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Abstract. The possibility that computerized image analysis could increase the reproducibility of grading of bladder carcinoma
as compared to conventional subjective grading made by pathologists was investigated. Object, texture and graph based
analysis were carried out from Feulgen stained histological tissue sections. The object based features were extracted from
gray scale images, binary images obtained by thresholding the nuclei and several other images derived through image
processing operations. The textural features were based on the spatial gray-tone co-occurrence probability matrices and the
graph based features were extracted from the minimum spanning trees connecting all nuclei. The large numbers of extracted
features were evaluated in relation to subjective grading and to factors related to prognosis using multivariate statistical
methods and multilayer backpropagation neural networks. All the methods were originally developed and tested on material
from one patient and then tested for reproducibility on entirely different patient material. The results indicate reasonably good
reproducibility for the best sets of features. In addition, image analysis based grading showed almost identical correlation
to mitotic density and expression of p53 protein as subjective grading. It should thus be possible to use this kind of image
analysis as a prognostic tool for bladder carcinoma.
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1. Introduction

A few years ago we started a project with the goal of finding a straightforward, reproducible
and objective computerized grading system for bladder tumors. Some preliminary results have been
reported from this work [8,9,19]. The very first system for such grading was introduced by Broders [4]
in 1922. In 1966 Bergkvist et al. [2] proposed that four grades be used and our material is graded
according to a modification of this system published by Malmström et al. [30,36]. The grading is
based on subjective judgement of a range of structural changes, mainly changes of harmony in the
pattern found by the cellular elements in the stained histological section [5]. In 1973 the World Health
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Organization (WHO) introduced a standard according to which the urothelial tumors are classified into
three grades. Since the grading is clinically important but the reproducibility of the visual grading
may be questioned [33] it is worthwhile looking for alternative, more objective ways of grading.
Computerized image analysis is an obvious possibility.

Quantitative, computer assisted, analysis of tumor tissues started in the late sixties [39]. Features
that are not readily apparent to the human eye such as high order texture descriptors can also be
significant. Since much of the information used to grade the tissue comes from the relations between
the cells, i.e., an assessment of the degree of order of the disorder of the tissue organization, it
is interesting to try to describe these relations. Prewitt proposed that graphical analysis be based
as a mathematical tool for this [40]. Since then several other authors have followed up the idea
and developed graph analysis algorithms for tissue characterization [13,22–24,31]. In particular the
Minimum Spanning Tree (MST) has proven useful to describe the tissue architecture.

The aim of this study was (a) to utilize retrospective patient material to select objects, texture and
graph based features, single and in combination, which give optimal correlation to subjective grading,
(b) to use these features on a second prospective patient material in order to test the correlation of these,
single and in combination, to subjective grading, to mitotic density and to p53 protein expression,
and (c) to test the reproducibility of the image analysis based grading when implemented on different
scanner and computer systems and used on new patient material.

2. Materials

The study was based on two entirely different patient materials. These were collected at different
time periods, at different hospitals and analyzed with different computer systems. The first material
was used for developing and initially testing the methods. The second material was only used for
studying how reproducible the methods were when applied under new conditions.

Material I: All patients with newly detected transitional cell carcinoma of the urinary bladder who
were seen at Uppsala University Hospital during the period 1975–1978, were studied retrospectively.
The total series comprised 230 patients with an observation time ranging from 5 to 9 years (mean
6.5 years) [30]. In 197/230 cases there was sufficient histological material left from the first biopsy
to allow us to conduct computerized image analysis.

Material II: Bladder cancer biopsy samples were collected from 12 hospitals in Norway and Sweden
participating in a clinical multicenter study [29]. The total series was composed of 261 patients who
were included from 1987 to 1993. From these 100 cases remained those with papillary tumor and
sufficient histological material left from the primary biopsy to allow us to conduct computerized image
analysis. From these cases pathologists chose two regions of interest in each specimen so that we
obtained 200 gray-scale images.

3. Methods

3.1. The subjective grading

Subjective grading is used to divide the material into four groups: Grade 1, 2A, 2B and 3. Grade 1
(Fig. 1a) is characterized by slight nuclear atypia and enlargement, it usually includes nuclei with a
slight tendency towards variation in the orientation of the major axis. The overall impression is that
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(a) (b)

(c) (d)

Fig. 1. Digital microscopic images (40×) of the bladder carcinoma cell stained by Feulgen. In each grade the region of
interest was chosen by pathologists: (a) Grade 1, (b) Grade 2A, (c) Grade 2B and (d) Grade 3.

of an ordered pattern with very little variation. In Grade 2A (Fig. 1b) the enlargement of the nuclei
is more easily recognized and the variation in nuclear staining density more pronounced. The cellular
pattern still gives a predominantly ordered impression but with more obvious disorder because of the
variation in the orientation of the major nuclear axis, as well as variation in the nuclear size and shape,
internuclear distances and chromatine features. In Grade 2B (Fig. 1c) the general impression is one
of disorder, but with focal areas of order. The disorder is due to more pronounced deviations in each
of the individual features listed above. Grade 3 (Fig. 1d) is the case with an even more pronounced
impression of disorder, often based on extreme variations in each of the features described.

3.2. Image acquisition

Digitized images were obtained from 5 µm thick paraffin sections that were Feulgen stained (acid
hydrolysis in 5 M HCL at 22◦C for 60 min, stained with Schiff’s regent at 22◦C for 120 min) [43].
A microscope with an interference filter (IF) 550 nm and an objective magnification of 40× made
the size of the pixels about 0.5 µm [46]. The image was corrected for shading and quantisized into
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8 bits of gray scale. The regions of interest that were analyzed were chosen by pathologists to be
those most representative for the subjective grading.

All image analysis was done on software systems developed at the authors laboratories over the
last 20 years.

For materials I all image processing was carried out on an EPSILON workstation from IMTEC
using the EGO software system [1,32]. A standard monochrome video camera and a frame-grabber
giving a data matrix of 512× 410 pixels was used.

For materials II: A software package, Signifier, from Diascan AB in Uppsala was used on a Silicon
Graphics Indy workstation for the image handling. The gray scale image in this case was obtained
through the frame-grabber built into the workstation connected to a standard monochrome video-
camera and had a matrix size of 756× 572 pixels.

3.3. Image analysis strategies

Three different, rather independent, strategies have been applied when trying to express the charac-
teristics of the tissue which is the basis for the visual grading. These strategies have previously been
described [8,9,19]. In order to make this paper more readable the strategies are briefly outlined here;
we refer to the original papers for details. In some cases they have been extended and modified as
described below.

3.4. Object based image analysis (Object)

Since the subjective visual image analysis of the histological sections can be expressed in terms
of order/disorder as far as the distance between the objects, the variation in the gray scale between
objects and the relative size and orientation of objects in the image are concerned, it seems reasonable
to assume that a computerized image analysis procedure might express the relevant image properties.
For this purpose we have developed a fully automatic image analysis procedure operating on the gray
scale image defined by the region of interest. The gray scale image is first segmented into a binary
image with objects (nuclei) and background. The binary image is then filtered to further improve the
result from the thresholding and a set of derived images is created (skeleton, distance, zoi, gradient
magnitude and gradient direction image).

3.4.1. Feature extraction
Features were extracted from the gray scale image, the binary image and the derived images. Four

sets of features were calculated: simple object features, zoi object features, neighborhood object
features, and non-object based features [19].

Rather than using the directly derived features as such we used the frequency histogram of each of
the primary features from all four sets (simple, zoi, neighborhood, non-object based) obtained from
all objects, e.g., the distribution of the size of the objects. From such a distribution we pick the
median (p50), 15% percentile (p15), 85% percentile (p85), as shown in Fig. 2. The purpose of this
procedure is to define features on the image (and tissue) level rather than the individual object level
and to overcome the problem of extreme values in the distributions. We then defined the coefficients
of percentile variation, CPV, as Eq. (1):

CPV8515 =
(p85− p15)

(p85 + p15)
. (1)
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Fig. 2. The frequency histogram of object size for a Grade 1 image. The three percentiles that are used as image features
are marked.

The purpose of the CPVs is to create image features that are highly sensitive to variations and much
less sensitive to absolute measurements from the image, of, for example, the size of the objects.

Numerous features were originally calculated and subjected to analysis by multivariate methods.
From this analysis a small set of features proved to be the best in expressing the grade of the training
sets. The five features currently used are variations in all edge directions in the image, the standard
deviation of the gray scale of objects (CPV5015), the size of the objects, the standard deviation of
distances inside objects (CPV8515) and the standard deviation of the major axis for neighboring objects
(CPV8515).

3.5. Textural image analysis (Texture)

Since an important basis for the visual grading of the tissue sections is the general appearance of the
section we felt that a texture analysis of the section would be useful. Thus we do not analyze the texture
of the individual nuclei as is done in many other previously published studies. We perform a texture
analysis on the entire selected region of interest of the tissue section without previous segmentation.
For the region of interest, a gray scale co-occurrence probability matrix is generated. This matrix
contains an estimate of the joint probability density function for pixels separated by a particular number
of rows, diagonals or columns. If the co-occurrence matrix was calculated directly from the original
image it would become very large and highly dependent on both the illumination level and contrast
setting. This problem was reduced through a histogram equalization operation. In order to be able
to split pixels that came within one bin in the original histogram into two bins in the new histogram,
a randomized selection process was necessary. This was done by adding uniformly distributed noise
to the image. The original 8 bits gray scale was extended to 12 bits through the application of the
pseudo-random noise function. This technique normalizes all images to the same uniform gray level
frequency distribution. The co-occurrence matrix P (i, j|d, θ) contains the probability that the gray
level i occurs at a distance d in direction θ from a pixel with value j in the region of interest in
the image. Whereas the minor axes of bladder carcinoma nuclei are about 8 µm, the major axes are
about 13 µm, and the internuclear distances are typically a few nuclear diameters so we should study
step-lengths in this range. We created 12 matrices: the first four matrices were for the angles, the
second four matrices were from the maximum, minimum, mean and the difference between maximum
and minimum for measurements of the four angles, and the third four matrices were for extracting
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the maximum gray value, minimum gray value, mean gray value and the difference value between
maximum and minimum among the four different angles. Then each matrix was normalized. These
resulting measures were made invariant to any image rotations.

3.5.1. Calculation of features
The co-occurrence matrices as such contain too many values to be used directly. Several secondary

features, mainly weighted moments that condense the information in the matrices, were calculated.
Haralick et al. [18] proposed a set of moments and Pressman [38] suggested additional ones. Using
these 28 moments for the maximum, minimum, mean and difference matrices, we got a total of
224 features for each step-length. The most significant features are angular second moment, inverse
difference moment, diagonal moment, mean variation, correlation, difference average, sum average,
sum squares of variance of horizontal direction, diagonal variance, sum variance, difference variance
and triangular symmetry. The inverse difference moment measures regularity. The correlation provides
a correlation coefficient of the rows, diagonals and columns of the normalized co-occurrence matrix.
When the co-occurrence matrix contains many values near the diagonal the contrast is small, but the
inverse difference moment is large [10].

3.6. Graph based analysis (Graph)

For this approach we needed to segment the tissue sections to find the nuclei. The same histogram
based global thresholding used for the object based image analysis was used for this purpose. It is
based on the fact that cell nuclei appear as dark objects on a lighter background. We found the threshold
by searching for minima in the first derivative of the histogram. The derivative transforms inflection
points to minima. The resulting binary image (Fig. 3b) showed the nuclei but also many other spurious
objects and holes in the nuclei. Another problem was caused by touching or overlapping cells. The
object masks were first cleaned by filling the holes in the objects. Small objects, defined as having
an area less than 70 pixels or a maximum width of less than 9 pixels, were deleted. The width was
obtained by a chamfer 3–4 distance transformation [3]. The distance transform image (Fig. 3c) was
also used as a starting point for separating touching objects. The watershed segmentation algorithm
[47] can separate irregular “blobs” into more regular sections. If all watershed regions are considered
to be separate objects, excessive splitting will occur. To avoid this we empirically determined that a
“waistline” between blobs with a width of less than 90% of the diameter of the smallest blob side
should result in a cut. For this cut the watershed line was replaced with the shortest straight line [35].
By applying the watershed segmentation recursively, multiple overlaps could be handled, at least for
simple cases. The resulting binary image is shown in Fig. 3d.

3.6.1. Minimum spanning trees
A minimum spanning tree connecting the centroids of all nuclei in a tissue section can be used as

a basis for extracting features describing the tissue architecture. Thus one first creates a linear graph
connecting the centre points of the nearest objects. These points form the vertices of the graph. The
edges are assigned the Euclidean distance between the corresponding vertices as weights. This graph
is then reduced to a MST using Kruskal’s algorithm [25]. In this algorithm, edges are first sorted in
ascending order of weight and then placed in a list structure. This algorithm was implemented here
using a heapsorted priority queue [7]. As the list is traversed, if an edge is found connecting a vertex
that has not been visited before, the edge is included in the tree. When an edge connects two vertices
belonging to different clusters, the two clusters are merged, with the new cluster being absorbed into
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(a) (b)

(c) (d)

Fig. 3. (a) The Grade 2A image. (b) Cell nucleus segmentation of histogram-based global thresholding. (c) Using of a
chamfer 3–4 distance transformation. (d) The overlapping nuclei separated by watershed algorithm.

the older ones. The tree will be completed when only one cluster remains, i.e., when all the vertices
have been visited. For N vertices, the complete tree will have (N − 1) edges. The tree obtained
will be the minimum spanning tree (MST), i.e., the graph whose weight-sum is minimum among all
spanning tree graphs. A practical example is shown in Fig. 4a. In the MST the vertices (nuclei) were
clustered by cutting links longer than a certain threshold value. Reasonable values for this threshold
were obtained by studying the image geometry: two slightly overlapping nuclei would have an edge
distance of about 6 µm and a distance of more than 19 µm is rather unusual. Several distances in this
range were used as possible thresholds for creating clusters. The threshold which yielded features with
the best discriminating power was finally used. Figure 4b depicts the clusters of segmented nuclei.

3.6.2. Feature extraction
A number of geometric and densitometric features were measured for the clustered objects in the

MST. We defined 24 different features. The best of these, as determined by their discriminatory power,
were: the average polarity of the vertices, i.e., the average number of edges meeting at each vertex,
the variation of local orientation of the graph, which was defined as the standard deviation of the
directional indices measured in a 2× 2 or 3× 3 neighborhood, the standard deviation of the cluster
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(a) (b)

Fig. 4. (a) The minimum spanning tree of a tissue section with 153 vertices superimposed on the gray scale image. (b) The
Euclidean distance between vertices has been thresholded at 16 µm to create the 31 clusters.

area, the total number of clusters which contain only a single nucleus divided by the total number
of nuclei, and finally, the variation in the average nuclear size, which was defined as the standard
deviation of the average nuclear areas in each cluster, taken over all clusters.

3.7. Mitotic density (MD)

Sections stained with our modification of Gomori’s silver methenamine method [6,15] were screened
for areas with the highest mitotic activity. A rectangular part of the visual field, about 0.055 mm2,
was depicted on the computer screen (Fig. 5). A representative area of the tumour was encircled and
the number of mitoses was counted visually (MAnf ). This partial (Ap) and the number of nuclei in
each Af was counted manually (NAnp ). The average of mitotic frequency (MF ) of the five fields
with the highest MFf [46] was regarded as the MF of the tumour (MFt), see Eq. (2):

MFt =

4∑
i=0

MAnf × 1000

4∑
i=0

(Af/Ap)×NAnp
. (2)

3.8. p53 protein expression

Mutation of the p53 gene is one of the most commonly occurring genetic lesions associated with
human cancer [16]. Wild type p53 protein acts as a tumour suppressor, either by arresting the cell in
G1, allowing the cell additional time for DNA-repair, or by promoting apoptosis [28]. These reactions
are triggered in response to genetic damage caused by irradiation or other carcinogenic agents [48].
Defective p53 protein is not functional. Mutations in the p53 gene alter the amino acid sequence in
the DNA-binding domain of the protein and/or alter the three-dimensional configuration of the protein
structure. The lack of functional p53 protein results in completion of the cell cycle, even in cells
harbouring DNA-damages, and give rise to genetically defect daughter cells. The protein encoded
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Fig. 5. The tumour epitherium (Af ) and a representative part of it (Ap) are marked. The number of mitoses in Af is 4
(MAnf = 4).

by a mutated p53 gene exhibitis a dramatically increased half-life, compared to the wild-type protein
[17], resulting in a stabilized protein localized in the nucleus. Furthermore, the possibility of detecting
the stabilized p53 protein, using conventional immunohistochemistry (IHC) techniques, makes p53 a
candidate prognostic marker in tumour pathology.

3.8.1. Evaluation of p53 protein expression
A scoring system based on both the extent and intensity was used in the evaluation of the p53

IHC. The extent was given a score from 1 to 3 (1< 25%, 2 = 25–50% and 3> 50% of tumour cells
stained). The intensity was judged as: 1 = negative, 2 = weak, 3 = moderate and 4 = strong staining.
The product of the extent and intensity scores, resulting in a number between 1 and 12, were then
divided into three classes as follows:

low or absent p53 expression: 1–2
moderate p53 expression: 3–4
high p53 expression: 5–12

The evaluation of the staining was performed in collaboration by two observers. Only nuclear staining
was judged as positive.

3.9. Classifications

3.9.1. Statistical multivariate classification
To select the best set of features among all those calculated we applied a step-wise linear discriminant

analysis using the BMDP [11] program package. In total, 26 features were selected for dividing the
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four groups into Grades 1, 2A, 2B and 3. Of these, five were object analysis features, fifteen were
texture features and six were graph analysis features. We also tried to split the material into only two
groups Grade 1 and 2A in the first group and Grade 2B and 3 in the second. For this 25 features
were used. This program finds the optimal combination of features and the corresponding weights in
the discriminant function [12,21,26]. The classification function is gi(w) for the object group i, see
Eq. (3):

gi(w) =
∑
j

cijwj + wi0. (3)

These functions are evaluated for each case which is assigned to the group for which the classification
function has the largest value.

3.9.2. The classification of backpropagation neural networks
An input layer of 26 neurons represented the features which were normalized to have a value

between 0 and 1. The connection weights wij and wjk were both initialized to random values between
0.001 and 0.999. However, the neural network model of the backpropagation learning algorithm
updates the values of the connection weights thereby reducing the error value. The relations between
the input and the desired output are “learned” by the network through iterative adjustments of the
connection weights such that the sum of the squared errors is minimized at the output layer for the
training set [14]. The layer of 20 hidden neurons was included to represented possible interactions
among the input variables. A sigmoid function was applied to each neuron in the hidden as well as in
the output layers. The output layer of four neurons represented the class identity. The network learned
to classify each training sample by adjusting the output neuron representing the correct class toward
a value of 1, and the other towards 0. A gain term controls the adaptation rate and the convergence
criterion during the network training was the achievement of an error level less than 10−6. In order
to learn successfully, we want to make the output of the net approach the desired output, that is, we
want to continually reduce the value of this error function. The schematic architecture is shown in
Fig. 6.

Fig. 6. Schematic diagram for a back propagation neural network. The wij was the weight from applied neuron i to j.
The input layer consisted of 26 features. Each of these was connected to the hidden layer of 20 neurons, which was in turn
connected to the output, and which was representative for the four-grading classification.
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4. Results

In developing our computerized grading system we used visual grading as “the absolute truth”.
Since visual grading is known to have low and variable reproducibility [34] it is important to verify
the reproducibility and prognostic value of the resulting computer grading. The reproducibility was
assessed in two ways, by subdivision of grades into two groups and four groups, respectively. In
addition both subjective and computer grading were correlated to MD and expression of p53 protein,
both known to be of prognostic significance.

4.1. Correlation of material I with patient survival

In a preliminary study early in this project we correlated the grouping obtained through conventional
visual analysis and the grouping obtained through texture analysis to the survival time for material I
as depicted in Fig. 7. The follow-up covered a period of 120 months. The texture classifier obtained
84.3% (kappa = 0.787) agreement [8]. As can be seen from the graphs, the texture based grading
seems to produce a more pronounced division regarding survival rate between groups 1 and 2A on the
one hand and groups 2B and 3 on the other for the early survival times than does visual grading. These
results need to be verified in the future when survival data becomes available for the independent,
prospective material but they did encourage us to continue this work.

4.2. Correlation of the two different materials analyzed on different image scanner and computer
systems

The two different materials were analyzed on two different image scanning and analysis systems.
The training set from material I consisted of 197 images with a matrix size of 512× 410 pixels and
the test set from material II consisted of 200 images with the matrix size 756×572 pixels. We carried
out a reproducibility test from the training set to the test set for both two groups and four groups. The
results are presented in Table 1.

4.3. Correlation of two regions of interest in each specimen

Pathologists selected two regions of interest in each specimen from material II. The first group,
consisting of 100 images (training set), was used for training, i.e., to create a linear discriminant

Fig. 7. The graphs were calculated according to the Kaplan–Meier method. (a) Survival related to subjective grade.
(b) Survival related to texture analysis based grade.
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Table 1
Reproducibility for the two independent materials and image analysis systems. Two different
classification strategies and three feature extraction methods were analyzed. The percentages
express the fraction of correctly classified cases

Classifier Methods Two groups (1–2A/2B–3) Four groups (1/2A/2B/3)
Training (%) Testing (%) Training (%) Testing (%)

material I material II material I material II
Statistical Object 83 62 51 19
multivariate Texture 92 60 62 47

Graph 78 78 57 47

Neuron Object 97 55 63 40
networks Texture 79 76 59 52

Graph 81 83 61 57

Table 2
Reproducibility from the first to the second set of regions of interest in material II for the
different classifier and feature extraction strategies

Classifier Methods Two groups (1–2A/2B–3) Four groups (1/2A/2B/3)
Training (%) Testing (%) Training (%) Testing (%)

Statistical Object 78 76 67 52
multivariate Texture 84 74 78 64

Graph 85 77 68 58

Neuron Object 70 64 70 33
networks Texture 76 70 67 61

Graph 90 77 75 65

classifier and a classification matrix for the neural networks. The two classifiers for each method were
tested on the second group with 100 images from the same cases (test set). The result is shown in
Table 2.

4.4. Combination of the three methods

In addition to studying and comparing the three approaches to image analysis based grading indi-
vidually we tried to find a combination between the three that was better than any individual method.
The aim was to be able to create a more powerful and robust classifier. For this purpose all significant
features of the three methods from the training set in material II were combined to create two new
classifiers, one based on statistical methods, the other on neural network methods. The stepwise linear
discriminate analysis selected the following five features as the best ones for the four-group case:
percentile coefficient of skewness of object area (Graph), difference average (Texture), difference
variance (Texture), CPV8515 of standard deviation of major axis for neighbour objects (Object) and
the standard deviation of the cluster area (Graph). Similarly the following features were automatically
selected to be the best for the two-group case: PCS of object area (Object), peak transition probability
(Texture), sum variance (Texture), the standard deviation of the cluster area (Graph) and CPV8515 of
standard deviation of major axis for neighbouring objects (Object). As can be seen features from
each of the three approaches are included in the top group for the neural network approach. It was
not possible to study which features were the most important. However, the gain term of the back
propagation neural network was −0.55 for the two-group and −1.55 for the four-group case. The
resulting classifier accuracies are shown in Table 3.
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Table 3
The classification accuracy and reproducibility for the combined features in material II

Classifier Two groups (1–2A/2B–3) Four groups (1/2A/2B/3)
Training (%) Testing (%) Training (%) Testing (%)

Statistical multivariate 90 77 75 63
Neuron networks 94 80 71 67

Fig. 8. Two groups: (a) Mitotic density related to subjective grading. Difference of mean is significant at p < 0.01.
(b) Mitotic density related to computer grading. Difference of mean is significant (p < 0.01). (c) p53 expression classes
(low, moderate, high) related to subjective grading. (d) p53 expression classes (low, moderate, high) related to computer
grading.

4.5. Relation between subjective and image analysis based grading, mitotic density and p53 protein
expression in material II

Analysis of the relation were made between subjective and the combined image analysis based
grading for MD and expression of p53 protein in each specimen. The relation to MD and p53
expression for two groups are given in Fig. 8 and for four groups in Fig. 9.

5. Discussion

Quantitative image analysis of tumours started in the late sixties and is now a rapidly growing field.
The correlation between nuclear size and tumour grade in bladder cancer was documented 1969 [27]
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Fig. 9. Four groups: (a) Mitotic density related to subjective grading. Difference of mean is significant (p < 0.01) between
Grade 2A and Grade 2B, Grade 2A and 3. (b) Mitotic density related to computer grading. Difference of mean is significant
(p < 0.01) between Grade 2A and Grade 3. (c) p53 expression classes (low, moderate, high) related to subjective grading.
(d) p53 expression classes (low, moderate, high) related to computer grading.

and confirmed in numerous investigations. Already in 1972 Prewitt [39] proposed a computerized
grading scheme based on the analysis of a number of features extracted from digitized images of tissue
sections. She later followed up on the idea in several other papers [40,41]. Van der Poel et al. [37]
reviewed quantitative investigations of transitional cell bladder carcinoma.

The considerable increase of interest in this field in recent years undoubtedly has to do with the
fact that computers and image digitizing equipment have now reached price/performance levels that
make them feasible for use in some clinical routines. So there are good reasons to expect a significant
increase in the use of computer assisted methods in pathology. Using computerized image analysis,
many quantitative features that are not readily apparent to the human eye can be utilized, such as
DNA content, high order texture descriptors, specific shape irregularities and geometrical structures
together with the more visually obvious features. In this study we have developed and evaluated
three different approaches to feature extraction and two different kinds of classification strategies.
The feature extraction has been designed to capture both visually obvious as well as more abstract
quantitative features. Each feature extraction approach has its advantages and problems.

The object oriented features are sensitive to a proper segmentation which is hard to do with high
quality automatically. There are also difficulties with the influence of the 3D nature of the original
tissue on the definition of what is an object in 2D. Another set of problems is caused by the varying
staining density between different preparations. Through the use of dynamic selection of thresholds
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and postprocessing of the binary images we have minimized the influence of these problems. The
influence of varying staining density is further reduced by the use of secondary features obtained from
the initial feature distributions rather than the features as such. By using the distances between certain
percentiles of the distributions the features are normalized against variations in absolute values.

Textures are in general very sensitive to focusing problems. Due to differences in the scale of the
texture elements, this problem is more severe when the chromatin texture within the nucleus is to be
analyzed than when the overall texture of the tissue section is to be analyzed as done in our study.
Another difficulty in using textures is to find measures that are invariant to irrelevant variations in
staining, image orientation, illumination level, etc., yet still provide reproducible differences between
the different grades. To try to overcome these difficulties we used histogram equalization and orien-
tation independent secondary features derived from the original oriented texture features. Still we did
see some problems in reproducibility of the textural features between the different sets of specimens.

The third group of features, those obtained from the minimum spanning tree connecting the nuclear
centroids in tissue sections share the sensitivity to segmentation problems with the object oriented
features. Another problem relates to computational efficiency. Computing the MST is a computa-
tionally demanding task. However, several efficient implementations have been proposed for solving
the minimum spanning tree problem [25,42]. We used Kruskal’s algorithm with a time complexity of
O(e log e), where e is the number of edges in the graph. This lead to reasonable computation times.
Nuclei lying at the image border is a problem when calculating the MST features. The border effect
which is related to the number of nuclei in the regions is not evaluated in this study.

We also used two different classification strategies. Stepwise linear discriminant analysis and back
propagation neural networks. An advantage of the linear discriminant method is that it indicates which
features are most significant for the classifier. The method is however limited to linear classifiers.
The network algorithm was susceptible to overlearning, as indicated by a peak in generalization
performance followed by a consistent decline as the training continued. One disadvantage of using a
neural network is that it is impossible to trace the significant features.

The combination of the three different kinds of features showed better classification results and
higher reproducibility than most of the individual feature sets. It is also interesting to note that the
automatic feature selection procedure in the stepwise linear discriminant analysis algorithm selected
features from all three groups among the top five features. It thus seems that the different ways of
extracting features provide complementary rather than fully redundant information.

The reproducibility of some grading systems can be as low as 30–40% [5,45]. Furthermore, in
some tumours the correlation between clinical outcome and grading before treatment can be low or
none [20,44]. However, grading of bladder carcinoma seems to have considerable prognostic potential
despite the incongruity between the various systems used [5,30,33]. In our work we have shown that
we can obtain fairly high and reproducible correlation between subjective and image analysis based
grading, around 80% in the two-group case and around 65% in the four-group case. Almost as good
reproducibility is achieved when the classifiers are trained on one material and system and tested
on an entirely different material and system. The obtained computer grades also correlate well to
mitotic density and p53 expression. However, we did not find any significant correlation between any
of the features from the computer analysis and the mitotic density when we tested a direct multiple
stepwise regression model, neither when the model was linear nor when it was logarithmic or squared.
Similarly, neither the subjective nor the computer grading correlated time to recurrence. The follow
up time was too short to evaluate time to progression and survival.

It is interesting to note that the features showing the best correlation to increment in grade were
different measures of variation. This finding strengthens the notion that malignancy is a consequence
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of variability and disharmony of cellular organisation at all levels, and that increased malignancy
grade represents an exaggeration of such disharmony.

In this study we have used surrogate endpoints for evaluation of prognostic power. We have mainly
tried to mimic the subjective grade and studied correlations to MD and p53 expression. In preliminary
studies on material I we did find an interesting relation between the texture based computer grade and
patient survival time. This result will, however, need to be confirmed on independent material in the
future as mortality data become available.

6. Conclusions

We have developed a computerized grading system for transitional cell bladder carcinomas. The
combined method shows good correlation with the visual grading, mitotic density and p53 and demon-
strates a robust prognostic power. The method could become a valuable addition to the tool available
for estimating the prognosis of bladder carcinoma patients.
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