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The viscosity and the relaxation time of a glass-forming liquid vary over 15 orders of

magnitude before the liquid freezes into a glass. The rate of the change with temperature

is characterized by liquid fragility. The mechanism of such a spectacular behavior and

the origin of fragility have long been discussed, but it remains unresolved because of

the difficulty of carrying out experiments and constructing theories that bridge over

a wide timescale from atomic (ps) to bulk (minutes). Through the x-ray diffraction

measurement and molecular dynamics simulation for metallic liquids we suggest that

large changes in viscosity can be caused by relatively small changes in the structural

coherence which characterizes the medium-range order. Here the structural coherence

does not imply that of atomic-scale structure, but it relates to the coarse-grained density

fluctuations represented by the peaks in the pair-distribution function (PDF) beyond

the nearest neighbors. The coherence length is related to fragility and increases with

decreasing temperature, and it diverges only at a negative temperature. This analysis is

compared with several current theories which predict a phase transition near the glass

transition temperature.

Keywords: liquid, liquid dynamics, relaxation time, medium-range correlation, fragility

INTRODUCTION

The viscosity of many liquids, such as water, is of the order of 10−2 poise (= 10−3 Pa.s). Its
timescale, defined by the Maxwell relaxation time, τM = η/G∞, where η is viscosity and G∞ is the
high-frequency shear modulus, is of the order of pico-second (ps). Upon cooling liquid viscosity
rises rather quickly, if crystallization can be avoided for instance by fast cooling. At low enough
temperatures τM becomes so long that the supercooled liquid behaves like a solid. This kinetically
frozen liquid is a glass. The transition to the glassy state is defined by the value of η reaching
1013 poise (= 1012 Pa.s), when τM becomes of the order of 103 s. Thus, the timescale of liquid
dynamics changes by asmuch as 15 orders of magnitude over amoderate temperature range. Such a
rapid change has direct implications on glass-forming ability and other properties of glass-forming
liquids, as well as on applications. The origin of this large change has long been debated without
wide agreement (Debenedetti and Stillinger, 2001; March and Tosi, 2002; Dyre, 2006; Lubchenko
and Wolynes, 2007; Götze, 2009; Donth, 2010; Berthier and Biroli, 2011; Edigar and Harrowell,
2012; Parisi et al., 2020), and remains one of the glass mysteries.

Our recent research results suggest that the medium-range order (MRO) in liquid plays a
crucial role in dynamics of metallic and other liquids (Ryu et al., 2019, 2020; Egami, 2020;
Ryu and Egami, 2020). In this article we discuss these results and their wider implications in
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relation to other theories of liquids. In particular, we point
out that our results do not suggest the divergence of viscosity
just below the glass transition temperature, Tg , as many other
theories do, and provide a resolution to the Kauzmann paradox
concerning entropy extrapolating to negative values at low
temperatures (Kauzmann, 1948). Our results also challenge
the idea that defect-like objects control atomic transport and
deformation in liquid and glass and raise questions on some
prevailing theories.

VISCOSITY, FRAGILITY AND MRO

The temperature dependence of viscosity can be expressed
in terms of the temperature dependent activation
energy, Ea(T), as

η (T) = η∞exp

(

Ea (T)

kBT

)

. (1)

Above the crossover temperature, TA, viscosity shows the
Arrhenius behavior with a constant value of Ea, and below TA it
becomes strongly super-Arrhenius (Angell, 1995; Kivelson et al.,
1995), resulting in rapid increase in viscosity culminating to
the glass transition. It has been shown by simulations (Iwashita
et al., 2013) and by experiments (Iwashita et al., 2017; Shinohara
et al., 2019; Ashcraft et al., 2020) that above TA viscosity is
determined by a bond cutting dynamics, and τM = τLC, where
τLC is the timescale for an atom to lose just one neighbor. Below
TA, however, the τM/τLC ratio increases rapidly with decreasing
temperature, as liquid dynamics becomes more cooperative
(Bellissard and Egami, 2018). This increase in cooperativity is
the cause of the rapid increase in viscosity with decreasing
temperature and eventual glass transition. The rate of increase
in viscosity just above Tg is characterized by fragility,

m =
dlogη (T)

d
(

Tg/T
)

∣

∣

∣

∣

∣

Tg

. (2)

A liquid with a large value of m is called fragile, whereas the one
with a smaller value of m is called strong (Angell, 1995). The
origin of the fragility is still in dispute (Angell, 1995; Novikov and
Sokolov, 2004).

The structure of liquid and glass is usually described by the
atomic pair-distribution function (PDF), g(r), which describes
the distribution of distances between atoms by

g (r) =
1

4πr2Nρ0

∑

i,j

〈

δ
(

r −
∣

∣ri − rj
∣

∣

)〉

, (3)

where ri is the position of the i-th atom, i = 1, . . . ., N, δ(r) is the
δ-function, ρ0 is the atomic number density, and <. . . .> denotes
thermal average. It is related to the structure function,

S (Q) =
1

4πQ2N

∑

i,j
exp

(

iQ ·
[

ri − rj
])

, (4)

which can be determined by x-ray or neutron diffraction, through
the Fourier-transformation,

g (r) = 1+
1

2π2ρ0r

∫

∞

0
[S (Q) − 1] sin (Qr)QdQ. (5)

According to Ornstein and Zernike (1914) the medium-range
PDF beyond the first peak decays with r as

G (r) = 4πrρ0
[

g (r) − 1
]

= G0 (r) exp (−r/ξs) , (6)

where G0(r) is the G(r) of the ideal glass, and ξ s is the structural
coherence length which characterizes the MRO. The ideal
glass state defined by G0(r) has long-range density correlation
without periodicity in the structure (Ryu et al., 2019). Because
the medium-range PDF mostly accounts for the first peak of
S(Q) (Cargill, 1975; Ryu et al., 2020), the height of the first
peak, S(Q1)−1, where Q1 is the position of the first peak, is
proportional to ξ s (Ryu et al., 2019).

In Ryu et al. (2019) G(r), thus ξ s, was measured for
Pd42.5Ni7.5Cu30P20 liquid by high-energy x-ray diffraction using
electrostatic levitation, from 420 to 1,100K through the glass
transition (573K). Just above Tg Ea(T) was found to be directly
related to ξ s by,

Ea (T) = E0

(

ξs (T)

a

)3

, (7)

where a is the average neighbor distance (Ryu et al., 2019) and E0
is a scaling parameter. Because

nc (T) = ρ0
(

ξs(T)
)3

(8)

is the number of atoms in the coherence volume, (ξs)
3, it is

indicative of the degree of atomic cooperativity of local dynamics
in liquid. In other words, Ea(T) is proportional to the number of
atoms involved in the activation process for viscous flow;

Ea (T) = nc (T)EB, EB =
E0

ρ0a3
. (9)

EB represents the bond energy per atom, which is of the order
of a fraction of eV and is significantly larger than kBTg , whereas
nc is relatively small even at Tg , typically below ten. The ratio
of EB/kBTg being larger than unity allows small changes in
cooperativity nc (T) resulting in large changes in Ea, and the rapid
increase in viscosity below TA. Moreover, for various liquids
examined by experiments as well as by simulations it was found
that nc at Tg is directly linked to fragility by,

nc
(

Tg

)

=
m

m0
, (10)

where m0 = 8.7 overall, 10.7 for metallic liquids, 7.4 for organic
liquids, and 7.3 for network liquids (Ryu and Egami, 2020).
Thus, fragility is related to the cooperativity of liquid dynamics
and also to the “ideality” of the liquid structure. The liquid
ideality is defined by the shape of the first peak of S(Q) being
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close to Lorentzian, as implied by the Ornstein-Zernike form,
Equation (6), and by long ξ s (Ryu et al., 2020). The Equation (9)
appears similar to that of the classical Adam-Gibbs theory (Adam
and Gibbs, 1965) in which the critical size of the cooperatively
rearranging region, z∗, determines viscosity. However, the
coherence volume defined here refers to the correlation in bulk
liquid in equilibrium, whereas the cooperatively rearranging
region is a transient defective object. This point will be
discussed below.

TEMPERATURE DEPENDENCE OF MRO
AND VISCOSITY

In Ryu et al. (2019) we studied the temperature dependence
of the structure for various liquids by experiments and
simulations, and showed that the height of the first peak of the
structure function, S(Q), and the coherence length follow the
Curie-Weiss law,

ξs (T) =
C

T − TIG
, (11)

where TIG is the ideal glass temperature which is negative. The
origin of this behavior was briefly discussed in terms of the
atomic-level stresses Egami (2011) in Ryu et al. (2019), and will
be explained elsewhere (Egami and Ryu, 2020). Then at Tg ,

d

d
(

Tg/T
)

(

ξs (T)

ξs
(

Tg

)

)∣

∣

∣

∣

∣

Tg

=
1

1− TIG/Tg
= mc, (12)

We found that,

m2
c =

m

m1
. (13)

with m1 = 613, as shown in Figure 1 for various metallic alloy
liquids. Therefore,

TIG

Tg
= 1−

(m1

m

)1/2
. (14)

Because

ρ0 =
fp

Va
=

6fp
πa3

, (15)

where Va is the atomic volume and fp is the atomic
packing fraction,

a

ξs (T)
=

(m)
1
6

(m1)
1/2
(

π
6m0fp

)1/3

(

T

Tg
−

TIG

Tg

)

, (16)

C

aTg
=

(m1)
1/2
(

π
6m0fp

)1/3

m1/6 . (17)

Because the value of fp is similar for all metallic glasses (∼0.7), the
plots of a/ξs (T) against T/Tg should be similar, except for vertical

FIGURE 1 | The plot of mc
2 vs. m for various metallic liquids. The dotted line is

for m1 = 613 in Equation (13).

FIGURE 2 | The plots of a/ξs (T) against T/Tg for various metallic liquids.

shifts, as shown in Figure 2. With vertical shifts they collapse to
a near universal curve up, except for weak dependence above Tg

onm (Figure 3). The value ofC calculated by Equation (17),Ccalc,
is compared to the value of C obtained by fit with Equation (11),
Cfit , for various liquids in Figure 4, showing good agreement.
This near universality must be the reason for the success of the
Kivelson scaling (Kivelson et al., 1995).

From Equations (1, 7, 17) we have

η (T) = η∞exp

(

E0

kBT

(

T1

T − TIG

)3
)

, (18)
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FIGURE 3 | The plots of a/ξs (T) against T/Tg for various metallic liquids with

vertical shifts to form a near universal curve.

FIGURE 4 | The value of C given by Equation (17), Ccalc, plotted against the

value of C fit by Equation (11), Cfit, for various liquids. The dotted line is a linear

fit, which is virtually identical to the line for Ccalc = Cfit.

where

T1 =
(m1)

1/2
(

π
6m0fp

)1/3

m1/6 Tg . (19)

Thus, the viscosity just above Tg can be described in terms of
E0 and TIG. At temperatures above TA the value of Ea becomes
constant (= E∞) even though ξ s keeps decreasing. The crossover
is a purely dynamic phenomenon (Iwashita et al., 2013), and
the MRO is irrelevant to dynamics above TA. With a reasonable
crossover, for instance,

Ea (T) = E∞

(

ξs (T)

b

)d(T)

, (20)

FIGURE 5 | The temperature dependence of viscosity of PdNiCuP liquid:

Experimentally determined viscosity data of PdNiCuP liquid (Kato et al., 2006;

Mohr et al., 2019) compared to those calculated. The pentagonal symbol

denotes the viscosity calculated with the ξs (T) determined from the PDF

measured by x-ray diffraction (Ryu et al., 2019) using Equation (20), whereas

the dashed line was calculated using the Curie-Weiss law, Equation (11).

where d (T) = 3 for T < Tg , d (T) = 3
(

Tg
T −

Tg
TA

)

/
(

1−
Tg
TA

)

for Tg < T < TA, and d = 0 for T > TA, a realistic temperature
dependence of viscosity can be reproduced as shown in Figure 5.
Here we compare the experimentally determined viscosity data
of PdCuNiP liquid (Kato et al., 2006; Mohr et al., 2019) with
those calculated with the Equation (20). The pentagonal symbol
denotes the viscosity calculated with the ξs (T) determined from
the PDFmeasured by x-ray diffraction (Ryu et al., 2019), whereas
the dashed line is calculated using the Curie-Weiss law, Equation
(11). We assumed TA/Tg = 2.0 (Blodgett et al., 2015), used
the high-temperature data (Mohr et al., 2019) to determine the
values of E∞ (= 0.77 eV) and η∞ (= 1.82 × 10−5 Pa.s), and
the low-temperature data (Kato et al., 2006) to determine the
value of b (= 3.72 Å).

COMPARISON WITH OTHER THEORIES
AND MODELS

Absence of Divergence
The divergence of viscosity was first predicted by the Vogel-
Fulcher-Tamman (VFT) model (Vogel, 1921; Fulcher, 1925;
Tammann and Hesse, 1926),

η (T) = η0exp

(

B

T − T0

)

. (21)

Models based upon structural coherence, such as the icosahedral
correlation models (Steinhardt et al., 1981; Tomida and Egami,
1995; Tanaka et al., 2010), predict the divergence of structural
coherence, thus the divergence of viscosity, below Tg in the
vicinity of the Kauzmann temperature, TK (Kauzmann, 1948).
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The mode-coupling theory (Götze, 2009) predicts the divergence
at a temperature, Tc, which is even higher than Tg , and only
defect hopping provides mobility below Tc (Biroli et al., 2006).
For a long time, it has been difficult to measure the viscosity of
simple liquids above Tg because of crystallization. In the absence
of serious questioning many of the current theories still assume
the divergence of viscosity in the vicinity of TK.

However, a more recent measurement of viscosity using liquid
levitator (Blodgett et al., 2015) suggests that the VFT model
actually shows poor fit to the data. It is likely that the prediction
of the viscosity divergence is based upon poor extrapolation of
viscosity to infinity. In fact, many other models do not predict
divergence at T > 0 (Cohen and Grest, 1979; Nussinov, 2004;
Demetriou et al., 2006; Elmatad et al., 2009; Mauro et al., 2009).
According to Equation (7) viscosity diverges when the coherence
length ξ s(T) diverges. For metallic glasses the value of ξs

(

Tg

)

/a
ranges from 1 to 2.7, with the average around 1.8. Therefore,
the structure is quite far from ideal even at Tg . The temperature
at which the ideal state is achieved in extrapolation, TIG, is
negative. Thus, viscosity never diverges at T > 0 and entropy
does not become negative, resolving the Kauzmann paradox
(Kauzmann, 1948).

Nature of Structural Order
Many theories attribute the origin of increased viscosity to
development of some structural order which is frustrated
and cannot achieve long-range ordering. The most prominent
example of such order is the icosahedral order (Sadoc, 1981;
Steinhardt et al., 1981). The idea is that because the icosahedral
order is incompatible with periodicity it never grows into
long-range order (Nelson, 1983; Sethna, 1983). However, such
structural orders depend on chemical composition and local
chemistry (Gaskell, 1979). Also, this is just a sophisticated version
of the nano-crystalline theory which Frank (1952) tried to
disprove by suggesting the possible presence of local icosahedral
configuration. Note that liquid is stabilized by configurational
entropy: The development of local order of a particular atomic
configuration will reduce the entropy and destabilize liquid.

On the other hand, we postulate the ideal liquid/glass state
by extrapolating the coherence length ξ s to infinity (Ryu
et al., 2019). This state has very diverse local structures,
with widely varying local configurations. For instance, the
population of the icosahedral local structure is merely 0.7%.
The order parameter, ξ s, does not describe the structural
order, but the MRO of local density fluctuation. Higher-
order peaks of the PDF at large distances include many
interatomic distances within the peak. The width of the
high-order PDF peaks is about 0.1 nm, and this defines
the spatial resolution of the structure in the ideal state.
Thus, the MRO describes coarse-grained density fluctuations,
and not the atomic-level structural correlations, because the
spatial resolution needs to be better at least by an order of
magnitude to specify the atomic structure. In our view the local
icosahedral ordering which occurs in single element liquid is
not indicative of glass formation, but it is likely be that of

nano-scale crystallization or quasicrystal formation. A single-
element metallic liquid is a very poor glass-former and easily
crystallizes. For a single-component liquid the second peak of
S(Q), which is more sensitive to crystallinity, diverges at a positive
temperature below Tg (Ryu et al., 2019). This suggests that
the divergence of the local order just below Tg implies nano-
scale crystallization.

Idea of Defects
In crystalline solids atomic transport occurs only through the
motion of lattice defects, such as vacancies and interstitial defects.
Because the structure of liquid and glass is strongly disordered
and appears to be full of defect-like structures, it was only natural
to assume that more defective parts of the structure allow easier
atomic transport. This led to many ideas of defects in liquid
and glass, including free-volume (Cohen and Turnbull, 1959),
cooperatively rearranging region (Adam and Gibbs, 1965), shear-
transformation-zone (Argon, 1979), and others including ours
(Egami et al., 1980). However, the results above suggest that
the bulk properties, the MRO, control atomic transport, not
those of defects. Would the concept of defect be still relevant in
elucidating the atomic transport? Our answer is that the concept
of defect defined by the specific static structure is not applicable
to liquid and glass. We have to consider the “structure” as a
dynamic entity.

It has been recognized for a long time that the definition
of defect in amorphous system is arbitrary, in the absence of
the reference structure. Various attempts have been made to
define the defects, by studying the nature of the static structure,
including the approaches using machine-learning (Cubuk et al.,
2015; Bapst et al., 2020). However, it became apparent recently
that what matters is the dynamics, not the static structure before
deformation. In crystalline solids the defect retains its structural
identity even after motion, because of the translational symmetry
of the host lattice. In other words, defects are topologically
protected by the lattice. In liquid and glass, however, the topology
of atomic connectivity is open, and defects are not topologically
protected. The atomic configuration before themotion of a defect
is very different from that after the motion. In the picture of the
potential energy landscape (PEL), the system moves from one
valley to the other through a saddle-point. It was fond that, at the
saddle-point, the potential energy of the system is high enough
for the system to melt locally for a very short time (∼1 ps) (Ding
et al., 2020). Consequently, the system loses the memory of prior
thermal history (Fan et al., 2017). The saddle-point is known
to be a generator of chaos (Mason and Piiroinen, 2012; Párraga
et al., 2018). The simple, usually hand-written, schematic picture
of the PEL gives an impression that the pathway from one valley
to the next is pre-determined. However, in reality, the kinetic
momenta of atoms, which vary rapidly in time, give rise to large
uncertainty in the directions toward which the system evolves.
The major virtue of the PEL concept is that by removing the
kinetic energy the underlying PEL is clearly exposed. However,
to describe the dynamics of the system we need to add back
the kinetic energy which introduces uncertainty, particularly at
the saddle-point.
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The local melting at the saddle-point decouples the
pathway from a valley of the PEL up to the saddle-point
and the pathway down to another valley. Therefore, what
determines the nature of the saddle-point, thus the system
dynamics, is not the initial state in the prior valley but
the nature of the molten state which reflects the bulk
property, such as the MRO. The propensity to start the
activation process depends on the energy of the initial state,
which can be described in terms of the fictive, or effective,
temperature in the glassy state (Langer, 2004; Fan et al.,
2017). However, once the process of activation over the PEL
saddle point starts it does not matter where it started initially.
The dynamics of the system at the saddle point is totally
controlled by the bulk properties, the coherence volume,
to be specific.

Mode-Coupling Theory
The mode-coupling theory (MCT) is one of the most widely
used theories of liquid dynamics. It describes the dynamics in
terms of continuum hydrodynamic variables, such as density and
current auto-correlation functions. It is based on the Boltzmann-
type equation of motion initially developed for colloids. In
the equation of motion, the dynamics at time t is coupled
to the dynamics at a prior time t’ through the memory
function which represents the frictional force. The input to
the theory is the snapshot structure function, S(Q), particularly
its first peak. Because the height of the first peak of S(Q) is
proportional to ξ s (Ryu et al., 2019), the MCT focuses on
the MRO, similarly to our approach. The dynamic correlations
are determined by the equation of motion, and the feedback
through the memory function determines dynamics, leading to
the glass transition.

In colloids, particles are in touch with solvent, which
is in the hydrodynamic steady state, so that the use of
the frictional term in the Boltzmann equation is justified.
However, in atomic liquids atoms interact each other
directly via the potential force, so the application of the
MCT becomes more contorted. Viscosity is given in
terms of the stress autocorrelation via the Green-Kubo
equation. In the MCT this retention of stress correlation is
expressed as the memory function which gives rise to the
frictional force. Therefore, the feedback from the memory
function can produce a runaway leading to the divergence of
correlation time.

In our approach the dynamics is governed by discrete
local atomic activation processes. The probability of activation
is controlled by the activation energy which is directly
related to the structural coherence length ξ s. The ξ s is an
equilibrium property, which depends only on temperature
and the elastic constants through the atomic-level stresses,
without the feedback loop through the memory function. In
colloids local dynamics is closely coupled to local density
fluctuations, because density plays the role of temperature
in the hard-sphere system. Hard jamming at the critical
density leads to divergence of viscosity. In atomic liquids,
however, hard jamming never occurs, because atoms are

compressible and thermal activation is always possible. Even
though the MCT explains the glass transition of colloidal
systems, its applicability to atomic liquids should be examined
more carefully.

Infinite Dimension Models
The spin-glass theories of Edwards and Anderson (1975) and
Sherrington and Kirkpatrick (1975) used the replica method
(Aharony, 1975; Emery, 1975) and established the presence of
the spin-glass ground state, at least in the infinite dimensions.
In many spin-glasses spins interact through the long-range
RKKY interaction. The large number of interacting neighboring
spins justifies the use of the mean-field approximation.
The replica method was applied later to the glass problem
(Mézard and Parisi, 2000).

In spin-glasses randomness is quenched, because the spin
Hamiltonian does not change with temperature. In contrast in
real liquids and glasses the Hamiltonian varies with time and
temperature. The number of atoms involved in action, nc, is
small. Therefore, a similar mean-field approximation is more
difficult to justify, and atomic discreteness becomes central to
the dynamics. For instance, at TA, ξs

(

Tg

)

/a ≈ 1, so in Equation
(7) E0 represents the bond energy and nc, ∼ 2. The dynamics
is totally local, and the action of cutting a bond determines
viscosity and diffusivity. Even at Tg , nc ranges from 2 to 12,
whereas the ideal state, where ξs

(

Tg

)

/a → ∞, is achieved only
at a negative temperature. Thus, the liquid above Tg is very
far from the ideal state. The infinite dimension theories may
be justified in the ideal state, but they may not be appropriate
for the real glass and liquid which are far removed from
the ideal state. The glass theories based on exact solutions in
infinite dimensions (Parisi et al., 2020) are beautiful, but the
success of its application to real liquids and glasses needs to
be proven.

CONCLUSIONS

The study of the structural medium-range-order (MRO) in
metallic liquids, represented by the coherence length, ξ s, through
diffraction experiment and simulation shows that the MRO is
intimately related to local dynamics and viscosity. Namely the
activation energy of viscosity is directly related to the number
of atoms involved in local atomic rearrangement for structural
excitation, nc(T), which is proportional to (ξ s)3. The magnitude
of nc(T) is relatively small, 2 ∼ 12 even at Tg , so that the discrete
nature of the atomic structure, represented by the topology of
atomic connectivity network, is crucial. Conversely, it means that
the unit energy for activation per atomic bond, EB, is relatively
large. Therefore, a small increase in nc(T) would result in large
increase in the activation energy and viscosity. In our view this
must be the reason why the timescale of liquid dynamics changes
so rapidly over a moderate temperature range. At the same time,
the system is quite far from the point of viscosity divergence
which occurs when nc(T) diverges to infinity. Actually, we predict
nc(T) to diverge at a negative temperature, by extrapolation with
the Curie-Weiss law. Therefore, the Kauzmann catastrophe never
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occurs at T > 0. Even though the results presented here focus on
metallic liquids, the same approach was successful in elucidating
the ideality and fragility of network and some organic liquids
(Ryu and Egami, 2020; Ryu et al., 2020), suggesting that this
approach may be applicable beyond metallic liquids. This view
is at odds with some of the theories and ideas. This conflict will
be resolved by further theoretical and experimental advances in
the future.
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