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Adjuvant molecules, particularly toll like receptor (TLR) agonists

have been in development for decades, though until now only a

natural TLR 4 ligand (mono-phosphoryl lipid A, MPL) has been

incorporated into licensed vaccine products, in formulations than

enhance and complement the MPL activity. The inclusion of MPL-

based formulations into vaccines has been based on enhancing

antibody responses to subunit antigens, and has provided

important proof-of-concept for enhancing desired immune

responses to defined molecular targets. Challenges remain in

adjuvant development, particularly for those that stimulated

effective T cell responses for both preventative and therapeutic

vaccines. The discovery of molecules, many based on RNA, that

stimulate innate and adaptive immune responses and have the

ability to stimulate potent CD8 T cell responses, has opened the

door for development of a new generation of vaccines.
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Introduction
With the rapid developments around diseases caused by

coronaviruses, understanding and applying knowledge

relevant to inducing potent anti-viral responses become

increasingly critical. The focus of this discussion is on

molecules discovered based on anti-viral activity and the

potential for using these formulated molecules as vaccine

adjuvants. Adjuvants are critical components for devel-

oping effective subunit vaccines. Over the past decades,

formulations of the glycolipid monophosporyl lipid A, or

MPL [1], have been incorporated into vaccines targeting

viral, bacterial, and parasite pathogens with varying

degrees of success, including several with regulatory

approvals. The mammalian immune system recognizes

pathogen — associated molecular patterns (PAMPS)

via pathogen recognition receptors (PRRs) that include
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toll-like receptors (TLR) as well as other categories of

receptors classified as (NOD) or retinoic acid inducible

gene-I (RIG-I) and the RIG-I-like receptors (RLRs) [1].

MPL, the most advanced TLR-4 agonist, has been used

to develop combination adjuvants, either with alum

(AS04) or with QS-21, a saponin derivative (AS01), that

are now in licensed products [2,3]. The most recent and

best example of a critical role for adjuvants for vaccine

efficacy is with AS01-containing Shingrix, the shingles

vaccine with >90% efficacy. It is widely recognized that

MPL and subsequent TLR-4 ligands, including gluco-

pyranosyl lipid A (GLA) and the related second genera-

tion molecule SLA, can induce potent Th1 biased

immune responses with corresponding high quality and

durable antibodies, also demonstrated with DNA-based

adjuvants, including the ISS (immunostimulatory

sequences, TLR-9 activating CpG) used in the HEPL-

Slav Hep B vaccine [4]. Development through licensure

of products containing MPL-based and CpG-based adju-

vants has been a remarkable success. In both cases, first

licensures have been for prophylactic vaccines against

hepatitis B, in which unmet needs in terms of dosage

sparing (i.e. fewer injections needed to reach approvable

endpoints) as well as increased responsiveness in elderly/

immune compromised groups were demonstrated. Less

developed are adjuvants that activate via other PRR,

including those that stimulate via TLR-3, TLR-7,

TLR-8, or TLR-7/8, or RIG-I. Each of these pathways

can be activated with RNA, and a variety of synthetic

agonists that function via these pathways have been

synthesized and formulated. The excitement around

the potent adjuvant activity of 3M-052, a TLR 7/8 ago-

nist, and the RNA-based adjuvants activating TLR-3 and

RIG-I pathways has come from data generated with a

variety of vaccine candidates that suggest the ability to

expand upon the depth of immune responses obtained

thus far using TLR-4 based adjuvants, including CD8

responses.

TLR7 and TLR8 agonists
TLR7 and TLR8 are expressed intracellularly in

different cells with human plasmacytoid dendritic cells,

T helper cells and B cells expressing TLR7, while TLR8

is expressed on conventional dendritic cells, monocytes

and macrophages and regulatory T cells [5,6]. Because

TLR7 and TLR8 are expressed on different immune

cells these agents stimulate different cytokine profiles

and may, therefore, stimulate the adaptive immune

response differently. Stimulation of TLR7 and TLR8

with small molecules and ssRNA enhances DC activation

as well as activation both humoral and cell-mediated

immunity. A number of companies are developing similar
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TLR7 and TLR8 agonists as vaccine adjuvants including

3M, GSK, and VentiRx.

First generation TLR 7/8 agonists like the TLR7 agonist

imiquimod, initially developed as an anti-viral, and the

TLR7/8 agonist resiquimod have shown potent adjuvant

activity in a number of animal models [5]. Despite this

benefit the adjuvant effects were only seen at concentra-

tions that induced systemic cytokines which lead to

systemic side-effects. TLR 7/8 agonists that induce local

adjuvant effects without inducing systemic cytokines

should not only be more efficacious as vaccine adjuvants

but also less toxic.

To that end 3M has developed a novel TLR7/8 agonist

3M-052 that has a fatty acid tail added to the 1-position of

the imidazoquinoline ring which allows the molecule to

stay at the vaccination site when injected as part of typical

vaccine formulations [7]. Formulations of 3M-052 showed

potent adjuvant effects in combination with H1N1, hep-

atitis B surface antigen and amebiasis vaccines at doses

that induced no systemic TNF-a [7–9]. Studies by Fox

et al. demonstrated that appropriate formulation of 3M-

052 was important for optimizing the immune response

[10]. Additional studies in non-human primates showed

potent adjuvant effects of 3M-052 in combination with

HIV and pneumococcal vaccines in adult and neonatal

animals [11,12�]. When looking at neonatal NHPs

immunized with HIV env protein, 3M-052 increased

IgG responses above the ALUM control and the animals

immunized with a TLR4 agonist. In addition, 3M-052

was the only agonist to induce cross clade IgG responses

[12�]. Doses that were used in these studies were well

tolerated and showed limited systemic side effects and

local toxicity.

Pharmacokinetic studies demonstrated that subcutane-

ous (s.c.) or intramuscular (i.m.) injection of 3M-052 lead

to only low levels of the parent compound in the serum as

compared to results seen with resiquimod (Tomai, per-

sonal observation). Unlike resiquimod, 3M-052 did not

induce systemic cytokines, even when dosed at 1 mg/kg,

and 3M-052 demonstrated superior antigen sparing activ-

ity. Taking into account these positive results, 3M-052

was evaluated for toxicity in rats in combination with an

H7N1 vaccine. Results demonstrated that 3M-052 was

well tolerated at the doses evaluated. Recently, two

studies have demonstrated that formulated 3M-052 was

a potent adjuvant for inducing effective B and T cell

responses in non-human primates in the context of HIV

antigens [13,14]. Taken together, these results support

further development of 3M-052 for use in human clinical

studies.

There are other TLR7 agonists being developed as

vaccine adjuvants. A benzonapthyridine TLR7 agonist

containing a phosphonate group is capable of complexing
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to Alum and has been shown to be capable of enhancing

responses to various glycoconjugate vaccines and a vac-

cine to Bordetella pertussis [15,16]. In the Bordetella model

the TLR7 adjuvant response was as effective as the whole

cell vaccine. Mechanistically the TLR7 adjuvant

enhanced switching of the antibody response towards

IgG2a/b and induced T cell production of IL-17 and

IFN-gamma. The TLR7 agonist adsorbed to ALUM also

boosted vaccine responses to staphylococcus aureus and

RSV 2 pathogens where there is no effective vaccine [6].

On the TLR8 side, bacterial RNA and small molecules

that activate through TLR8 activate conventional DC

and specifically enhanced T follicular cell responses and

may act as potent adjuvants for cell-mediated immune

responses [6]. Messenger-RNA has also been shown to

have potent adjuvant activity in an influenza model that is

in part mediated by TLR7 and TLR8 [11]. In summary,

adjuvants containing TLR7 and 8 can act as potent

adjuvants of both humoral and cell-mediated immune

responses.

TLR3 agonists
Among the first data demonstrating the potential of using

RNA were generated using poly-ICLC, or poly (I:C). A

wealth of promising data, both clinical and pre-clinical,

have been generated with poly-ICLC as well as with

other TLR-3 agonists, though development of approved

products containing this class of adjuvants has yet to be

realized. Poly-ICLC (Hiltonol, Oncovir, Inc.) is a

synthetic double stranded RNA that binds to TLR-3,

MDA-5, among others, leading to effective activation of

dendritic and NK cells [16]. Interestingly, there is

evidence for synergy between TLR-3 and RIG-I innate

activation pathways, each stimulated by RNA [17].

While the scientific rationale for development of TLR-3

agonist is apparent due to advantages of cellular activities

induced and the resulting immune responses, there have

been issues that have hindered advanced development.

These include problems with consistent manufacturing

of the RNA-based TLR3 agonists. Improvements in

agonist design and manufacturing have led to the devel-

opment of Riboxxol, a 50 base pair RNA developed by

Riboxx. Advantages of Riboxxol and the 100 base pair

precursor, RGC100 [18] include molecular homogeneity,

and manufacturing advantages. Riboxxol appears to bind

exclusively to TLR-3, thus it may differ mechanistically

from earlier versions of TLR-3 agonists.

When properly formulated, an important issue that has

been long overlooked, Riboxxol and related next genera-

tion molecules have tremendous potential as next gener-

ation adjuvants. RNA-based adjuvants, for example,

TLR-3 and RIG-I agonists, exemplify the importance

of formulations that can both protect the RNA molecules

from degradation, as well as increase efficient intracellular
www.sciencedirect.com
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uptake by antigen presenting cells for activating the

endosomal TLR-3 receptor. Safe and effective nano-

formulations have been developed and extensively used

in the clinic, the next step is to combine them with TLR-

3 ligands, among others, to develop effective adjuvants

and therapeutics.

Activation of the TLR-3 pathway appears to be effective

in inducing a broad range of immune responses, including

CD8 responses, in humans and non-human primates

[19–22], Although TLR-3 agonists have great potential

as vaccine adjuvants, much of the clinical data generated

with poly-ICLC has been in cancer therapy. Rationale for

treating solid tumors with TLR ligands has come from

several clinical studies, mostly with poly-ICLC but also

with 3M052 and the GLA-SE TLR4 agonist. and have

demonstrated the potential of generating both innate

responses leading to tumor shrinkage, but also adaptive

responses to essentially turn the tumor into a vaccine

[23,24].

RIG-I
RIG-I is the charter member of the RIG-I-like receptor

(RLR) family of RNA helicases that includes RIG-I,

melanoma differentiation antigen (MDA)5, and Labora-

tory of Genetics and Physiology (LGP)2 proteins. The

RLRs are expressed at a low level in most if not all cell

types and tissues, and their levels are increased in

response to various cytokines including type 1 and type

3 interferon (IFN) [25]. RIG-I and MDA5 function as

essential PRRs for the primary recognition of RNA virus

infection whereas LGP2 is less-well understood but is

thought to regulate RIG-I and MDA5 function [26]. The

RLRs are cytosolic proteins belonging to the RNA

helicase superfamily. In response to RNA virus infection,

the RLRs recognize and bind to nonself signature motifs

that constitute pathogen associated molecular pattern

(PAMP) within viral RNA replication products. In

response to PAMP binding RIG-I hydrolyze ATP and

undergo a confirmation change that permits interaction

with cofactors including tripartite motif 25 (TRIM25) and

14-3-3 epsilon (14-3-3e) proteins. TRIM25 mediates

RIG-I ubiquitination that facilitates signaling activity

[27] while 14-3-3e chaperones the translocation of RIG-

I from the cytosol to mitochondria-associated membranes

for binding to the mitochondria antiviral signaling

(MAVS) adaptor protein [28]. MAVS binding by RIG-I

or MDA5 then activates the MAVS signalosome com-

prises tumor necrosis factor receptor associated factor

(TRAF) proteins, interferon regulatory factor (IRF)3/7,

and the NF-kB kinases and other signaling partners to

impart downstream transcription factor activation

including IRF3, IRF7, and NF-kB leading to innate

immune activation and the expression of immune regu-

latory genes [25] (PMID). RIG-I has also been shown to

direct the activation of activating transcription factor

(ATF)4 and SMAD4 (abbreviation is from the
www.sciencedirect.com 
combination of SMA (‘small’ worm phenotype) and

Drosophila MAD (‘Mothers Against Decapentaplegic’)

family of genes), impacting immune polarization and the

inflammatory response [29].

While many studies have shown that RIG-I is essential for

triggering innate immunity and for proper immune polar-

ization against infection by RNA viruses [30–32], recent

work reveals RIG-I as an attractive target for immune

programming for vaccine adjuvant actions, directing anti-

viral innate immunity, and as an adduct to mediate cancer

immunotherapy. RIG-I recognizes and binds to PAMP

RNA motifs marked by a free 5’ triphosphate (5’ppp),

double stranded (ds)RNA structure, and poly-uridine

signature [33]. Synthetic PAMP RNA motifs have been

produced and used in preclinical studies to evaluate the

immune regulatory actions of activating RIG-I with ther-

apeutic PAMP RNA [33]. These studies show that tar-

geting RIG-I with PAMP RNA can facilitate local innate

immune activation for restriction of virus infection,

enhancement of vaccine efficacy, and for immune-oncol-

ogy enhancement of tumor suppression [34]. Targeting of

RIG-I to activate innate immunity via treatment of cul-

tured cells with PAMP RNA or small molecule agonists of

RIG-I resulted in robust innate immune activation and

suppression of infection by a broad range of viruses

[35�,36]. Moreover, small molecule agonists of RIG-I

exhibit potent adjuvant actions to enhance antiviral

immunity from influenza A virus split vaccine in vivo
[37�]. Treatment of mice with 5’ppp-RNA engineered to

optimally activate RIG-I leads to induction of local and

intra-tumoral innate immunity with enhancement of cell-

mediated immunity against a variety of tumor types,

resulting in tumor shrinkage and cancer remission [38].

RIG-I activation was shown to impart 5’ppp- RNA adju-

vant actions to control the growth of a variety of cancer

cell types, revealing RIG-I as a key target for immune-

oncology applications of cancer therapy [39]. Moreover,

activation of RIG-I is also shown to direct the germinal

center reaction to enhance high quality antibody produc-

tion [40] (PMID). Overall, these studies define the utility

of RLR targeting for therapeutic applications to activate

innate immunity and enhance cell and humoral adaptive

immune responses for the control of virus infection,

enhancement of vaccine protection, and to facilitate

tumor control.

Conclusions
Several review articles have described the variety of

ligands for TLR and related innate immune pathways

[41]. Progress has been made in the development of

agonist molecules and characterization of the molecular

activation pathways they activate, and more recently, in

the ability to formulate agonists to enable safe and

effective in vivo applications. Formulations appropriate

for human vaccines include alum, oil/water emulsions

(e.g. MF59), and liposomes. The necessity of formulation
Current Opinion in Immunology 2020, 65:97–101
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is particularly important for delivery of RNA-based

agonists of TLR-3 and RIG-I, both for protection of

molecules from RNA-se activity and, in the case of

TLR-3, delivery to endosomal receptors. In spite of real

progress, few adjuvants have made their way into

approved vaccines and therapeutics, though the examples

of Shingrix and HEPLISAV have done much to reduce

barriers by demonstrating solutions to a previously unmet

need. Challenges remain, including those of scaled

manufacturing. However, these issues are also being

addressed by advances in developing optimized synthetic

processes to improve existing products or to replace

natural products (e.g. TLR-3, TLR-4 agonists) as well

as by optimizing formulations increase efficiency of

delivery and thus allow for reducing the dose of agonist

needed for an effective immune response. The potential

of RNA-based and small molecule adjuvant formulations,

particularly targeting RIG-I for activating innate

immunity and enhancing CD8 and antibody responses

adds impetus to the field of adjuvant development for

both vaccines and therapeutics.
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