survival will

be based on its place in the slow-fast continuum. Our results also

show that caution should be taken when interpreting the

partitioning of elasticity in juvenile survival and adult survival (as

in Fig. 1 and [22]), since this depends on the chosen model

structure: from what point onwards do individuals enter the ‘adult’

stage. We strictly defined adult stages to start with the first stage for

which the reproduction rate is above zero, but this may have

underestimated the average length of the juvenile phase.

Furthermore, different authors tend to choose different model

structures for the same species (Table 1, Fig. 1h). In addition to

these modeling choices by the authors of the published matrix

models, it needs to be kept in mind that these matrix models were

based on vital rate values that were observed at natural population

densities, while the vital rates were not explicitly modeled as a

function of population density. This means that our comparison of

elasticity values across species and studies is based on the

assumption that meaningful patterns can be discerned when a

large enough number of elasticity matrices is used, even though

Figure 1. Triangular elasticity patterns in Carnivora species. Relation between elasticity patterns of Carnivora and (a) place in the slow-fast
continuum, (b) age of first reproduction (c) taxonomic family, (d) average adult body mass, (e) matrix dimensions, (f) average life span, (g) projected
population growth rate l. Panel h shows different studies on the same species. Age of first reproduction was deduced from the matrix models. Body
mass and life span were copied from the descriptions of the various authors, or, when missing, from various internet sources.
doi:10.1371/journal.pone.0070354.g001

Figure 2. Cumulative elasticity of reproduction loops within
age-based Leslie matrix models of Carnivora populations. Each
line represents 1 study (see Table 1). Since the elasticity values of all life
cycle loops add up to 1, the cumulative elasticity sum of loops of
increasing length (i.e. increasing duration of the reproduction loops)
reaches 1 at the maximal loop length of each matrix model. The red
lines represent populations of ‘very fast’ species (see Fig. 1), yellow lines
represent ‘fast’ species, and green lines ‘slow’ species. Three studies
(walrus, polar bear, cheetah) are not plotted here because the life spans
calculated from the matrix models were unrealistically long (see
Appendix S1 for details and a plot including those three studies).
doi:10.1371/journal.pone.0070354.g002

Figure 3. Relationship between the age of 50%-loop-elasticity
and generation time, for multiple Carnivora matrix models. The
1:1 line indicates shows that these metrics, which are calculated from
the same matrices, are closely related. Colors are the same as in Figures
1a and 2.
doi:10.1371/journal.pone.0070354.g003
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they are valid only for the encountered population densities and

growth rates.

We have suggested a new method for showing how species are

positioned along the slow-fast continuum by plotting cumulative

loop elasticity against reproductive loop length, after transforming

all matrices into age-based versions. Cumulative loop elasticities

represent the demographic contributions of individuals of different

generation length, as depicted by the close match between species

generation time and 50% cumulative demographic loop elasticity

(Fig. 3).

Demographic loop analysis not only overcomes the problem of

the somewhat arbitrary definition of the onset of the adult phase,

but also shows the range of important life cycle durations within a

population. Variation in the length of reproduction loops with

considerable elasticity (i.e. the ages of parents at which offspring

production contributes to population growth) as depicted in

figure 2 shows that the fast-slow continuum is not only apparent

across species, but also within populations. Contributing repro-

duction ages vary considerably within and between individuals in

all studied populations. Given the spread of reproductive loop

durations among and within species, it is important to acknowl-

edge the within-population variation in reproduction speed in

population viability analyses. For the extrapolation to unstudied

species it is good news, however, that the within-population

variation in contributing reproduction loops scales nicely with the

age of 50% cumulative loop elasticity (notice the logarithmic x-axis

in Fig. 2).

Similarities and differences with other mammals
Because Carnivora are not very well studied, it would be very

useful if it were possible to compare unstudied species not only

with other Carnivora, but also with mammals from other taxa.

Heppell et al. [22] developed simple age-structured matrix models

for 50 mammal populations, parameterized by juvenile survival,

mean adult survival, age at maturity, and mean annual fertility.

We found that the elasticity patterns of Carnivora populations are

remarkably similar to patterns of the other mammals found by

Heppell et al. [22]. This similarity occurs even though their

specific place in the food chain means that population densities are

low, causing them to be more vulnerable for known threats.

Additionally, their position in the food chain as top or

mesopredators makes it particularly complex to model their

population dynamics. Nevertheless, Carnivora showed the same

range (along the slow and fast continuum) of population dynamics

as many other mammals. Our results suggest that this is a general

pattern among mammals, driven by species life history structure,

regardless of the specific taxon or position in the food chain.

Rules of thumb for Carnivora conservation
It is highly desirable to be able to make predictions about the

elasticity values of certain life cycle components and the responses

of a species to different management strategies without first having

to acquire large amounts of demographic data. For many

endangered species, there is not enough time and money for a

thorough study of population dynamics. Therefore, the clear slow-

fast pattern in reproductive loop elasticity (Fig. 2) and triangular

elasticity graphs (Fig. 1a) are encouraging, as well as their

similarity to other mammals. Based on our and Heppell et al.’s

[22] analyses, the population growth rate of slow species generally

has a high elasticity for adult survival, while faster species tend to

have a higher elasticity for fecundity. Conservation strategies

should ideally be based on such population growth elasticity

patterns. All else being equal (but see discussion below), the most

effective management targets adult survival for slowly reproducing

species, and fecundity for fast reproducers. This is well illustrated

by one of the slowest species studied here, the black bear [54], with

an elasticity of 0.66 for adult survival, and of 0.08 for fecundity.

The authors recommended reducing adult female mortality by

limiting road kill to conserve the population. For the short-lived

stoat with an elasticity of 0.5 for fecundity, however, Wittmer et al.

[42] suggested fertility control as a pest management strategy.

These generalizations suggest it should be possible to formulate

‘rules of thumb’ for the management strategies of threatened

carnivore species for which data are limited or non-existing. This

will be particularly useful for endangered species for which

management cannot wait for long-term field studies to parame-

terize population models. For example, for a slow reproducer such

as the critically endangered Hawaiian monk seal [1], conservation

strategies targeted on adult survival are expected to be more

effective. The major threats jeopardizing adult survival include

food limitation due to competition with fisheries and entanglement

in marine debris such as fishing nets and lines [55]. Conservation

strategies focusing on eliminating entanglement in fishing nets

together with habitat protection have been shown to be successful

for the Hawaiian monk seal [56]. Recommendations for exten-

sively studied sea turtles, suffering from many of the same

problems and reproducing slowly as well, were very much the

same [21]. It should be noted that also for slowly reproducing

species reproduction should be successful for populations to

increase, despite the low fecundity elasticities [14].

For a slow reproducer such as the jaguar (Panthera onca)

conservation actions focusing on adult mortality reduction will

be essential. Therefore, additionally to habitat protection, actions

such as the development of wildlife passes along main roads can

help to reduce adult mortality [57]. Additionally it will be

important to establish other forms of corridors that ensure safe

dispersal of adults and juveniles [58]. Furthermore it is not unlikely

that adults are killed due to cattle predation; therefore the

implementation of cattle insurance programs [59] could be

essential in some regions to help reducing jaguar adult mortality.

Previous studies have shown that it is possible to predict which

areas will be more prompt to jaguar-human conflict [60], and the

development of cattle insurance programs can thus be effectively

targeted. Although the jaguar is the least known of the large felids,

by knowing its place in the slow-fast continuum we can inform

some conservation actions targeted to increase population growth.

On the other hand, for a fast reproducer such as the critically

endangered Malabar civet [61], conservation actions towards

fecundity are recommended. Malabar civet is an endemic to the

Western Ghats of India, it is reported that its fecundity is reduced

by lack of suitable mates due to habitat fragmentation and by high

young mortality due to weeding at plantations [62]. However,

given that the species’ major threat is habitat loss and degradation

and that the implementation of protected areas is unlikely due to

high human population density in the region [61], the implemen-

tation of Conservation Breeding Programs may be a short-term

solution to ensure population growth until habitat is identified or

restored [62],[63].

We showed that Carnivora elasticities are similar to those of

other mammals across the slow and fast continuum. This

information is valuable, because it gives the possibility to estimate

the expected elasticity distribution to inform preliminary conser-

vation plans. Of course, other factors should also be considered.

The population growth rate l, for example, has been shown to

shift the elasticity distribution towards higher elasticity for

fecundity for growing population, and towards higher elasticity

for survival for declining populations [14],[64]. At the same time

annual population growth rates (and thus l) are more variable in
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shorter-lived species. However, among the 38 studied matrix

models l and life spans were not significantly correlated

(correlation coefficient = 20.22, P = 0.21), enabling a fair com-

parison along the slow-fast continuum in that respect.

What also needs to be considered when translating elasticity

patterns to conservation management is that some management

options are more costly than others, but also that some vital rates

may be more prone to improvement than others; a survival rate

will never be higher than one, and an animal can only produce so

much offspring. It is not uncommon that vital rates with high

elasticity have not much space for improvement, but much

opportunity for decline: conservation actions should still target

these rates [14]. If survival is fairly high and a population is in

decline anyway, other vital rates need to be targeted as well.

The clear slow-fast continuum implies that even without

thoroughly studying a species, it is possible to make tentative

management plans for unstudied species, based on the species’

body mass, age of first reproduction and/or life span, in order of

decreasing value for prediction. Of course, the more of these

species characteristics are known, the better the estimation of its

position on the slow-fast continuum and the degree of within-

population variation will be. Extrapolation of elasticity patterns

thus is possible and especially useful for highly endangered species

for which management cannot wait for long-term field studies to

parameterize population models.

Conclusions

Despite their specific place in the food chain, and despite some

uncertainties in the models, our results suggest that the population

dynamics and elasticity distributions of Carnivora are remarkably

similar to those of other mammals and cover an equally wide

range. The generality of the slow-fast continuum of elasticity

values in mammals, and the correlations with simple information

life body mass, age of first reproduction and life span, creates an

opportunity to base tentative management plans of Carnivora on

the population dynamics of similarly slow or fast well-studied

mammals. Of course, such first management plan should be

combined with demographic studies and an adaptive management

program [65] in which direct responses to management and

population modeling are used to fine-tune the management of

specific populations.

Supporting Information

Appendix S1 Loop Analyses.

(PDF)
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Mesoamericano México Serie Acciones/Número 8.
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