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Abstract: In the gastroenterology field, the impact of artificial intelligence was investigated for
the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic
procedures and early detection of neoplastic diseases, implementation of the best treatment strategy,
and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper
endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks
of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists,
time-consuming procedures, lack of availability of advanced procedures, increasing workloads,
and development of endoscopic mass screening programs. Recent research has tended toward
computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in
daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy
of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional
multicenter randomized trials and the development of existent database platforms are needed to certify
clinical implementation. This paper presents an overview of the literature and the current knowledge
of the usefulness of different types of machine learning systems in the assessment of premalignant
and malignant esophageal lesions via conventional and advanced endoscopic procedures. This
study makes a presentation of the artificial intelligence terminology and refers also to the most
prominent recent research on computer-assisted diagnosis of neoplasia on Barrett’s esophagus and
early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms.
Furthermore, this review highlights the main directions of future doctor–computer collaborations in
which machines are expected to improve the quality of medical action and routine clinical workflow,
thus reducing the burden on physicians.

Keywords: artificial intelligence; computer-assisted diagnosis; endoscopy; Barrett’s esophagus;
esophageal cancer

Medicina 2020, 56, 364; doi:10.3390/medicina56070364 www.mdpi.com/journal/medicina

http://www.mdpi.com/journal/medicina
http://www.mdpi.com
https://orcid.org/0000-0002-6984-0046
https://orcid.org/0000-0001-8582-521X
https://orcid.org/0000-0001-8953-5076
https://orcid.org/0000-0003-0670-8862
https://orcid.org/0000-0001-5083-4079
https://orcid.org/0000-0002-3971-2756
https://orcid.org/0000-0001-5675-5339
http://dx.doi.org/10.3390/medicina56070364
http://www.mdpi.com/journal/medicina
https://www.mdpi.com/1010-660X/56/7/364?type=check_update&version=2


Medicina 2020, 56, 364 2 of 27

1. Introduction

Over time, machine learning (ML), a component of artificial intelligence (AI), has been implemented
in a variety of medical specialties, such as radiology, pathology, gastroenterology, neurology, obstetrics
and gynecology, ophthalmology, and orthopedics, with the goal of improving the quality of healthcare
and medical diagnosis [1].

In clinical gastroenterology practice, due to technological developments, estimates show that AI
could have the ability to create a predictive model; for instance, it could develop an ML model that
can stratify the risk in patients with upper gastrointestinal bleeding [2,3], establish the existence of a
specific gastrointestinal disease, define the best treatment, and offer prognosis and prediction of the
therapeutic response [4–6]. In this context, by applying ML or deep learning (DL) (AI using neural
networks), clinical management in gastroenterology can begin to focus on more personalized treatment
centered on the patient and based on making the best individual decisions, instead of relying mostly
on guidelines developed for a specific condition. Moreover, the goal of implementing these AI-based
algorithms is to increase the possibility of diagnosing a gastrointestinal disease at early stage or the
ability to predict the development of a particular condition in advance [7].

Because both AI and gastroenterology encompass many subdomains, the interaction between
them might take on various forms. In recent years, we have witnessed a large explosion of research in
attempts to improve various fields of gastroenterology, such as endoscopy, hepatology, inflammatory
bowel diseases, and many others, with the aid of ML. We also note that, because of the requirement to
diagnose more patients with gastrointestinal cancers at an early stage of the disease, which is associated
with curative treatment and better prognosis, many studies were developed to address improvement
of the detection of these tumors with the aid of AI.

Numerous studies have been performed, using AI to improve the detection of early neoplasia
developed on the background of Barrett’s esophagus [8,9] and early esophageal squamous cell
carcinoma [10].

This paper offers an overview of the most prominent research data on endoscopic assessment
of premalignant and malignant esophageal lesions with the aid of AI. Our review highlights the
advantages and drawbacks of these new algorithms based on ML in the field of gastroenterology and
supplies insight into new perspectives on collaboration between physicians and computers and future
applications of this technology in gastroenterology practice.

2. Methods

A literature search modality was applied for all English language literature published in the last
15 years, before June 2020, by assessing the PubMed electronic database. The keywords used for our
research purposes were “esophageal cancer”, “esophageal neoplasm”, “Barrett esophagus”, “artificial
intelligence”, “machine learning”, “deep learning”, “convolutional neural network”, “detection”,
and “diagnosis”. The specific search was also performed to identify clinical studies involving AI for
the endoscopic evaluation of Barrett esophagus/esophageal cancer, using the ClinicalTrials.gov and
University Hospital International Network Clinical trial Registry (UMIN-CTR) database.

3. Definitions of Artificial Intelligence Terminology

3.1. Artificial Intelligence (AI)

The concept of AI was first mentioned in the 1950s [11] and refers to the capacity of a computer to
perform tasks that might mimic the human mind, including “cognitive” functions such as the abilities
of “learning” and “problem solving” [12].

ClinicalTrials.gov
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3.2. Machine Learning (ML)

The term ML, introduced for the first time in 1959 by Arthur Samuel from the IBM company,
refers to an IT domain whereby a computer system can acquire the ability to “learn” by using data
without specific programming and can therefore develop a predictive mathematical algorithm based
on input data, using recognition of “features”. The ML “model” is subsequently able to adapt to new
situations in which it becomes able to predict and make decisions.

Three main types of learning methodologies are recognized, namely, supervised learning, in which
the computer learns from familiar patterns; unsupervised learning, in which the computer discovers the
common aspects in unknown patterns; and, finally, reinforcement learning, in which the computer has the
ability to learn from trial and error [13,14] (Figure 1). Clustering algorithms are based on unsupervised
learning, in which unlabeled data self organizes to predict outcomes (e.g., clustering). Classification and
regression algorithms are based on unsupervised learning, in which prelabeled data train a model to
predict new outcomes. Rewards and recommendations algorithms are based on reinforcement learning,
which gives feedback to an algorithm when it does something right or wrong.

Figure 1. Types of machine learning algorithms: supervised learning—task driven (classification);
unsupervised learning—data driven (clustering); and reinforcement learning—algorithm learns from
trial and error.

The predictive models encompass the key elements of the “training”, “validation”, and “testing”
datasets. Approximately 70% of samples are commonly used in the initial training set to develop the
model, and the remaining 30% of the samples are used as model validation and testing sets, but these
percentages may vary with the application [7].

AI was implemented in the medical field, using different types of ML, such as binary classifiers,
Bayesian inferences, decision trees, ensemble trees, linear discriminants, support vector machines
(SVM), k-nearest neighbors, logistic regression, and artificial neural networks (ANNs) [15,16].

Support vector machine (SVM), which was invented in 1963, before the development of DL [17],
represents a supervised learning model, a discriminative algorithm that uses a dividing hyperplane.
SVM demonstrated its best accuracy in classification and regression analysis.
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3.2.1. ML Using Hand-Crafted Features (Conventional Algorithms)

For a long time, ML using images (in the field of gastroenterology, we are using endoscopic
images) relied primarily on hand-crafted features. In this context, IT specialists coded a mathematical
description of specific patterns, such as color and texture. The researchers manually indicated the
potential features of the images based on clinical expertise. A classifier was trained to distinguish
between different classes of features, and eventually, the model was able to use this knowledge to
recognize the class in a new set of images [14].

3.2.2. ML Using Deep Learning (DL)

DL refers to a subset of ML techniques that is built from multiple-layered neural network
algorithms. They represent ML algorithms that use layers of nonlinear processing for “feature
extraction”, which is the selection of powerful predictive variables, and “transformation”, which refers
to changing the data for more efficient construction of the model [18].

Neural Networks

Neural networks represent a specific area of ML that shows similarities with the human brain,
namely densely interconnected neurons, with the aim of recognizing specific patterns, extracting
features, or learning different characteristics of the training dataset to elaborate a concrete result [7,18].

Therefore, in the case of an artificial neural network (ANN), we use a fully connected neural
network in which the outputs of the neurons of one layer represent the input for the neurons of the
next layer. Each connection has a specific weight that is learned during the training process, and the
model is based on a nonlinear sigmoidal function.

A deep neural network represents an ANN containing several hidden layers between the input
and output layer. This technology proved to possess excellent accuracy for establishing diagnosis and
predicting prognosis in the medical area. In most cases, DL outperforms the hand-crafted algorithm,
but it requires a larger quantity of data for learning [19,20]. Fortunately, most of the initial weaknesses
and limits of the deep neural network have been overcome by the recent availability of big data for
training and the major progress in computing software power [15,16].

One drawback of DL is its “black-box” nature, meaning that the system cannot apply reason
to the machine-generated decision, which can be a confusing aspect for the endoscopist. However,
a new research area known as “interpretable DL” has attracted recent attention through its attempt to
present an argument-based framework for decision-making [21]. Although DL models proved to be the
most performant algorithms in fitting the data, one of their limits is their dependency on the training
dataset. This “overfitting” error appears if the training database is not sufficiently diverse or contains
bias. In that case, the results might not be validated and implemented in real-life circumstances.
To enlarge the training datasets, these approaches might include images showing normal aspects and
images containing pathologic lesions. Additionally, most of the recent studies use augmentation of
the image-based data by resizing and cropping of the frame, with a subsequent flipping along the
axis [4,16].

Convolutional neural networks (CNN) represent a specific class of ANN composed of convolutional
and pooling layers with the role of extracting specific features and fully connected layers that fulfill the
task of elaborating the definitive classification.

The input images are subjected to the preprocessing procedure of filtering (convolution) to extract
specific features. Subsequently, the convolution filter undergoes a learning process to elaborate the
performant feature maps, which are compressed to smaller sizes. At the end, the fully connected layers
combine the selected features for design of the final model. In case of CNN, the number of weights is
significantly lower than that of the fully connected networks. The CNN has demonstrated excellent
performance in image analysis (Figure 2).
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Figure 2. Convolutional neural network (CNN) system: input layer with raw data of the endoscopic
image, multiple layers with the role of extracting specific features, and elaborating image classification
in the output layer.

The concept of CNN was developed independently by several different groups during the 1970s
and 1980s. The proof of concept of CNN emerged in the late 1980s when Bengio, Hinton, and LeCun
started to exchange ideas in this field, and the first paper on backpropagation procedure on CNN
was published in 1990 [22]. In 1998, LeCun wrote an overview paper on the principles of training
of deep neural networks using gradient-based optimization, showing that CNN can be combined
with search or inference mechanisms to model interdependent complex outputs [23]. In 2006, the
Canadian Institute for Advanced Research (CIFAR) revived the interest in deep feedforward networks
by connecting a group of researchers who introduced unsupervised learning procedures. The first major
application of this approach was in speech recognition, which was developed during the following
years; by 2012, new versions were already being deployed in Android phones. Since the 2000s, CNN
have been successfully applied to the detection, recognition, and segmentation of objects/regions in
images; a major recent practical success of CNN is face recognition. Despite these advances, CNN was
neglected by most of the computer-vision communities until the ImageNet competition (2012) [24].

In recent years, we have observed the impressive emergence of complex CNNs constructed from
more than 100 layers, mostly due to an increased interest in this field and initiation of a great number
of scientific activities. Due to the annual software contest known as the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), designated for creation of AI, a great variety of software programs
have been developed, such as residual nets (e.g., AlexNet, GoogleNet, InceptionResNet, and ResNet
from Microsoft and many other variants), fully convolutional networks (FCN), U-Net (which is based
on an encoder–decoder mechanism for pixelwise classification and is mostly used in segmentation
processing on test images [25–27]), and others. As foreseen by LeCun [24], human vision, natural
language understanding, and major progress in AI will materialize by using systems that combine
representation learning with complex reasoning.

In the area of gastroenterology, which is overwhelmed by a notably large amount of clinical data
and endoscopic or ultrasound images, this technology has been applied to aid clinicians in establishing
diagnosis, estimating prognosis, and analyzing images.

Computer Vision

Computer vision refers to the specific use of computer systems in the processing of images/videos,
and the possibility of acquiring information from this processing. We must note that a multitude of
technological developments have been demonstrated recently in this domain. In the medical field,
clinicians work with large amounts of visual data that must be analyzed to elaborate the proper
diagnosis and choice of the best treatment, especially in domains such as radiology or endoscopy.
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In the latter domain, CNNs were elaborated for different purposes such as esophageal/gastric
cancer detection [28,29] and “real-time” polyp detection/differentiation between polyp types [30,31],
among others.

3.3. Automated Endoscopy Report Writing

Due to the high number of endoscopic examinations and findings, the limited storage of
images during procedure, as well as the need for standardized databases for epidemiological studies,
quality control, surveillance programs, and research, endoscopy reports are especially suitable for
automatization and electronic storage. For that purpose, computer vision AI algorithms can be used to
analyze the technical aspects of the investigation, document the activity, and enable the transfer and
comparison of images and findings (coded automatically) between different hospitals or consultants.
Standardized computerized report systems should be accessible, fast, and accurate, so that they can be
used in the daily practice by any endoscopist. In this regard, several endoscopy software systems,
such as Endobase from Olympus, have been developed in the past years, to record and store endoscopy
findings and images and elaborate reports, with the goal of developing a single documentation system
for the whole endoscopy workflow. These endoscopy software systems are essential for modern
gastroenterology; therefore, they must be fast, informative, and comprehensive in recording and
storing the endoscopy findings and to allow automatic data transfer for quality and research purposes,
as well as easy data retrieval in a universally format. Furthermore, they should enable the inclusion of
other crucial information, such as histopathology of detected lesions, patient’s satisfaction, adverse
events, and follow-up recommendations. Moreover, they should allow database handling for many
other purposes, such as safety, quality control, maintenance of equipment, management of supply,
billing, and others [32–34].

4. Principal Applications of AI for Assessment of Precancerous and Cancerous
Esophageal Lesions

The most important advances delivered by AI in assessment of esophageal pathology consist
of screening of early esophageal carcinoma, both dysplasia/adenocarcinoma developed on Barrett’s
esophagus and squamous cell carcinoma.

Esophageal carcinoma ranks seventh in terms of incidence (almost 600,000 new cases) and was
also responsible for an estimated 1 in every 20 cancer deaths in 2018. Developing countries are
where the histologic subtype of squamous cell carcinoma (SCC) predominates, and esophageal cancer
is commonly diagnosed in an advanced stage, which is related to most of the deaths. However,
adenocarcinoma (AC) represents the major histologic subtype in high-income countries, with obesity
and gastroesophageal reflux disease (GERD) among the major risk factors. In recording a broad decline
in the incidence of esophageal SCC, we also remark on an outburst in the incidence rates of AC,
partially because of an increasing frequency of the abovementioned risk factors and perhaps also due
to eradication of Helicobacter pylori infection. Additionally, the overall prognosis of the AC subtype
remains poor, with an overall five-year survival of approximately 15% [35,36].

4.1. Identification of Dysplasia/Early Neoplasia in Barrett’s Esophagus (BE)

BE represents a major risk factor associated with the development of esophageal AC, mostly in
patients with long-segment BE and in the presence of intraepithelial neoplasia [37]. Endoscopic
assessment of this condition might be highly difficult, especially by nonexperts, because they
must differentiate between all sequences of the carcinogenic process, namely nonneoplastic BE,
low-grade/high-grade dysplasia (LGD/HGD) BE, and early adenocarcinoma (EAC). Moreover,
by detecting AC in an early stage suitable to endoscopic treatment, patient prognosis might be
fundamentally improved [38–40].

In this context, elaboration of computer assisted diagnosis (CAD) systems to detect early neoplastic
areas in BE during regular endoscopic surveillance represents a priority task due to the imperative
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need to help endoscopists to perform accurate targeted biopsies, instead of using biopsies of any
visible lesions plus random biopsies taken every 1–2 cm for the length of the BE in a four-quadrant
fashion (Seattle protocol), which has proven to be a laborious, time-consuming procedure and is
associated with a lower sensitivity [41–43]. To overcome the limitations of the procedures currently
used in endoscopic surveillance of BE, the American Society for Gastrointestinal Endoscopy (ASGE)
concluded that, to exclude the need for random mucosal biopsies in BE, the use of any imaging
technology plus targeted biopsies should have a sensitivity of more than 90%, a specificity of 80%,
and a negative predictive value of minimum 98%. However, these performance scores could be
achieved only by expert endoscopists [44]. Although a large spectrum of advanced endoscopic
technologies, such as magnification endoscopy (ME), chromoendoscopy (CE), probe-based confocal
laser-induced endomicroscopy, endocytoscopy, volumetric laser endomicroscopy (VLE), and wide-area
transepithelial sampling (WATS) with computer-assisted three-dimensional analysis, have been studied
to improve BE assessment, most are expensive, time-consuming, and have a long learning curve [45,46].
Therefore, ML assistance is required for nonexpert endoscopists to perform optical diagnosis in their
routine practice [44,47–49].

4.1.1. CAD Using White-Light Endoscopy/Narrow-Band Imaging (WLE/NBI)

Van der Sommen et al. [8] constructed a CAD system for detection of early neoplasia in BE, using
color filters, specific texture, and ML for WLE images, and this system was evaluated on a dataset of
100 images from 44 patients with BE. The system identified neoplastic lesions (per-image analysis)
with a sensitivity/specificity of 83%. Mendel et al. [50] performed a CNN analysis of BE including
50 endoscopic WLE images of neoplastic BE and 50 noncancer images from an open access database
(Endoscopic Vision Challenge MICCAI 2015), reaching a sensitivity of 94% and a specificity of 88%.
From the same study group, Ebigbo et al. [51] continued research on CNN in early Barrett’s AC, using
71 high-definition WLE and NBI images of early neoplastic BE (T1a) and nondysplastic BE, achieving a
sensitivity/specificity of 97%/88% (WLE) and 94%/80% (NBI) in classification of endoscopic images
into cancer/noncancer types. For the MICCAI database (WLE), the results increased to a sensitivity
of 92% and specificity of 100%. The model proved to be significantly more accurate than nonexpert
endoscopists. In addition, Ghatwary et al. used a DL algorithm on the same open-access dataset (100
images) and achieved a sensitivity of 96% and a specificity of 92% [52].

In their pilot study, the Hashimoto group [53] constructed an AI algorithm based on a dataset
including 916 WLE/virtual NBI images from 70 patients with histology-proven neoplastic BE (high-grade
dysplasia/T1 cancer) in which the software masked the areas of neoplasia. Another 916 control images
were collected from 30 patients with histology-proven or confocal-laser-endomicroscopy-proven
normal BE. A CNN algorithm was pretrained (on ImageNet) and subsequently fine-tuned to perform
binary classification of “dysplastic” or “nondysplastic”. Moreover, researchers elaborated an object
detection algorithm with the goal of drawing localization boxes that surround the dysplastic regions.
The CAD system evaluated 458 test images, including 225 dysplastic and 233 nondysplastic features,
and was able to detect early neoplasia in BE with a high accuracy of 95.4%, a sensitivity of 96.4%, and a
specificity of 94.2%. Finally, the object detection algorithm for the validation set was able to localize the
areas of dysplasia with high precision (mean-average-precision of 0.7533) and at a speed that allows
implementation of the model in a real-time setting.

4.1.2. CAD Using Wide-Area Transepithelial Sampling (WATS)

Wide-area transepithelial sampling (WATS), associated with computer-assisted three-dimensional
analysis, consists of abrasive brushing of the BE mucosa, followed by neural network analysis to
identify abnormal cells. WATS is a technique that, in addition to assuring the sampling of a wide
area of the BE segment, supplies a deep transepithelial section, with the aid of an abrasive brush,
and appears to be associated with a high rate of interobserver agreement (overall kappa value of
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0.86) [54]. The WATS3D specimen is then sent to the laboratory for computer analysis that uses AI and
proprietary 3D imaging to help pathologists reliably identify precancerous cells.

Previous trials have shown that, when associated with classical biopsy, WATS leads to an increase
in the detection of intestinal metaplasia and dysplasia. To this end, the multicenter prospective trial
of Johanson et al. [55], performed on 1266 patients, demonstrated an increased overall detection of
intestinal metaplasia by 39.8%. Anandasabapathy et al. [56], in a study on 151 patients with high-risk
BE, showed that, by associating WATS to biopsy, the yield of esophageal dysplasia detection increased
by 42% (additional 16 cases). We must mention that these two clinical trials were not focused on
HGD/EAC and did not comply entirely with the Seattle protocol.

A multicenter, prospective, randomized trial (www.clincaltrials.gov Clinical trial number:
NCT03008980) [57] was performed on 160 referral BE patients undergoing endoscopic surveillance
(using HD-WLE), with the primary aim of evaluating the use of WATS in addition to biopsy for the
detection of HGD/EAC. Patients received either biopsy (according to the Seattle protocol) followed by
WATS or vice versa. The rate of detection of HGD/EAC was 4.1 times higher with using WATS alone,
compared with biopsy alone (29 cases vs. 7 cases), and only one case with positive biopsy was missed
by WATS. The addition of WATS to biopsy led to a 14.4% increase in the detection rate of HGD/EAC,
meaning 23 additional cases. Among these new cases, 11 were classified by biopsy as normal BE and
12 as LGD/indeterminate for dysplasia. The majority of these patients had prior dysplasia histories,
and thus they represent a high-risk BE surveillance population. The order of procedure randomization
did not influence the performance scores. The addition of WATS prolonged the procedure by an
average of 4.5 min. These results demonstrate the promising role of this procedure in surveillance
programs for BE.

4.1.3. CAD Using Volumetric Laser Endomicroscopy (VLE)

Volumetric laser endomicroscopy (VLE) is based on use of optical coherence tomography (OCT)
to generate real-time microscopic cross-sectional imaging. VLE with laser marking represents an
advanced imaging technology that enables a circumferential scan of the esophageal wall layers with
the aim of detecting dysplasia, and it has been commercially available in the United States since 2013.
The technique supplies direct in vivo marking of suspicious areas for neoplastic transformation from
which the endoscopist might collect targeted biopsies [58]. A multicenter US trial on one thousand
patients reported that VLE improved the neoplasia diagnostic yield in BE by 55% [59]. Because the
endoscopist must analyze an enormous quantity of complex data during this examination, computer
assistance might be helpful in recognizing abnormalities. For this purpose, an AI software known
as intelligent real-time image segmentation (IRIS) was developed that identifies three VLE features
previously associated with histologic-proven dysplasia [60,61], namely a hyperreflective surface
(marker of cellular crowding and increased nuclear-to-cytoplasmic ratio), hyporeflective structures
(atypical BE epithelial glands), and the lack of a layered architecture (which differentiates between
squamous epithelium and BE). This algorithm proved to be a helpful tool for detection of dysplasia
during endoscopic surveillance of BE in a less burdensome manner. Swager et al. assessed the CAD
detection rate of early neoplastic lesions in BE using 60 ex vivo VLE and obtained good performance
cores [58], with a sensitivity of 90% and specificity of 93%. Therefore, a multicenter randomized
controlled trial is currently in process to further explore the accuracy of VLE, using the IRIS program
compared with VLE without IRIS (NCT03814824) [9].

Another study constructed by Struybenberg et al. [62] [NCT01862666] evaluated the performance
of automatic data extraction followed by CAD analysis, using a VLE multi-frame approach for
detection of BE neoplasia. Ex vivo VLE images from 29 BE-patients (nondyspastic or HGD/EAC)
were retrospectively analyzed followed by assessment of sixty histopathology-correlated regions of
interest (30 nondysplastic vs. 30 neoplastic) by means of different CAD systems. Furthermore, multiple
neighboring VLE frames were evaluated (including 1.25 mm proximal and distal areas), and in total,
the AI analysis included 3060 VLE frames. Multi-frame analysis resulted in a significantly higher

www.clincaltrials.gov
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median AUC, compared with single-frame analysis (used in the abovementioned study) (0.91 vs. 0.83).
The multi-frame approach reached a maximum AUC of 0.94 if including 22 frames on each side of
the region of interest. These data revealed rapid and accurate image interpretation and improved BE
neoplasia detection by using multi-frame vs. single-frame VLE image analysis.

4.1.4. CAD Using I-SCAN

In their study, Seghal et al. [63] collected video recordings from patients with nondysplastic
and dysplastic BE assessed by high-definition endoscopy, using the i-Scan enhancement. I-Scan
is a revolutionary endoscopic postprocessing light filtering device that uses software algorithms
equipped with real-time image mapping technology embedded with a video processor. This equipment
increases the resolution above the standard high-definition level, thus offering additional features for
supplementary analysis. Three image-enhancement modes are available: surface, contrast, and surface
plus tone enhancement. According to the protocol, the areas of interest were recorded, and the diagnosis
was histologically confirmed. The images were interpreted by three blinded experts, based on mucosal
and microvasculature patterns, identification of nodularity/ulceration, and overall suspected diagnosis.
These data formed the bases on the decision tree for dysplasia prediction. Subsequently, nonexpert
endoscopists interpreted the same videos both before and after computer-assisted training using
the previously mentioned decision tree. By assessing videos collected from 40 patients, which in
12 cases covered both before and after acetic acid application, experts obtained an average accuracy
for dysplasia prediction of 88%. By entering their responses into a decision tree, the accuracy of
the resultant model increased to 92%, with sensitivity and specificity of 97% and 88%, respectively.
No additional improvement was obtained using acetic acid. Dysplasia detection was improved
significantly in the nonexpert group after formal web-based training, reaching the accuracy obtained
by experts, and sensitivity rose significantly from 71% to 83%.

We mention a similar web-based program, previously published as an abstract presentation,
designed to improve the detection of Barrett’s esophagus-related neoplasia [64]. In this study,
endoscopy recordings from patients with neoplastic and nondysplastic BE were assessed by three
expert endoscopists who used specialist software to delineate Barrett’s esophagus-related neoplasia
(BORN) lesions. Subsequently, 68 endoscopists from the USA and Europe with different degrees
of expertise were tasked with recognizing and delineating these features in four sets of 20 videos
(including 48 neoplastic and 32 normal BE) with online training. A significant increase in the detection
and delineation scores were observed over the four sets. After removal of 55 inadequate videos,
the results of the study were validated by using a new group of 121 endoscopists across the USA,
Canada, and Europe and reached similar outcomes across all levels of expertise.

These studies highlight the usefulness of AI algorithms in accurate prediction of dysplasia and
significant improvement in detection rates, as well as shortening of the learning curve once taught
to nonexperts.

4.1.5. Novel Research Toward Real-Time Recognition of BE

Most of the previous results related to ML-assisted evaluation of cancer in BE were achieved by
using optimal endoscopic images, which might not accurately reflect the real-life context. To enable
integration of CNN-based image classification into clinical practice, Ebigbo and colleagues developed
a system to further increase the celerity of image analysis for classification and the resolution of dense
prediction, which relies on the color-coded spatial distribution of cancer probabilities. This system
represents an encoder–decoder artificial neural network that is pretrained by ImageNet and based on a
ResNet containing 101 layers. The CAD system extracts random images from the real-time camera
livestream during endoscopic assessment of BE performed by an expert endoscopist, thus supplying
an accurate differentiation between normal BE and early esophageal AC through classification and
segmentation procedures. The model was trained by using a total of 129 endoscopic images from
a hospital image database. For validation, additional images (including 36 of early AC and 26 of
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normal BE) from 14 patients were assessed by the system during endoscopic examination. All of
these images were pathologically confirmed either on resection specimens (AC) or forceps biopsies
(normal BE). This CAD system, although applied to a low number of patients, offered successful
real-time implementation of AI in the detection of early esophageal AC in BE in a real-life setting and
demonstrated excellent performance scores, with a sensitivity of 83.7%, a specificity of 100.0%, and an
overall accuracy of 89.9% [28].

The ARGOS consortium, supported by the Dutch Cancer Society and Technology Foundation
STW, includes three international referral centers for detection of early neoplasia in BE, a leading
academic group involved in image analysis, and two commercial enterprises that collaborate within the
strategic research program known as “Technology for Oncology”. This project consisted of designing an
improved version of CAD system based on high-quality endoscopic images with the goal of improving
endoscopic detection of early neoplastic BE. The prospectively collected training dataset included
WLE overview images of 40 neoplastic BE and 20 nondysplastic BE patients. Neoplastic images were
delineated by expert endoscopists, who defined the overlap area of at least four delineations as a
“sweet spot” and the area with a minimum of one delineation as a “soft spot”. The model was trained
on color and texture features and assessed using leave-one-out cross-validation. Positive features
were extracted from the sweet spots, and negative features were extracted from nondysplastic BE
images. The system obtained an accuracy of 92% for neoplastic detection with a sensitivity of 95% and
a specificity of 85%. The system delineated the soft spot and indicated the preferred biopsy location
(red-flagged the area) in 100% and 90% of cases, respectively. The total time needed by the algorithm
to analyze all images and delineate lesions was 61.8 s [65]. This research adds new advances toward
real-time automated recognition of Barrett’s neoplasia.

4.2. Esophageal Squamous Cell Carcinoma

4.2.1. Identification of Premalignant Lesions/Early Esophageal Squamous Cell Carcinoma (ESCC)

CAD Using Narrow Band Imaging (NBI)

A group of four institutions from three different countries developed a CAD system for real-time
diagnosis of precancerous esophageal lesions and ESCC [10]. This model was trained by using a total of
6473 NBI images (including noncancerous lesions, precancerous lesions, and ESCC) and was validated
with the aid of still endoscopic images and video images. The AI system developed a probability heat
map that indicated suspected areas of neoplasia with the color yellow and noncancerous areas with the
color blue. The identified neoplastic areas were masked with color. For assessment of image datasets
containing 1480 malignant NBI images (59 consecutive cases), the CAD system obtained a sensitivity
of 98.04%, whereas for the 5191 noncancerous NBI images (2004 cases), it obtained a specificity of
95.03%, and the area under curve was 0.989. For assessment of the video datasets of neoplastic
lesions, the system obtained the following performance scores. For the 27 non-magnifying videos,
the per-frame sensitivity was 60.8% and the per-lesion sensitivity was 100%. For the 20 magnifying
videos, the per-frame sensitivity was 96.1% and per-lesion sensitivity was 100%. For the normal
esophagus videos (including 33 videos), the model obtained a per-frame specificity of 99.9% and a
per-case specificity of 90.9%. Due to the high sensitivity and specificity in recognizing precancerous
lesions and ESCC in both endoscopic still images and video datasets, the DL model appears to be a
helpful tool to assist endoscopists.

CAD Using the LASEREO System

Recently, an image-enhanced endoscopy (IEE) system known as LASEREO (FUJIFILM Co., Japan)
has emerged. This system is equipped with two laser light sources and four operating modes: white
light (WLE), blue laser imaging (BLI), BLI-bright, and linked color imaging (LCI) [66,67]. Similar to
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NBI examination, BLI mode visualizes the microvascular and microsurface architecture of the digestive
tract mucosa [68], and LCI enhances the ability to detect slight differences in mucosal color.

Non-ME endoscopic techniques are associated with a high sensitivity in identification of all
lesions suspicious for esophageal SCC, whereas ME devices have a high accuracy in differentiating
between cancerous and noncancerous esophageal lesions, thus offering the ability to perform a
noninvasive, real-time endoscopic diagnosis known as “optical biopsy”, which reduces the need for
real biopsies [69,70].

The Japanese group of Ohmori [71] developed a CAD system to detect and differentiate superficial
esophageal SCC. The AI algorithm used a Single-Shot MultiBox Detector (SSD) containing 16 layers.
After training, the CNN was validated by using the Caffe deep learning framework. Moreover, all layers
of the model were fine-tuned by using weights from ImageNet. The training dataset consisted of
9591 endoscopic non-magnified/7844 ME images of 804 histology-proven superficial esophageal SCC,
plus 1692 non-ME/3435 ME images from noncancerous lesions or normal esophagus. The validation
dataset included 255 non-ME WLE, 268 non-ME narrow-band images/blue-laser images (NBI/BLI),
and 204 ME-NBI/BLI endoscopic images collected from 135 patients. The performance of the CNN was
compared with the diagnostic ability of 15 experienced endoscopists.

The AI system achieved the following performance scores for diagnosing superficial SCC. Using
non-ME with WLE, the sensitivity, specificity, and accuracy were 90%, 76%, and 81%, respectively.
Using non-ME with NBI/BLI, the sensitivity, specificity, and accuracy were 100%, 63%, and 77%,
respectively. Using ME, the sensitivity, specificity, and accuracy were 98%, 56%, and 77%, respectively.
By assessing the performance parameters together with the diagnostic flow, the CNN achieved a
sensitivity, specificity, and accuracy of 98%, 68%, and 83%, respectively—results superior to those of
the experienced endoscopists. Due to the high-speed analysis capacity of the system, real-time accurate
diagnosis of SCC by using video images should be possible very soon.

Detection of Early Squamous Cell Carcinoma (ESCC) Plus ESCC Invasion Depth

According to the Japan Esophageal Society guidelines, endoscopic resection represents a definitive
indication for treating intraepithelial (EP)/lamina propria (LPM) esophageal lesions and a relative
indication for muscularis mucosa (MM) lesions/cancer invading the submucosa to a depth less than
200 µm (SM1). Surgical resection/chemoradiotherapy is recommended in the case of cancer invasion of
the submucosa to a depth greater than 200 µm (SM2). Therefore, accurate identification of the invasion
depth is essential to avoid overtreatment and thereby improve quality of life [72].

The Japanese single-center retrospective study of Tokai et al. [73] assessed the capacity of an AI
system to measure ESCC invasion depth. The authors used the previously developed CNN, which was
initially trained on 8428 WLE/NBI images for the detection of ESCC [74]. Additionally, this preexistent
system was trained using a total of 1751 new images of ESCC with information on invasion depth
collected from the hospital database. Furthermore, to assess diagnostic accuracy, 291 test images were
obtained from 55 consecutive patients, 42 with EP-SM1 ESCC and 13 with SM2 ESCC. These images
were subsequently reviewed by both the CNN system and 13 board-certified endoscopists. The system
diagnosed 95.5% (279/291) of the ESCC and predicted the invasion depth with an accuracy of 80.9% and
a sensitivity of 84.1% within an interval of only several seconds. Because the CAD system presented a
higher diagnostic accuracy for ESCC invasion depth vs. expert endoscopists, it could be used as an
adjunctive tool in the assessment of ESCC.

CAD using Esophageal Intrapapillary Capillary Loops (IPCLs)

Esophageal intrapapillary capillary loops (IPCLs) are microvessels first described using
magnification endoscopy (ME) [75] and represent a marker of ESCC. Changes in the morphology
of IPCLs have been demonstrated to correlate with neoplastic invasion depth, a major factor in the
decision of curative endoscopic therapy [76,77]. Normal IPCLs represent fine-caliber looped capillaries
developed from the sub-epithelial network. During ESCC progression and destruction of the normal
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architecture of the esophageal wall, IPCLs become initially more tortuous and dilated and subsequently
form linear dilated vascular structures associated with the appearance of avascular areas corresponding
to cancer invasion deep in the mucosal layer. In the stage of deeper submucosal layer invasion,
these structures obliterate and are replaced by neovascularization composed of tortuous, dilated,
and nonlooped capillaries [78,79]. ME-NBI allows visualization of mucosal microvascular patterns
in patients with ESCC [80]. Several classifications have been developed to categorize the abnormal
changes of ICPL that correlate with histological invasion depth [76,81]. The recent Japanese Endoscopic
Society (JES) IPCL classification is a simplified system [82,83] that has become popular in areas of
high prevalence. Each ICPL category corresponds to a specific histological grade and invasion depth
with a high accuracy of more than 90%. Additionally, JES classification is associated with excellent
interobserver agreement [82,84].

Zhao et al. developed a CAD model to classify IPCL for detection/classification of SCC based on
a total of 1383 lesions assessed with high-resolution endoscopes, using the ME-NBI technique [85].
The model used a double-labeling fully CNN and achieved mean diagnostic accuracies of 89.2%
and 93% at the lesion and pixel levels, respectively, superior to that of endoscopists. The group of
Everson [86] developed a modern AI system capable of real-time classification of IPCL morphologies
as neoplastic or nonneoplastic, using ME-NBI endoscopic images. The CNN was trained by using a
total of 7046 sequential high-definition ME-NBI images collected from 17 patients, including 10 ESCC
and seven with normal esophagus. JES IPCL classification was performed by three expert endoscopists.
The normal IPCL pattern was classified as type A, and the abnormal pattern was classified as B1–3,
and for all visualized areas, histopathological assessment was obtained by two expert gastrointestinal
pathologists. This CNN obtained a 93.7% accuracy (86.2% to 98.3%), 89.3% sensitivity (78.1% to 100%),
and 98% specificity (92% to 99.7%) for classification of IPCL patterns as normal/abnormal. At the
moment, the developed model is not yet able to categorize all of the specific subtypes with sufficient
accuracy for clinical implementation. The system operates in a real-time fashion, with diagnostic
prediction times between 26.17 and 37.48 ms.

The group continued their study [87] by collecting a new dataset containing 68K binary labeled
frames selected from 114 patient videos (45 normal and 69 abnormal), which were correlated to
histopathology. The novel CNN algorithm fulfilled the binary classification task and explained the
input features that drive the decision-making process. The method achieved an accuracy of 91.7% vs.
the 94.7% reached by a group of 12 senior endoscopists, which was below the average obtained by the
clinicians but still better than certain outcomes.

In the future, these novel applications could be improved and used as an in vivo clinical support
tool for endoscopists in the evaluation of suspected ESCC and decision on endoscopic treatment.

CAD Using the Endocytoscopic System (ECS)

The endocytoscopic system (ECS) represents a magnifying endoscopic method that allows
in vivo assessment of surface epithelial cells in a real-time setting, using vital staining (e.g., methylene
blue) [88–90]. In 2003, the first clinical trial was performed that described the characteristics of the normal
surface squamous epithelium and neoplastic tissue of the esophagus [91]. Later, the characteristics
of selected esophageal benign lesions were also analyzed, such as esophagitis, which is a differential
diagnosis for esophageal cancer [92,93]. The ECS enables the realization of virtual histology and
in vivo confirmation of histopathological diagnosis.

Several studies evaluated the use of CAD to better discriminate neoplastic from nonneoplastic
lesions of the esophagus by using ECS [94], including the model developed by Kodashima et al. [95],
which enabled microscopic visualization of the mucosa, and the one developed by Shin et al. [96],
which obtained a sensitivity and specificity of 87% and 97%, respectively. This model was subsequently
improved by Quang et al. [97] by incorporating full automation with real-time analysis (tablet-interfaced
high-resolution endomicroscopy). The new model achieved a sensitivity and specificity of 95% and
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91%, respectively, and lower cost compared with laptop-interfaced systems. This software was also
tested in vivo for three patients, resulting in 100% concordance with histopathological examination.

Kumagai et al. [98] proposed the use of ECS instead of biopsy-based assessment for SCC, with the
aid of AI. For this purpose, the researchers designed a CNN (based on GoogLeNet) trained by using
4715 esophageal ECS images, including 1141 malignant and 3574 nonmalignant lesions. Subsequently,
to evaluate the performance of the system, the group used an independent test set of 1520 ECS images
from 55 consecutive patients, including 27 esophageal SCC and 28 benign lesions. The areas under
the curve obtained by the CNN were 0.85 for the total images, 0.90 for higher magnification images,
and 0.72 for lower magnification images. CAD obtained an overall sensitivity of 92.6% in diagnosing
25/27 SCC cases, and 25/28 benign lesions were recognized as nonmalignant, reaching a specificity of
89.3% and an accuracy of 90.9%. Two neoplastic lesions were misdiagnosed as nonmalignant by the
AI but were correctly diagnosed by the endoscopist. The three cases of benign lesions diagnosed as
malignant by the AI consisted of images of radiation-related esophagitis and of gastroesophageal reflux
disease. Based on these promising results, CAD is expected to aid endoscopists in diagnosing SCC
based on “optical biopsy” with the aid of ECS images, preferably using higher magnification pictures.

4.3. Esophageal Cancer Detection (SCC or AC)

The CNN developed by Horie et al. [74] used 8428 retrospectively collected WLE/NBI images
of esophageal cancer histologically proven to depict SCC or AC as training dataset, including both
superficial and advanced cancers, from 384 patients. To assess diagnostic accuracy, the authors used
a test dataset including 1118 images from 47 patients with 49 esophageal cancers and 50 patients
without esophageal cancer. The algorithm reached a sensitivity of 98% for detection of esophageal
cancer. The CNN was able to detect all esophageal cancer lesions less than 10 mm in size. Although the
obtained positive predictive value for test images was 40%, misdiagnosis of shadows/normal structures
determined a negative predictive value of 95%. The CNN reached an accuracy of 98% in distinguishing
superficial vs. advanced esophageal cancer. For the two different histologic subtypes, the accuracy in
diagnosis was 99% for ESCC and 90% for EAC. These results demonstrate the ability of the constructed
system to rapidly analyze a large number of stored endoscopic images with high sensitivity, leading to
an improvement of early esophageal cancer detection in clinical practice in the near future (Table 1).

Numerous studies regarding the role of AI in digestive endoscopy are still preclinical and
engineer-driven. Many of the presented studies are retrospective single-center that frequently show
better results than what is in real settings (selection bias) and cannot analyze low-quality images.
Moreover, some of them are based on traditional ML models, while the most recent ones use mainly
complex DL algorithms. Moreover, in an attempt to achieve best results, researchers used different
endoscopic methods, from the widely available standard endoscopy to the most advanced endoscopic
techniques, which are available only in expert centers and skilled hands. In the evaluation of clinical
studies, it should be mentioned that most studies were based on endoscopic still images, although the
most recent efforts are made toward using more complex video sequences. We would like to point out
the fact that, in the last few years, several real-life clinical studies have also been published. For the
moment, many of the studies using video images are pilot studies, based on a limited number of
patients. The majority of the studies presented in this paper, although showing promising results in the
detection of premalignant and malignant esophageal lesions, needs further validation in prospective
randomized clinical trials. Table 2 describes the existent and ongoing clinical trials using AI for
diagnosing early neoplasia in Barrett’s esophagus and esophageal carcinoma (Table 2). Their results,
along with the development of other real-life clinical trials, will probably help us make a step forward
in defining the best CAD strategy to improve esophageal-malignancy detection.
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Table 1. Current studies applying AI in detection of esophageal cancer.

Ref. Published
Year

Aim of Study
Design

of
Study

Type of AI (AI
Classifier)

AI Validation
Methods

Number of Subjects

Training Dataset Test Dataset Performance

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure Accuracy % Sensitivity/

Specificity% AUC

Van der
Sommen et

al. [8]
2016

Detection of
early

neoplasia in
BE

R

color filters,
specific texture,
and ML (“Filter

with Gabor
bank”, SVM)

leave-
one-out CV on a

per-patient
basis

44 pts with BE (23/21)
100 EGD images WLE

83 (per image);
86/87 (per
patient)

-

Mendel et
al. [50] 2017

Detection of
early

neoplasia in
BE

R CNN 50/50 EGD images (Endoscopic Vision Challenge MICCAI 2015) HD-WLE 94/88 -

Ebigbo et al.
[51] 2019

Detection of
early Barrett

AC
R deep CNN

(ResNet)
leave-one-patient-out

CV
Local dataset: 41/33 pts, 148 HD WLE/NBI

MICCAI 2015 Dataset: 22/17 pts, 100 HD-WLE
HD-

WLE/NBI

Local dataset:
97/88 (WLE)

94/80
(NBI)

MICCAI-dataset:
92/100 (WLE)

-

Ghatwary et
al. [52] 2019

Detection of
early Barrett

AC
R

R-CNN, Fast
R-CNN, Faster
R-CNN, SSD

2- and
5-fold-CV,
leave-One-
Patient-Out

CV

MICCAI
dataset:21 pts

(9/12) (training
dataset)

60 (30/30)
EGD images HD-WLE

MICCAI
dataset: 9 pts

(4/5) (validation
dataset)

9 pts (4/5)
(test dataset)

40 (20/20)
EGD images HD-WLE

83 (ARR for
Faster

R-CNN)
96/92 (SSD) -

Hashi-moto
et al. [53] 2020

Detection of
early

esophageal
neoplasia on

BE

R

CNN based on
Xception

architecture,
YOLO v2

Internal
validation 100 pts (30/70)

1832
(916/916)

EGD images
WLE/NBI

39 pts (13/26)
(valida-tion

dataset)

458
(233/225)

EGD images
(validation

dataset)

WLE/NBI 95.4 96.4/
94.2 -

Vennala-ganti
et al. [57]

NCT03008980
2017

Detection of
early

esophageal
neoplasia on

BE

P

neural
network-based,

high-speed
computer scan

160 pts (134 ND/LGD, 26 HGD/EAC) randomized:
−76 pts biopsy→WATS
−84 pts WATS→ biopsy

WATS The addition of WATS: absolute detection rate
increase 14.4%

Swager et al.
[58] 2017

Detection of
early BE

neoplasia
R

ML-methods:
SVM,

discriminant
analysis,

Ada-Boost,
random forest,

k-nearest
neighbors etc.

Leave-one-out
CV

−19 BE pts
−60 (30/30) images

Ex vivo VLE
images 90/93 0.95
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Table 1. Cont.

Ref. Published
Year

Aim of Study
Design

of
Study

Type of AI (AI
Classifier)

AI Validation
Methods

Number of Subjects

Training Dataset Test Dataset Performance

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure Accuracy % Sensitivity/

Specificity% AUC

Struy-benberg
et al. [62]

NCT01862666
2019

Detection of
Barrett’s
neoplasia

P

8 predictive
models (e.g.,

SVM, random
forest, Naive
Bayes); best =

CAD multi-frame
image

analysis

leave-one-out
CV

−52 endoscopic resection specimens from 29 BE pts
−60 (30/30) regions of interest + 25 neighboring frames→ 3060 VLE frames

Ex vivo VLE
images - - 0.94

Seghal et al.
[63]

UK national
clinical trial

(REC
reference

08/H0808/8,
study no.
08/0018)

2018
Detection of

dysplasia
arising in BE

P
ML-algorithm:

DT (WEKA
package)

−40 pts BE ± dysplasia
Video

HD-EGD,
i-Scan

92 97/88 -

Ebigbo et al.
[28] 2020

Real- time
detection of

early
neoplasia in

BE

R/P

DeepLab V.3+, an
encoder–decoder
ANN (ResNet 101

layers)

classification
(global

prediction),
segmentation

(dense
prediction)

129 EGD
images

HD-WLE/
gNBI

14 pts BE
(valida-tion

dataset)

26/36
images

(validation
dataset)

random
images

from real-time
camera

livestream

89.9 83.7/
100.0 -

De Groof et
al. [65] -

The ARGOS
project

2019
Recognition
of Barrett’s
neoplasia

P

supervised
ML-models
(trained on

color/texture
features), SVM

leave-one-out
CV

−60 pts (20/40)
−60 EGD images HD-WLE 92 95/85 0.92

Guo et al.
[10] 2020

Real-time
automated

diagnosis of
precancerous
lesions and

ESCCs

R/P

DL model:
SegNet = deep

encoder–decoder
architecture for

multi-class
pixelwise

segmentation

AI probability
heat

map-generated
for each input
(ESD image)

358/191 pts
6473

(3703/2770)
images

NBI images

Validation: 59
consecutive cc
cases (dataset

A); 2004
consecutive
non-cc cases

(dataset B); 27
non-ME cc

cases + 20 ME
cc cases (dataset

C); 33 normal
cases (dataset

D)

Validation:
1480 cc
images

(dataset A);
5191 non-cc

images
(dataset B);
27 non-ME
cc images +

20 ME cc
images

(dataset C);
33 normal

images
(dataset D)

NBI images
(datasets A,

B);
NBI video

EGD images
(datasets C, D)

-

98.04/
95.03 (datasets

A, B);
sensitivity per-
frame/lesion:

60.8/100
(non-ME video
C) 96.1/100 (ME

video C)
specificity per
frame/lesion:

99.9/
90.9 (video D)

0.989
(data-sets

A, B)
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Table 1. Cont.

Ref. Published
Year

Aim of Study
Design

of
Study

Type of AI (AI
Classifier)

AI Validation
Methods

Number of Subjects

Training Dataset Test Dataset Performance

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure Accuracy % Sensitivity/

Specificity% AUC

Ohmori et
al. [71] 2020

Detect and
differentiate
esophageal

SCC

R deep Neural
Network-SSD

Caffe deep
learning

framework
804 SSC pts

9591
non-ME/7844

ME, SCC
images;

1692
non-ME/3435
ME, non-cc

images

ME/non-ME
ESD images 135 pts

255 non-ME
WLE; 268
non-ME,
NBI/BLI;

204
ME-NBI/
BLI ESD
images

non-ME WLE;
non-ME/ME

NBI, BLI
83 98/68 -

Tokai et al.
[73] 2020

Diagnostic
ability of AI
to measure

ESCC
invasion

depth

R
deep neural

network-SSD,
GoogLeNet

Caffe deep
learning

framework

-pre-training
8428 images;

training
1751 EGD

images

WLE/NBI
images

55 consecu-tive
patients, 42

with EP-SM1
ESCC and 13

with SM2 ESCC

291 images WLE/NBI
images

95.5 (SCC
diagnosis);

80.9 (invasion
depth)

84.1 (invasion
depth) -

Zhao et al.
[85] 2019

Automated
classification
of IPCLs to
improve the
detection of
esophageal

SCC

P
double-labelling

FCN, self-transfer
learning

VGG16 net
architecture,

3-fold CV

−219 pts (30 inflammation, 24 LGD, 165 ESCC)
−1350 images→ 1383 lesions (207 type A, 970 type B1, 206 type B2)

ME-NBI
images

89.2 (lesion
level)

93 (pixel
level)

87.0/
84.1

(lesion level)
-

Everson et
al. [86] 2019

Real-time
classification

of IPCL
patterns in

the diagnosis
of ESCC

P

CNN, eCAMs
(discriminative

areas
normal/abnormal)

five-fold CV −17 pts (7 normal 10 ESCC)
−7046 sequential HD images

ME-NBI
images (Video

EGD)

93.7
normal/abnormal

IPCL

89.3/
98 -

García-Peraza-
Herrera et

al. [87]
2020

Classify still
images or

video frames
as normal or

abnormal
IPCL patterns
(esophageal

SCC
detection)

P

CNN architecture
for the binary

classification task
(explainability)

ResNet18CAM-DS

−114 pts (45/69)
−67,742 annotated frames (28,078/39,662) with an average of 593 frames per

patient.

ME-NBI
video 91.7 93.7/

92.4 -
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Table 1. Cont.

Ref. Published
Year

Aim of Study
Design

of
Study

Type of AI (AI
Classifier)

AI Validation
Methods

Number of Subjects

Training Dataset Test Dataset Performance

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure

No Cases
(Negative/
Positive)

No Images
(Negative/
Positive)

Endoscopic
Procedure Accuracy % Sensitivity/

Specificity% AUC

Koda-shima
et al. [95] 2007

Discrimination
normal/malignant

esophageal
tissue at the
cellular level

P, ex
vivo
pilot

ImageJ program −10 pts Endocytoscopy
Difference in the mean ratio of total nuclei:

6.4 ± 1.9% in normal vs. 25.3 ± 3.8% in
malignant samples

Shin et al.
[96] 2015

Diagnosis of
esophageal
squamous
dysplasia

P
Linear

discriminant
analysis

−177 pts
−375 sites (training set 104 sites; test set 104 sites;

validation set 167 sites)

Laptop-interfaced
HRME

87/
97 -

Quang et al.
[97] 2016

Diagnosis of
esophageal

SCC
R

Linear
discriminant

analysis
Data identical as for [124] Tablet-interfaced

HRME
95/
91 -

Kumagai et
al. [98] 2019

Diagnosing
ESCC based

on ECS
images
(optical
biopsy)

R/P
CNN based on
GoogLeNet, 22

layers-backpropagation

Cafe deep
learning

framework

240 pts (114/126)
→ 308 ECS

4715
(3574/1141)

images
ECS images 55 consecutive

pts (28/27) 1520 images ECS images 90.9 92.6/
89.3

0.85;
0.90

(HMP)
0.72

(LMP)

Horie et al.
[74] 2019

Detection of
esophageal
cancer (SCC

and AC)

R deep CNN-SSD
Caffe deep

learning
framework

384 pts
esophageal cc
(397 lesions

ESCC, 32
lesions EAC)

8428 images
esophageal

cc

WLE/NBI
images

50/47 pts (49
lesions−41

ESCC,8 EAC)
1118 images WLE/NBI

images

98
(superficial/advanced

cc) 99 for
ESCC,90 for

EAC

98 -

Luo et al. 2019

AI for the
diagnosis of

upper
gastrointestinal

cancers

R/P

GRAIDS: DL
semantic

segmentation
model

(encoder-decoder
DeepLab’s V3 +

algorithm)

internal
validation,

external
validation

(5 hospitals),
prospective
validation

−1,036,496 endoscopy images from 84,424 individuals used to develop and
test GRAIDS

HD-WLE
EGD

95.5 (internal
validation
set); 92.7

(prospective
set); 91.5–97.7

(5 external
validation

sets)

94.2/92.3
(prospec-tive

set)

0.966–
0.990
(five

external
valida-

tion
datasets)

EGD—esophagogastroduodenoscopy; AI—artificial intelligence; R—retrospective; P—prospective; WLE—white-light endoscopy; NBI—narrow-band imaging; HD—high definition;
ME—magnifying endoscopy; VLE—volumetric laser endomicroscopy; WATS—wide-area transepithelial sampling; BLI—blue laser endoscopy; ECS—endocytoscopic system;
CV—cross-validation; SVM—support vector machine; ANN—artificial neural network; CNN—convolutional neural network; R-CNN—regional-based convolutional neural network;
SSD—Single-Shot MultiBox Detector; FCN—fully convolutional network; DT—decision tree; ARR—average recall rate; cc—cancerous; ND—nondysplastic; LGD—low-grade dysplasia;
HGD—high-grade dysplasia, EAC—early adenocarcinoma; ESCC—early squamous cell carcinoma; IPCL—intrapapillary capillary loop; eCAMs—explicit class activation maps;
HRME—high-resolution microscopic endoscopy; HMP—higher-magnification picture; LMP—lower-magnification picture.
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Table 2. Clinical trials using AI for diagnosing early neoplasia in Barrett’s esophagus and esophageal carcinoma.

Status Study Title Number
ID/Acronym Study Type Conditions Design/Interventions Outcomes

Target Sample
Size (No.

Participants)
Region

Recruiting

The analysis of WATS3D

increased yield of
Barrett’s esophagus and
esophageal dysplasia

NCT03008980 Observational

• GERD
• Barrett esophagus
• Esophageal dysplasia
• Esophagus

adenocarcinoma

Diagnostic test: patients
will perform routine care
EGD with WATS3D brush
samples and forceps
biopsies; collection of
cytology/pathology results

Primary outcomes of
patients undergoing WATS
sampling. Specifically,
incremental yield for
Barrett’s esophagus and
esophageal dysplasia due
to WATS sampling above
that noted from routine
forceps biopsies in various
clinical settings

75,000 US

Recruiting

Volumetric laser
endomicroscopy with
intelligent real-time
image segmentation
(IRIS)

NCT03814824 Interventional

• Barrett’s esophagus
with/without dysplasia

• Barrett’s esophagus with
low/high grade dysplasia

Diagnostic test: IRIS
Diagnostic test: VLE
Patients will undergo a
VLE exam ± IRIS per the
standard of care. They will
be randomized into VLE
without IRIS first vs. VLE
with IRIS first

Primary:
-time for image
interpretation
-biopsy yield
-number of biopsies

200 US

Completed

A comparison of
Volumetric Laser
Endomicroscopy and
endoscopic mucosal
resection in patients
with Barrett’s dysplasia
or intramucosal
adenocarcinoma

NCT01862666 Observational

• Barrett’s-associated
dysplasia

• Intramucosal
adenocarcinoma

• CAD image analysis

To evaluate the ability of
physicians to use VLE to
visualize HGIN/IMC in
both the ex-vivo and
in-vivo setting and
correlate those images to
standard histology of EMR
specimens as the gold
standard.

Primary: the correlation of
features seen on VLE
images to those seen on
histopathology from EMR
specimens
Secondary: the creation of
an image atlas, to
determine the intra- and
inter-observer agreement
on VLE images in
correlation with
histopathology→
refinement of the existing
VLE image interpretation
criteria and the validation
of the VLE classification

30 The
Netherlands

Preinitiation

The additional effect of
AI support system to
detect esophageal
cancer-exploratory
randomized control
trial

UMIN
000039924/AIDEC Interventional

• Esophageal neoplasm
• AI

To investigate the efficacy
of AI for the diagnosis of
esophageal cancer

Primary: improvement of
detection rate with AI
support system in less
experienced endoscopist
Secondary: improvement
of detection rate with AI
support system in
experienced endoscopist

300 Japan
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Table 2. Cont.

Status Study Title Number
ID/Acronym Study Type Conditions Design/Interventions Outcomes

Target Sample
Size (No.

Participants)
Region

Recruiting

Automatic diagnosis of
early esophageal
squamous neoplasia
using pCLE with AI

NCT04136236 Observational

• Esophageal neoplasm
• AI
• Confocal

laser endomicroscopy

Diagnosis test: the
diagnosis of AI and
endoscopist

Primary: the diagnosis
efficiency of AI for
diagnosing esophageal
mucosal disease on
real-time pCLE
examination
Secondary: contrast the
diagnosis efficiency of AI
with endoscopist

60 China

Recruiting

Research on
development of AI for
detection and
classification of upper
gastrointestinal cancers
in endoscopic images

UMIN000039597 Observational
• Esophageal neoplasm
• AI

Collection of endoscopic
images of upper GI cancer,
development of an AI
system for detection of
upper GI cancer-
assessment of an AI system
performance by expert
endoscopists

Primary: an accuracy of AI
system for detection of
upper GI cancers in
endoscopic images
Secondary: an accuracy of
AI system for classification
of upper GI cancers in
endoscopic images

200 Japan

Completed
(April 2020)

AI for early diagnosis of
esophageal squamous
cell carcinoma during
optical enhancement
magnifying endoscopy

NCT03759756 Observational

• AI
• Optical

enhancement endoscopy
• Magnifying endoscopy

Arm group label: AI
visible/invisible group.
The endoscopic novices
analyzing the image
can/cannot see the
automatic diagnosis

Primary: the diagnosis
efficiency (the sensitivity,
specificity and accuracy) of
the AI model

119 China

GI—gastrointestinal; AI—artificial intelligence; GERD - gastroesophageal reflux disease; EGD—esophagogastroduodenoscopy; pCLE—probe-based confocal laser endomicroscopy;
VLE—volumetric laser endomicroscopy; WATS3D—wide-area transepithelial sampling associated with computer-assisted three-dimensional analysis; IRIS—intelligent real-time image
segmentation; EMR—endoscopic mucosal resection; HGIN—high-grade intraepithelial neoplasia; IMC—intramucosal adenocarcinoma; CAD—computer-assisted diagnosis.
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5. Future Perspectives and Challenges

Computer-assisted monitoring can assure cost-effective real-time quality control and performance
of gastroscopy, and moreover, AI can offer a helpful tool for training of junior endoscopists in the
future [99,100]. Another strength of such methodologies is represented by their usefulness in risk
stratification of patients [2]. AI systems can aid in the detection of discrete lesions and classify
suspicious lesions, thus increasing the detection rate and diagnostic accuracy of gastrointestinal lesions,
especially digestive neoplasms [101]. AI algorithms reduce the workload of gastroenterologists and
lead to quick and accurate diagnosis within seconds or minutes. Therefore, it is estimated that AI will
assist doctors in making clinical decisions and that artificial technologies will be incorporated into
routine endoscopic practice. Additionally, in clinical gastroenterology, new fields for exploration might
open in the future with the support of computer-assisted diagnostics [19].

Despite the true benefits of the AI systems, several limitations still exist that must be overcome
in the future [19]. First, most of the previous studies usually collect only high-quality endoscopic
images to elaborate the training datasets, whereas low-quality images (in which the area of interest is
covered by mucus, bile, was only partially visible, etc.) were excluded. This practice could possibly
cause overfitting of the models [74,102,103] and an exaggeration of the detection accuracy. For correct
assessments during endoscopy, unprocessed videos should be used in training and testing of the
CNN [99,104,105]. Because most of the datasets are retrospective and usually show the most typical
features of the lesion, inclusion of more atypical lesions and indicators for anatomical structures [106]
might be used to improve the performance of the DL model. AI models should be assessed by using
datasets and tests sets that are completely independent of the level or patient or condition and are
adequately developed [16,107].

A highly important issue is the performance indicators for different AI algorithms, which,
in previous research, have focused primarily on accuracy, sensitivity, specificity, and positive/negative
predictive values, which might be influenced by the distribution of test datasets, selection bias,
overfitting, or spectrum bias [99,108,109]. These confusing elements might determine overestimation
of the model performance and generalization of the results; therefore, external validation using
independent datasets to minimize this bias is compulsory. Many of the studies on the AI impact in
gastroenterology were experimental, single center, or retrospective studies, or used specific endoscopic
images available only in selected referral units. In the future, prospective multicentric randomized
controlled trials with well-defined inclusion and exclusion criteria for the target population will be
mandatory to demonstrate whether DL models truly mirror an improved accuracy of detection
for gastrointestinal lesions in the real clinical context and to assess the impact magnitude of
computer-assisted diagnosis systems in the routine workflow of endoscopists [110]. To diminish the
“black box” nature of these models, i.e., their lack of explainability, and to avoid bias and achieve
human acceptance, several methods, such as saliency region and attention maps, are already under
development [111]. Additionally, by constructing a large number of distinct DL algorithms, all of
which predict a different diagnosis, we might be confronted with a differential diagnostic dilemma.
Because an increased accuracy implies a high amount of data, which is difficult to obtain due to the
paucity of available medical records as a result of privacy issues, data augmentation modalities have
been developed [112]. Moreover, more powerful and advanced computer algorithms, such as spiking
neural networks that mimic the human brain, might become a novel scientific base for research [16,113].
The future involvement of AI in diagnostic medical procedures might also have an impact on the
doctor–patient relationship, with ethical implications related to the assumption of responsibility [16].
These legal issues must be further clarified.

Bearing in mind the enormous advances in novel endoscopic devices, the increasing workload
of clinicians due to the high number of patients, and implementation of endoscopic mass screening
programs in certain high-risk areas for gastrointestinal malignancies, strong collaboration among
physicians, researchers in the computer field, medical companies, and industry might become
mandatory in the near future, for integration of powerful and advanced AI systems and algorithms
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into the composition of endoscopic devices and in daily clinical practice, with the aim of improving
medical actions. Other problems to be solved include finding reimbursement modalities to support
such advanced technologies and the development of a doctor-friendly interface for these AI systems.
We should keep in mind that, in the future, it will likely be a challenging task to translate encouraging
experimental research into clinical practice. However, the first steps toward publicly available large
databases/platforms for further AI algorithm development and improvement have been already
made [114]. As such, the future is already here.

6. Conclusions

Promising results show a good accuracy of CAD algorithms associated with advanced endoscopic
techniques for diagnosis of esophageal carcinomas in the early and endoscopic treatable stages, which
is associated with improved quality of life and better survival. Computer-assisted diagnostics quite
often outperform clinician skills and might be a promising tool in the future for use of “optical
biopsies” instead of difficult, time-consuming, and invasive biopsies or polypectomies. Furthermore,
the novel artificial models are starting to be able to predict the depth of invasion of esophageal
neoplasms with high precision and thus can help in selection and best management of tumors, such as
in endoscopic vs. surgical resection. Therefore, such methodologies are useful in adoption of the best
therapeutic strategy with reduced costs for healthcare systems. The link between human intelligence
and artificial intelligence should evolve toward personalized medicine and, particularly, personalized
gastroenterology healthcare.
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