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A B S T R A C T   

This study aims at the application of two chemometric techniques to visible spectra of acetic acid 
solutions of Co (II) and Co (III) for simultaneous determination thereof. Spectral data of 145 
samples in the range of 400–700 nm were used to build the models. Partial least squares 
regression models were developed for which latent variables were determined using internal 
cross-validation with a leave-one-out strategy and 3 and 2 latent variables were selected for Co(II) 
and Co(III) based on root mean square error of cross-validation. For these models, root mean 
square errors of prediction were 1.16 and 0.536 mM and coefficients of determination were 0.975 
and 0.892 for Co (II) and Co (III). As an alternate method, artificial neural networks consisting of 
three layers, with 10 neurons in hidden layer, were trained to model spectra and concentrations of 
cobalt species. Levenberg-Marquardt algorithm with feed-forward back-propagation learning 
resulted root mean square errors of prediction of 0.316 and 0.346 mM for Co (II) and Co (III) 
respectively and coefficients of determination were 0.996 and 0.988.   

1. Introduction 

According to a study, the carboxylates, typically acetates of cobalt in wet acetic acid, are the most extensively used homogeneous 
catalysts in the organic industry [1]. For more than a century, the redox couple Co (II)/Co (III) has been prepared in different ways and 
used per se where other catalysts stand flop due to selectivity problems or economic and environmental constraints [2,3]. Several 
modifications of this catalyst such as a combination with Mn and Br have also been suggested [4]. A free-radical chain mechanism 
governs such reaction networks, resulting in hydroperoxides as intermediate that may catalytically be decomposed in chain branching 
steps, in the presence of Co(III)/Co(II), generating free radicals for propagation [5,6]. The composition of Co(II)/Co(III) solution has a 
decisive influence on the process kinetics [7], however, simultaneous determination of both species of cobalt in acetic acid is quite 
challenging. Methods available so far include gravimetric analysis [8], chelation and solvent extraction [9], paper and thin layer 
chromatographic techniques [10–13], polarography [14], extractive [15] and non-extractive spectrophotometric methods [16,17] and 
atomic absorption spectroscopy [8,18]. These techniques may satisfactorily be applied with reasonable accuracy but the cost, oper-
ational complications, and laborious pretreatment or separation steps are some of the reasons hindering their routine use in labora-
tories with limited resources. Hence a simple method without any pre-treatment or separation step is much needed for compositional 
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analysis of Co (II) and Co (III) solution in acetic acid. 
Spectrophotometry combined with chemometric techniques such as multivariate data analysis is the most applicable, economical, 

and versatile analytical method for the quantitative analysis. Its potential applications are found in various fields such as environ-
mental monitoring [19,20], quality control [21,22], process analytical technology [23,24], food and pharmaceutical analyses [25–27], 
data-driven process systems engineering [28,29], process optimization [30,31] and quantitative structure–analysis relationships [32]. 
The recent proliferation of chemometric algorithms such as partial least squares regression (PLS) and artificial neural networks (ANN) 
has boosted the use of spectrophotometry as a simple, rapid, and nondestructive method for the analysis of complex mixtures There are 
several reports on multicomponent analysis in which PLS regression has been proved to be a simple and fast chemometric method to 
deal with highly collinear variables [27,32,33]. However, the nonlinearities in data could limit its applications. ANN is an alternate 
technique having the ability to learn by examples and to model linear as well as nonlinear relationships in data to build a global model 
[34–36]. These techniques are successfully applied for speciation analysis as well [37–39]. There are multiple reports in literature 
highlighting the application of chemometric tools for cobalt analysis in the presence of other metals [16,17,40,41] but the results are 
reported as total cobalt. To our knowledge, there has been no report on using such methods for the simultaneous determination of Co 
(II) and Co (III) in acetic acid medium. 

The main goal of the present work is to extend the use of chemometric methods such as partial least squares (PLS) and artificial 
neural networks (ANNs) for the prediction of both Co (II) and Co (III) species simultaneously in acidic medium. The main difference in 
the present study and the previously published work is that simultaneous determination of both forms is without any tedious steps of 
separation or masking the species. The comparison of both models has also been presented using different statistical parameters. 

2. Materials and methods 

2.1. Reagents and solutions 

Cobalt (II) acetate tetrahydrate (proanalysis) was purchased from Merck and used without any further purification. AnalR-grade 
potassium chlorate and potassium iodide were procured from BDH. Distilled water was used during experiments. The standard 
stock solution of sodium thiosulfate was prepared from an extra pure reagent from Seharlain. Lab reagent grade anhydrous sodium 
acetate and pure glacial acetic acid were acquired from Fluka and pure isopropyl alcohol was purchased from Sigma Aldrich. 

2.2. Apparatus 

All glassware of Pyrex Class A was used. An automatic pipette from Nichiryo was used for careful preparation of samples. Thermo 
circulator and hot plate stirrer from LabTech were used to maintain the reaction bath at a constant temperature. Titrations were 
precisely performed using an automatic burette (continuous E) from Vitlab (Germany). Spectra was collected by Shimadzu UV-1650 
PC UV-Vis spectrophotometer equipped with a matched pair of 1-cm quartz cells. 

2.3. Software and data analysis 

PLS-SIMPLS algorithm and computational programs for ANN were written in MATLAB (v. 6.5 for Windows). Intel Core i7-3770 3.4 
GHz with Microsoft Windows 10 operating system was used to run all programs. 

2.4. Sample preparation for spectral data 

Training and test data sets for ANN and PLS model development were initially prepared by mixing different amounts of reactants in 
the laboratory. 

A large data set of 145 samples of binary mixtures comprising Co (II) and Co (III) was used to model the quantitative relationship 
between the concentration of both redox species and their spectra. Since Co (III) acetate is not widely available commercially, that’s 
why the solutions of redox couple were prepared by adopting a straightforward route of oxidizing cobalt (II) acetate in glacial acetic 
acid with a calculated amount of aqueous potassium chlorate according to the following reaction [42]: 

ClO−
3 + 6H+ + 6Co(II)→ 6Co(III)+Cl− + 3H2O 

Various amounts of 0.05 M Co (II) acetate were made to react with different volumes of 0.23 M potassium chlorate at 85 ◦C in 
glacial acetic acid to prepare a set of 145 samples in the laboratory for composition analysis and the resulting solutions were analyzed 
for Co (III) concentration by iodometric method. A plethora of aesthetically pleasing colors results from variations in the concentration 
of Co (II) and Co (III) from magenta to purplish brown to dark green which can be readily observed. The experiments were designed 
carefully for the random selection of compositions of the samples. The dataset was randomly divided so that a part of it was used to 
train the model while the remaining part served as an independent test data set to measure the predictive ability of the model. 

2.5. Spectral data collection 

The redox couple mixtures were subjected to visible absorption spectroscopy for capturing the quantitative fingerprints of mixture 
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composition. All spectral measurements were performed using the glacial acetic acid as a reference and readings were recorded in the 
visible range of 400–700 nm with a sampling interval of 1 nm on a medium scan rate, and a slit width of 2 mm. Each sample was 
scanned three times, and the average of three spectra was used to represent it. The spectral data was used without any pre-processing. 

2.6. Reference wet analysis 

The wet analysis of the samples was performed with iodometric titration using Sodium thiosulfate to obtain the concentration of Co 
(III) in each sample. This method, due to its simplicity, is one of the oldest preferred approaches for the routine analysis of a variety of 
chemical species including Co (III) [43]. It is usually done using starch as a visual indicator or an amperometric endpoint detection 
[44]. However, in the present study, an acetate buffer was used which eradicates the need for an external indicator. Co (II) amount was 
then calculated by the difference of total cobalt and Co (III). 

2.7. Multivariate modelling 

Application of Chemometrics and artificial intelligence to empirical modelling of spectral data is a promising method for multi-
variate calibration problems [32,45] They have significantly improved and enhanced the scope of quantitative spectrophotometry and 
multiplied the importance of these methods by many folds in expanding analytical arenas. Multivariate modeling techniques such as 
partial least squares regression and artificial neural networks appear to be more adequate than univariate methods since they are 
proficient to handle complex mixtures and deal with negative effects of uncalibrated interferences and outliers existing in quantitative 
analysis [46]. 

Partial Least Square is a popular supervised learning method particularly known to be very effective among linear multivariate 
statistical methods. It is particularly admired in spectroscopy-related fields to deal with the problems of high dimensionality and 
multicollinearity of the variables. It maximizes the linear relationship between the concentration of the analyte and its spectra while 
minimizing the spectral interferences [27,33,47–50]. As compared to other linear methods like principal component regression, it 
takes into account the data of both spectra and concentration blocks to model the system and compute latent variable scores that 
achieve the greatest covariance between the matrix of independent variables X and the dependent variable y-vector. In the context of 
the present study the data matrix X is formed by UV-Visible spectra of the solution in the range of 400–700 nm and the y vector 
contains the experimental values for the concentration of Co (II) or Co (III) in the samples. PLS1 mode was applied in which the 
concentration of a single component is modelled at a time. 

Artificial neural network (ANN) modeling is another very popular machine learning technique for developing nonlinear empirical 
models of complex chemical systems. ANN is now a mainstream technology mostly due to its excellent inherent ability to learn by 
examples without any human intervention. It recognizes the patterns in the input data and predicts the output of similar data sets. Due 
to its self-learning capacity and complexity solving, ANN has been implemented in various studies in diverse domains including 
chemical analysis [35,51]. 

Inspired by the conception of biological brains, ANN is composed of several artificial neurons that have adaptive and dynamic 
connections between them. ANN structures are mostly complex as a human brain and possess many other similar properties like self- 
learning, high parallelism, fault tolerance, and the ability to generalize and handle imprecise data. 

ANN structures are usually multilayered as shown in Fig. 1. The input signals are received by the first layer, every input (x) is 
multiplied by an adjusted synaptic weight (W), then sum with bias (b) to form the net input (n). The net input (n) is passed through an 
activation function. The activation function is responsible for all complex computations in soft modelling mapping the input of a neural 
neuron to its output. Log sigmoid and linear transfer functions are the most common and make the model capable of good predictions. 
The neuron output (y) is written as: 

Fig. 1. General Architecture of an ANN model (Image source: Superdatascience.com).  
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y= f (Wx+ b)

The ability of ANN of universal approximation and recurrent dynamic modelling makes it very appealing to solve complex 
problems. However the model often requires a large training data set and the learning is computationally complex [36]. 

The details of PLS and ANN algorithms are present in several references [35,52] and therefore are not discussed here. 

2.8. Internal and external validation of models 

Several statistical parameters are used as figures of merit for model evaluation. A cross-validation procedure is a famous approach 
for internal validation during model training [52]. Leave –one out strategy is a common approach in which one sample is held out 
during training and its concentration is predicted by the trained model. The process is repeated until each sample is left out once and 
evaluation is done by Root mean square error of cross-validation, RMSECV or Predicted error sum of squares, PRESS for every 
component added or any topology change. After achieving an optimized model an independent test data set that was not used for 
model calibration is presented to the model and the concentration is predicted. The purpose of this independent test is to evaluate the 
reliability, extrapolation, and degree of prediction of the calibrated models. The root mean square error of calibration (RMSEC) and 
root mean square error of prediction (RMSEP) are the indicators used to assess the predictive ability of the model. 

In addition to these error parameters, the correlation between predicted and experimental values is also taken into account by 
computing correlation coefficient R and coefficient of determination R2 to judge the quality of prediction. 

Errors of cross-validation and test set validation, bias, and the ratio of prediction to deviation (RPD) are calculated according to the 
following equations [27]: 

Root mean square error of cross-validation (RMSECV): 

RMSECV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Ĉi − Ci)
2

N

√

PRESS can be computed in the following manner: 

PRESS=
∑n

i=1
(Ĉi − Ci)

2 

Coefficient of determination (R2): 

R2 = 1 −

∑N

i=1
(Ĉi − Ci)

2

∑N

i=1
(Ci − Ci)

2 

Bias: 

Bias=

∑N

i=1
(Ĉi − Ci)

N 

The ratio of prediction to deviation (RPD): 

RPD=
SD

RMSEP  

where Ĉi the predicted or estimated concentration in the ith sample, 

Fig. 2. Spectral overlap of standard solutions of Co (II) and Co (III) acetates and their binary mixture in water/acetic acid solution.  
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Ci is the actual/experimental value of the concentration in the sample, 
Ci is the mean of the experimental values, 
N is the number of samples in the validation set, 
SD is the standard deviation. 

3. Results and discussion 

3.1. Spectral features 

The spectral response of Co (II) and Co (III) present simultaneously in acetic acid solution is complicated due to their spectral 
overlap. It can be seen in Fig. 2, that these compounds don’t show sharp peaks but rather broad peaks are observed in their solution. 

Mostly industrially important oxidation reactions based on the Cobalt catalyst system are operated in a water/acetic acid (H2O/ 
AcOH) solvent system. Dissolution of transition metal compounds such as cobalt acetate in acetic acid/water mixtures results in 
significant changes in their coordination chemistry. Solution chemistry of cobalt acetate is complex as several octahedral and tetra-
hedral coordination complexes are formed through various equilibria steps, all of them dependent on the acid/water concentration 
ratio [7,53] In general, the equilibria of cobalt acetate with water in acetic acid may be written as follows: 

Co(OAc)2 (HOAc)4 + nH2O ⇔ Co(OAc)2(H2O)n(HOAc)4− n 

The stepwise formation constants for these species have been reported in the literature [54] and can be used to calculate their 
distribution. However, in the present study the concentration of Co(II) refers to the total amount of Co(II) species present in the so-
lution. In the spectra of cobalt acetate (Fig. 2) a broad peak attributed to Co (OAc)2 species is prominent, which is shifted from one 
wavelength to another (525 nm–515 nm) according to the composition of solvent and amount of water in it [49]. The active catalyst is 
prepared via one-electron oxidation of the metals by oxidants such as peroxo radicals or potassium chlorate as in the present case 
occurs. The resulting solution contains Co (III) acetate in addition to unreacted Co (II) species. 

Studies show a shift of absorption maxima of Co (III) acetate from 600 nm to 585 nm in anhydrous acetic acid to water respectively 
at 25 ◦C [55]. Since the spectral feature is not of pure species rather it’s a combined spectrum of several species, thus univariate 
spectroscopy couldn’t be a good option for compositional analysis. The UV-vis spectra for samples of redox couple mixtures prepared at 
various Co (II) concentrations (0.06–23.0 mM) and Co(III) (0.02–6.5 mM) in varying H2O/AcOH ratios in the range of 400–700 nm are 
shown in Fig. 3, that provides complimentary information on the catalyst composition. 

Chloride ions produced during the synthesis of the redox couple would not interfere much during the collection of visible ab-
sorption spectra as this specie doesn’t contribute to spectra in this range. The same is true for some unreacted ClO3

− ions and trace 
quantities of water added and produced during the synthesis of redox couple mixtures. The spectra are generally very similar in shape 
and thus have a high degree of correlation. To overcome this problem, two different multivariate calibration models are proposed and 
their results are compared. 

3.2. PLS model 

A PLS model was developed using the SIMPLS algorithm and the data were mean centered.145 samples of binary mixtures of Co (II) 
and Co (III) were used to develop the model. In the first step of model calibration, A 115 × 301 X matrix consisting of absorbance of 115 
samples on 301 wavelength points (400–700 nm) for PLS was used for calibration of the model. The experimentally found concen-
tration of each component was provided separately as the Y matrix of 115 × 1 dimension. PLS-1 mode of regression was adopted in 
which each component is measured separately. A major task in model development is to select the appropriate number of factors or 
latent variables best representing the relationship between the spectra and analyte concentration. For this purpose, Cross-validation 
with leave one out strategy is the most common one. The number of factors selected for Co(II) and Co(III) are 3 and 2 respectively on 
the basis of RMSECV (or PRESS) as shown in Fig. 4(a and b). Up to these numbers of factors, the RMSECV (as well as PRESS) decreases 
sharply to 0.789 for Co (II) and 0.479 mM for Co (III) and then it nearly level off. The model was built with the selected number of 

Fig. 3. The absorption spectra of 145 mixtures of Co (II) and Co (III) in acetic acid solution.  
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latent variables and used to predict the concentration of another set of 30 samples that were not used previously in model develop-
ment. The root mean square error of prediction was found to be 1.16 and 0.536 mM for Co (II) and Co (III). Moreover, the coefficients of 
determination for both calibration and validation show a reasonable prediction ability of the model for both components (See Figs. 5 
and 6, Table 1). The results show good predictive ability of the PLS model for both components. 

3.3. The ANN model 

To model Co (II) and Co (III) concentrations and their spectra in acetic acid solution, the data matrix comprising of absorbance of 
145 mixture on 301 wavelengths at a difference of 1 nm were added as an input data and the experimental concentrations of both Co 
(II) and Co (III) were added to the network toolbox separately as target matrices. As a common practice of ANN model training, 70% of 
the data was assigned for network training, 15% was used for network generalization while the remaining 15% was presented to the 
network as an unlearned test data to access the prediction ability of the model. The neural network architecture is a crucial parameter 
to decide model performance. 

A multi-layered feed forward-back propagation (FFBP-NN) neural network with Levenberg –Marquardt (LM) algorithm for its fast 
convergence was developed. A three-layered artificial neural network program was written in Matlab. This model consisted of an input 
layer with 301 neurons corresponding to each wavelength’s spectra. 10 neurons were selected for the hidden layer where all com-
putations take place, ensuring good fitting of data. The output of the single neuron in the output layer corresponds to the modelled 
concentration of the component. The log sigmoid transfer function was used for hidden layers of this network and linear transfer 

Fig. 4. RMSECV and PRESS versus the number of components for (a) Co (II) and (b) Co (III) in the PLS1 model.  
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function was used for the output layer. Models using sigmoid transfer functions often are capable to model complex and nonlinear 
systems with improved accuracy. 

During the training phase, the network selects random values of weight and bias. This training was performed for each component 
separately with LM algorithms for error minimization, and after fine-tuning the model, RMSE for each component in every step has 
been displayed in Table 2. Also, the predicted concentrations are plotted against the actual concentrations in Figs. 7 and 8. A larger 
coefficient of determination (R2) endorses the capability of better predictions of both components. 

Fig. 5. Predicted concentration versus measured concentration for Co (II) in 115 Calibration sets and 30 Test sets.  

Fig. 6. Predicted concentration versus measured concentration for Co (III) in 115 Calibration sets and 30 Test sets.  

Table 1 
Statistics of the calibration and test set validation of the PLS-R models for estimating Co (II) and Co (III) in acetic acid solution based on original UV- 
Visible spectra.      

Calibration Set Validation Test Set Validation       

(115 Samples) (30 Samples)   

Analyses Number of independent variables Model LV R2
C RMSEC (mM) R2

p RMSEP (mM) RDP Bias (mM) 

Co(II) 301 PLS 3 0.985 0.690 0.975 1.16 5.49 0.438 
Co(III) 301 PLS 2 0.940 0.449 0.892 0.536 2.79 0.068 

Abbreviations: LV, latent variables; R2
C, coefficient of determination for calibration; RMSEC, root mean square error for calibration; R2

p , coefficient of 
determination for prediction; RMSEP, root mean square error for prediction; RPD, the ratio of standard deviation to the standard error of prediction; 
Bias, average error of prediction.  
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3.4. Comparison of models 

The different figures of merit for both models show that they are capable of satisfactory prediction of both Co (II) and Co (III). The 
plots of the error histogram Fig. 9(a) and (b) show random variation without any systematic error present in the models. Similarly, 
random errors are observed in PLS models for both Co (II) and Co (III) (Fig. 10). 

The p-values of PLS and ANN calibration models can be seen on the regression summary analysis table (Table 3). Both models are 
acceptable on this basis since p-values for slope and intercept are below the level of significance i. e, 0.05. However, p-values for the 
ANN model are well below the chosen significance level, almost zero in each case, as compared to the p-values for PLS model which are 
just below 0.05 for slope for Co (II) and Co (III). It also shows that ANN model is capable of better predictions than PLS model and is the 

Table 2 
Summary of performance parameters of the ANN model.      

Training Validation Testing     

(115 samples) (15 Samples) (15 Samples) 

Analyses Type of Algorithm Number of Layers No. of Neuron R2 RMSE (mM) R2 RMSE (mM) R2 RMSE (mM) 

Co(II) LM 3 10 0.996 0.332 0.996 0.316 0.996 0.316 
Co(III) LM 3 10 0.956 0.374 0.968 0.300 0.988 0.346 

LM = Levenberg-Marquardt; R2 = Coefficient of determination; RMSE = Root mean square error. 

Fig. 7. Predicted concentrations versus the actual concentrations related to training, validation, and test series for Co (II) using the LM algorithm.  
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preferred choice for both Co (II) and Co (III). 
The performance of each methods is also evaluated using the percentage recovery values (%RE) of the concentrations of both 

components. Results of %RE in Table 4 show that better recovery values are obtained for ANN model as compared to PLS. 
In general ANN model is capable to outperform the PLS regression model not just from a performance point of view but also due to 

its self-learning ability and independent decision-making without requiring any experts’ intervention. Its excellent generalization 
capacity for linear as well as nonlinear data trends is shown by the prediction excellence and better fitting for unlearned data. 

4. Conclusion 

Redox couple of cobalt Co (II)/Co (III) in acetic acid solution has particular importance in organic industrial processes. The inherent 
link between catalyst composition and reaction kinetics renders paramount importance to the elucidation of the catalyst composition. 
However, the accurate determination of the concentration of both Co (II) and Co (III) species simultaneously is quite challenging with 
conventional spectroscopy due to spectral overlap. 

Chemometric and machine learning algorithm has now gained widespread acceptance in all fields and is especially popular in 
multivariate spectroscopic analysis of complex mixtures. Partial least squares regression and artificial neural network were used to 
model the relation between UV-Visible spectra and the molar concentration of both Co (II) and Co (III) species present simultaneously 
in the acetic acid solution. 

A large data set was used to train and optimize the regression models with cross-validation. The predictive ability of the model was 
evaluated by an independent test set. 

Statistical results render both models to be pertinent. The developed PLS and ANN models are capable of the robust compositional 
analysis of the catalyst solution, not just because of low mean square error values for prediction but also due to the high determination 
coefficient of the external validation of the model and satisfactory recovery values. The assessment of the results of internal and 
external validation of models revealed the ANN-based models to have a better performance than the PLS ones. 

Fig. 8. Predicted concentrations versus the actual concentrations related to training, validation, and test series for Co (III) using the LM algorithm.  
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