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Abstract

Proteins are capable of highly specific interactions and are responsible for a wide range of functions, making them attractive
in the pursuit of new therapeutic options. Previous studies focusing on overall geometry of protein–protein interfaces, however,
concluded that PPI interfaces were generally flat. More recently, this idea has been challenged by their structural and thermodynamic
characterisation, suggesting the existence of concave binding sites that are closer in character to traditional small-molecule binding
sites, rather than exhibiting complete flatness. Here, we present a large-scale analysis of binding geometry and physicochemical
properties of all protein–protein interfaces available in the Protein Data Bank. In this review, we provide a comprehensive overview of
the protein–protein interface landscape, including evidence that even for overall larger, more flat interfaces that utilize discontinuous
interacting regions, small and potentially druggable pockets are utilized at binding sites.
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Introduction
Proteins are involved in most fundamental biological pro-
cesses, including cell proliferation [1], signalling [2], host-
pathogen interactions [3] and transport [4], via tightly
coordinated and complex networks of interactions. Each
protein will often interact through specific regions on
their surface with several different protein partners.
Given protein size and diversity, in humans, the proteome
is estimated to be ∼20 000, while the interactome over
650 000 [5], with protein–protein interactions (PPIs) long
been considered to offer a highly selective and tunable
way to modulate protein activities and pathways.

Originally, interacting interface regions were consid-
ered to be large, hydrophobic, flat and featureless [6],
leading to their characterisation as poor targets for the
development of small molecule modulators. However,
recent structural and thermodynamic characterisation
[7] has allowed the classification of PPIs based on the
nature of interacting partners, and further suggested
that binding pockets at the interface may play important
roles in molecular recognition and binding. Due to the
lack of understanding and complexity of PPI interface
regions, however, this remains a challenging area.

While large compilations of PPI networks are impor-
tant to elucidate which proteins interact with each other,

they lack in-depth information of how those interactions
occur. Despite a relatively small proportion of the
interactome being covered by structural data, advances
in experimental structure resolution and application
of structural bioinformatics [8–10] add promising con-
tributions to a more complete and broad structural
characterisation of PPI interactions.

Here we report the results of a large-scale analysis for
the structural landscapes of PPI interfaces based on 3D
structures available in the Protein Data Bank (PDB) [11].
We investigate a range of geometric and physicochemical
properties of over 55 000 PPI interfaces, including pla-
narity, shape complementary, secondary structure con-
tent, solvent accessibility, use of concavity and identifi-
cation of hotspots, across different classes of interfaces,
and discussed implications for druggability.

Results
Protein–protein interface properties
Analysis of the interface segmentation distribution of
PPI interfaces within the PDB revealed that having
up to five interface segments were the most preva-
lent, accounting for 70% of interfaces (Figure S1 and
Table S1, see Supplementary Data available online
at https://academic.oup.com/bib), with interactions
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involving peptides being predominantly single seg-
mented. This allowed us to categorize the interfaces as
either single (continuous) or multi-segmented (discon-
tinuous). Figure S2 (see Supplementary Data available
online at https://academic.oup.com/bib) shows the
distribution of planarity for interfaces of different
segmentations and types. Single segmented interfaces
were significantly more planar than multi-segmented
ones (Table S2, see Supplementary Data available
online at https://academic.oup.com/bib) and, while
there was no significant difference in segmentation
between peptide-type interfaces. Non-identical pairs
were significantly more planar than identical pairs
with symmetric and non-symmetric interfaces. The
former was the most planar among all interface types
(Table S3, see Supplementary Data available online at
https://academic.oup.com/bib).

Single and multi-segmented interfaces were also
largely composed of residues in loops and α-helices
in their core and periphery regions (Figures S3 and S4
and Tables S4 and S5, see Supplementary Data available
online at https://academic.oup.com/bib). Loop residues
dominated on average at smaller sides of single seg-
mented interfaces, and on both sides of multi-segmented
interfaces, while β-sheet residues were significantly less
prevalent in all interfaces. However, α-helix dominated
in the interface cores of multi-segmented interfaces
and the larger sides of single segmented interfaces, but
not in the smaller sides of single segmented interfaces.
Loops were significantly more present in the interface
peripheries of all segmentations of interfaces than α-
helix, which in turn were significantly more present than
β-sheet residues. With respect to secondary structure use
by interface types, loops were more prevalent at identical
non-symmetrical interfaces than α-helix, whereas there
were no significant differences in α-helix and loop
usage in identical symmetric interfaces. Peptides had
significantly more loops than other interfaces; however,
while the enzyme’s interface regions of Enzyme-Peptide
interfaces tended to be formed of loops, the protein
interface regions of Protein-peptide interfaces were
significantly more helical than unstructured. In the
interface core, however, for peptides of Protein-peptide
interfaces, α-helix made up a greater proportion of inter-
face cores than all other types of interfaces, and helices
were significantly more present in identical symmetric
core residues than loops. Loops were significantly more
present in the interface peripheries of all interface types,
followed by α-helix and β-sheets.

With respect to Normalized Interface Packing (NIP),
single segmented interfaces were significantly more
well-packed than multi-segmented interfaces (Figure S5
and Table S6, see Supplementary Data available online at
https://academic.oup.com/bib). Peptidic interfaces were
the most well packed, followed by identical pairs with
non-symmetric interfaces and non-identical pairs, which
did not differ significantly in packing, and identical pairs
with symmetric interfaces (Table S7, see Supplementary
Data available online at https://academic.oup.com/bib).

Similar to NIP, Normalized Shape correlation (NSc)
was significantly higher in single segmented interfaces
than in multi-segmented interfaces (Figure S6 and
Table S8, see Supplementary Data available online at
https://academic.oup.com/bib). Peptidic interfaces were
the most complementary; however, enzyme-peptide
interfaces had significantly higher NSc values than
protein-peptide ones. Identical pairs with symmetric
interfaces were the least complementary and non-
identical pairs and identical pairs with non-symmetric
interfaces were not significantly different from each
other (Table S9, see Supplementary Data available online
at https://academic.oup.com/bib).

The average buried surface area (BSA) was signifi-
cantly higher for multi-segmented interfaces than single
segmented interfaces, by over 1000 Å [2] (Figure S7, see
Supplementary Data available online at https://academic.
oup.com/bib). Single segmented interfaces used signifi-
cantly greater proportions of interface core residues on
their larger sides than either side of multi-segmented
interfaces (Tables S10 and S11, see Supplementary
Data available online at https://academic.oup.com/bib).
However, they utilized a significantly smaller propor-
tion of interface core residues per interface on the
smaller side of the interface than multi-segmented
interfaces, which differ significantly between smaller
and larger side (Figures S8 and S9 and Tables S12
and S13, see Supplementary Data available online at
https://academic.oup.com/bib).

Looking at the intermolecular interactions per 100 Å [2]
BSA revealed interesting differences between the types of
interfaces. Figures S10 and S11 and Tables S14–S45 (see
Supplementary Data available online at https://academic.
oup.com/bib) show distributions of use of non-covalent
contacts for PPI interfaces in the dataset, by interface
segmentation and interface type, respectively. Single
segmented interfaces were significantly enriched in VdW,
hydrogen/polar, atom–ring interactions compared with
interfaces with multiple segments, which showed to
have significantly more ionic, hydrophobic, carbonyl,
amide-ring and amide–amide interactions. With respect
to types of interfaces, individual interaction types
showed different variations. For some interface types,
numbers of interactions per 100 Å [2] BSA matched
those elucidated from analyzing interactions by interface
segmentation alone, such as peptidic interfaces making
greater use of VDW clash, proximal, hydrogen/polar
bonding, weak hydrogen/polar bonding, hydrophobic,
carbonyl, atom–ring interactions. However, in other
cases, variations between use of interactions were
more interface type-dependent than segmentation-
dependent. For example, there has been significantly
more use of amide–amide interactions by identical pairs
with non-symmetric interfaces than any other interface
type, with the exception of Protein-peptide interfaces,
which made use of significantly fewer ionic interactions.
No other differences among other interface types was
observed. Identical pairs with symmetric interfaces
consistently made significantly lower or similar use of
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Figure 1. Point and 2D density distributions of occupation of concavity
at PPI interfaces, on average and at deepest point. Each point repre-
sents the smaller side of one interface from the non-redundant set of
non-overlapping PPI interfaces. Concavity is as measured by Ghecom,
representing the smallest spherical probe size that was able to enter
a space around the partner protein’s surface (where smaller values
represent deeper binding). Interfaces are coloured by segmentation, and
PPI interfaces from the 2P2I dataset for which small-molecule inhibitors
have been developed are overlaid as black points and labelled.

non-covalent interactions, with the exceptions of amide–
amide, Carbon–PI and ionic interactions, compared with
all other interface types.

Concavity across interfaces
Concave geometry of protein surfaces is implicated in
the formation of surface regions suitable for the binding
of small, potentially drug-like, molecules. The majority
of observations indicated that both single and multi-
segmented interfaces made use of concavities over the
whole interface surface; however, single segmented
interfaces were bound significantly deeper on average,
binding at a ‘groove’ magnitude of concavity (Figures 1
and S12 and Tables S46 and S47, see Supplementary
Data available online at https://academic.oup.com/bib).
By comparison, small-molecule natural product ligands
occupy concavities of less than 5 Å with 60–95% of their
atoms [12] (measured per atom, rather than summarized
by deepest value per residue). In addition, analysis of
a subset of PPI interfaces with known small molecule
orthosteric modulators, extracted from 2P2I, showed
the majority of interfaces having atoms occupying
deep concavities (<4 Å), except for the XIAP-Caspase-
9 complex, which binds to a larger and flatter region.
Figure 2 shows structural examples of PPI interfaces in
the context of their concavity utilization.

The importance of concavity on average and at the
deepest level varied as the protein molecule size and
interface size of the protomer increased (Figure S13, see
Supplementary Data available online at https://academic.
oup.com/bib) (R = 0.32, P-value < 0.05). Both single and
multi-segmented interfaces exhibited outliers with very

large chain lengths. Single segmented interfaces also
utilized significantly fewer interacting residues than
multi-segmented interfaces (Figure 3A and Table S48, see
Supplementary Data available online at https://academic.
oup.com/bib), while each globular interface type was
significantly different in number of interacting residues
from one another (Table S49, see Supplementary Data
available online at https://academic.oup.com/bib). No
significant difference in the chain length for the
two types of peptidic interfaces was observed, nei-
ther between identical pairs with symmetric and
non-symmetric interfaces (Figure 3B and Tables S50
and S51, see Supplementary Data available online at
https://academic.oup.com/bib). Notably, identical pairs
with symmetric interfaces used significantly more
residues than all the other types of interfaces.

Inspecting averaged concavity values showed that
smaller protomers with smaller interfaces were more
likely to utilize concavity on average (Figure S13 and
Tables S46 and S47, see Supplementary Data available
online at https://academic.oup.com/bib). As protomer
length increased, interfaces became overall flatter
regardless of the number of interacting residues. With
respect to deepest concavity utilized at interfaces, deep
concavities (<4 Å) were utilized by at least part of
the interface for a majority of observations. However,
interface deepest concavity tended to take less concave
values for longer protomers with fewer interacting
residues. Some exceptions to this trend were represented
by longer protomers using deep concavities at their
deepest, although the interacting region of these two
large chains resembles more a peptidic interface.

Exploring use of concavity
Looking more closely, we analyzed how concavity at inter-
faces was used by individual residues. Residue utilization
of concavity, how well the residues of one side of each
interface make use of the (sub-)pockets available to them
on the partner protein, varied with the nearby formation
of concavity on the binding partner protein (Figures S14
and S15, see Supplementary Data available online at
https://academic.oup.com/bib). Here, single and multi-
segmented interfaces made use of concavity in both the
core and periphery. For multi-segment/globular interface
categories, residues in the interface core were observed
in bimodal distributions; a mode where the residue is
bound deeply and using local concavity, and a mode
where the residue is bound with varying degrees of local
concavity on the partner chain. Multi-segment interfaces
utilising discontinuous binding regions were not only
larger than single segmented interfaces, but also less well
packed and less complementary in shape compared with
single segment interfaces. These observations suggest
that single interacting segments make tight, selective
interactions with their globular partner proteins, com-
pared with looser interfaces in larger multi-segmented
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Figure 2. Structural examples of use of concavity for different types of PPI interfaces. Larger molecules are shown in grey surface representation as
a ‘receptor’ and the other interacting molecule is shown in translucent yellow as a ‘ligand’. Residues at the interface are shown as red sticks. Atoms
occupying deeper concavities are shown as spheres and coloured in a rainbow scale from deepest (blue) to more ‘shallow’ atoms (red). Panels (A)
and (B) show pairs of interactions for protein–peptide (PBD: 2LP8) and enzyme–peptide (PDB: 8PCH) interactions, respectively. Panel (C) summarizes
an interaction between two different proteins (PDB: 1OQD), namely Heteropair. Panels (D) and (E) represent associations between two nearly identical
proteins (over 95% identity), using different interface residues (PDB: 1CZY) and nearly identical residues on each side of the interface (PDB: 3FPC),
respectively.

complexes. Interface core residues showed deepest aver-
age use of concavity for peptidic interfaces, and peptide
interface periphery residues occupied deeper concavities
than identical pairs with symmetric and non-symmetric
interface core residues, which did not differ significantly.

The large proportion of interfaces that at their deepest
occupied deep concavities (Figures S14 and S15, see Sup-
plementary Data available online at https://academic.ou
p.com/bib) raised the hypothesis that both surfaces of
PPI interfaces provide ‘anchoring’ points for one another.
Analysis of interfaces revealed that an ‘interlocking’
phenomenon, where deep concavity utilized in the
0.5 Å–2 Å range was complemented by reciprocal
concavity use on the other side of the interface, existed
in a greater proportion for multi-segmented/globular
interfaces, than for single segmented/peptidic inter-
faces (Figures 4 and S16, see Supplementary Data
available online at https://academic.oup.com/bib). Helix
residues bound significantly deeper than loop and sheet
residues in single segmented interfaces given the same
solvent accessibility, for multi-segmented interfaces
helices and sheets bound significantly deeper than
loops; however, they were not significantly different
from each other (Figures S17 and S18 and Tables S52

and S53, see Supplementary Data available online at
https://academic.oup.com/bib).

Energetic hot spots
Hotspot density in different interface segmentations and
types was calculated using mCSM-PPI to identify the
number of hotspots per 100 Å [2] BSA (Figure S19, see
Supplementary Data available online at https://academic.
oup.com/bib). Single segment interfaces used signifi-
cantly more hotspots per 100 Å [2] BSA than multi-
segmented interfaces. Interfaces involving peptides
had the highest densities of hotspots and were sig-
nificantly different between the two classes (enzyme–
peptide and protein–peptide interactions) (Tables S54
and S55, see Supplementary Data available online at
https://academic.oup.com/bib). For interactions involv-
ing globular proteins, identical pairs with symmetric
interactions used significantly more hotspots per 100 Å
[2] BSA than the other two classes and identical pairs
with non-symmetric interfaces utilized significantly
fewer hotspots per 100 Å [2] BSA than any other
interface type. Figures S20 and S21 (see Supplementary
Data available online at https://academic.oup.com/bib)
illustrate the relationship between residue use of
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Figure 3. 2D density distributions showing interface classifications by chain length and size of interacting surfaces. Density distributions are shown at
a single density level for interfaces by (A) segmentation and (B) interface type.

concavity, solvent accessibility and energetic importance
for each type of interface in the dataset. Overall,
for residues originating from the more deeply bound
sides of interfaces, there was no significant correlation
between residue occupation of concavity and energetic
importance (Pearson correlation coefficient R = −0.05).
When separated by solvent accessibility, the correlations
were R = 0.23 for interface core residues and R = 0.02 for
peripheral residues. Correlations of hotspots with use

of concavity ranged from −0.04 to 0.25 for all interface
types and environments (Figure S21, see Supplementary
Data available online at https://academic.oup.com
/bib).

Clustering of orthosteric sub-pockets on PPI
interfaces
The anchor hypothesis of interaction proposes that
initial, fast recognition between protomers is mediated
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Figure 4. Point and 2D density distributions of deepest concavity occupation on the larger and smaller sides of PPI interfaces. Concavity is as measured
by Ghecom, representing the smallest spherical probe size that was able to enter a space sound the partner protein’s surface (where smaller values
represent deeper binding). Density distributions are coloured by interface segmentation.

by residues, usually from the smaller interacting partner,
that bury a large portion (>100 Å [2]) of surface area
and adopt the same rotameric states when bound and
unbound. We explored this concept using concavity as a
metric for determining anchoring residues, in addition to
solvent accessibility, which we define here as ‘enclosed’
residues. Looking at the numbers of enclosed residues
present in PPI interfaces (Figure S22, see Supplementary
Data available online at https://academic.oup.com/bib)
showed that around 80% of PPI interfaces had at
least one enclosed residue. Enzyme-peptide interfaces
exhibited the largest proportion of interfaces with at
least one enclosed residue (93%), followed by Protein-
Peptides (90%), identical pairs with symmetric interface
(88%), identical pairs with non-symmetric interface (76%)
and non-identical pairs (75%).

To explore how residues utilising concavity may be
exploited for drug discovery, enclosed residues at PPI
interfaces were clustered in 3D. These enclosed residue
clusters represent pockets, or adjacent sub-pockets, that
are demonstrably utilized by proteins at interfaces and
thus have potential for orthosteric challenge with small-
molecules. This revealed that 9253 interfaces possessed
enclosed residue clusters (16% of the dataset) (Figure 5).
Protein–Peptide interfaces had the smallest proportion
of interfaces with enclosed residue clusters (11%), fol-
lowed by identical pairs with non-symmetric interfaces
(12%), non-identical pairs (12%), enzyme-peptides (13%)
and identical pairs with symmetric interfaces with the
highest proportion (26%).

The existence of small, buried protein-occupied
pockets in larger, multi-segment interfaces, consisting of
clusters of multiple small-volume pockets may present

Figure 5. Elucidating potential orthosteric binding pockets utilized by
PPI protein partners, by clustering deeply bound, solvent inaccessible
interface residues. The distribution of protein partner chain length as
compared with binding site size is shown as grey points overlaid with
coloured circles representing interfaces for which clusters of enclosed
residues were found. Interfaces from the 2P2I set for which small-
molecule inhibitors have been designed are overlaid as black circles and
labelled. Interfaces for which an enclosed residue cluster was found are
marked by coloured circles.

opportunities for single residue sites to be competed
for with fragments, which could be elaborated into
interface competitive small molecules for transient
interfaces where interface on/off kinetics could allow
competitive inhibition. Geometric clustering of deeply
bound and solvent inaccessible residues at interfaces
revealed cases in the dataset that presented these dense
clusters of enclosed residues, which were potentially
occupying druggable pockets. However, the presence of
such clusters is not an essential requisite for druggability,
as evidenced by only one drugged PPI from the 2P2I
dataset [13] possessing an enclosed cluster.
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Discussion

In this study we explored the nature of PPI binding
interfaces with respect to binding-mode geometry,
interatomic interactions and structural and energetic
importance of interface residues. While often considered
flat and featureless, we showed that while the majority
of interfaces extracted from the PDB were indeed flat on
average, many interfaces did utilize concavity at their
deepest point, suggesting that an element of concavity
is important for many PPIs. Peptidic interfaces and those
utilising continuous binding regions at the interface
made greater use of concavity on average, suggesting
that these binding sites may be better defined with
respect to potential exploitation in drug discovery. Depth
may provide a way of improving encapsulation of a
residue in smaller interfaces, as evidenced by the greater
proportion of peptide interface core residues in protein–
peptide interfaces using deeper binding modes, and
making proportionally higher use of the local binding site
space (complemented pockets) available in comparison
to other residue environments. Our findings support
the anchor hypothesis of many interfaces having deeply
bound and solvent inaccessible residues, which can be
an important venue in drug discovery. We show that
many interfaces provide concavity on both sides of the
interface to support interactions.

Surprisingly, no significant correlation was observed
between deeply bound or solvent inaccessible residues
and their energetic contribution to the interaction,
despite hotspot residues being significantly more present
at the interface core. On the other hand, significantly
larger and multi-segmented interfaces have shown
fewer number of hotspots per 100 Å [2], suggesting that
hotspots are more spread across the interface to aid
the formation and stabilization of interactions between
larger molecules, which consequently make them more
difficult to target for the development of new small
molecule drugs.

We hypothesize that differences in interatomic con-
tact usage by smaller, continuous interfaces compared
with larger multi-segmented interfaces may reflect dif-
ferences in the nature of their recognition. As single
segments tended to bind using more grooves than multi-
segmented PPIs, the significantly greater use of more
specifically directional interactions, such as hydrogen
bonding, by single segment interfaces may indicate an
evolved imperative for the use of directional interac-
tions to lock a segment into a deep binding site without
requiring rearrangement of the globular binding partner.
Conversely, for larger and multi-segment interfaces, ionic
interactions that may be involved in longer range electro-
static steering may contribute more to recognition where
overall concavity is not present, and residues occupying
concavities are less prevalent.

By analyzing a large-scale dataset of structurally char-
acterized PPIs from the PDB, we found that interfaces
forming a continuous binding segment make greater

overall use of protrusion into partner protein concavities
on average than do globular discontinuous interactions.
Deeply bound residues existed in a large proportion of all
interactions and there was a relationship between depth
and solvent accessibility depending on the continuity
of the interface. Over 80% of interfaces utilized at least
one deeply bound, solvent inaccessible residue, and over
16% of interfaces made use of multiple, small-volume
sub-pockets of the kind bound by previously developed
orthosteric PPI inhibitors.

We propose that while continuous binding sites
that make use of concave binding modes overall may
be more immediately tractable from a druggability
perspective, there may be benefit in targeting glob-
ular protein interfaces with discrete, complemented
sub-pockets, into which residue-sized small-molecule
fragments could protrude. Through analyzing the
chemistry of interfaces as an aggregate property, sum-
marizing pairwise atomic interactions, we uncovered
different chemical preferences between continuous
and discontinuous binding sites, suggesting that single
continuous segments require more specific directional
interactions, whereas discontinuous interfaces burying
larger surface areas rely more on aromatic sealing of
the interface, and on electrostatic interactions. These
discontinuous interfaces may be more amenable to
target by allosteric or interface approaches. Our results
move towards a better understanding of the features
used at therapeutically relevant PPI interfaces, which
can then be used on a more rational approach to drug
design.

Finally, recent advances in protein structure prediction
by AlphaFold [14] and RosettaFold [15] allowed for a
drastic increase in the number of protein structures
available for many organisms, including Homo sapiens
with reportedly 98% structural coverage of the proteome
currently available in the AlphaFold database [16].
More recently, DeepMind has extended its predictive
model to extract evolutionary properties from Multiple
Sequence Alignments(MSA), and developed AlphaFold-
Multimer [17], allowing for the prediction of homomeric
and heteromeric PPIs. However, despite representing an
invaluable contribution to the field of structural biology
and an improvement in performance when compared
with previous methods, AlphaFold-Multimer shows
generally higher performance for homomeric interfaces
than for heteromeric PPIs, which is likely related to its
reliance on MSA for encoding evolutionary information.
Moreover, as discussed in the original study, prediction
of binding of antibodies is an area of improvement
for future implementations of this method. Capturing
different conformations remains a major challenge for
computational prediction of protein structures, which is
particularly important in the context of understanding
the molecular mechanisms and biological processes
involving PPIs. As these novel artificial intelligence
methods mature and address some of their main
limitations, analysis such as the ones carried out on this
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study would greatly expand our understanding of how
proteins interact at a molecular level, and could provide
valuable biological insights for more complex PPIs,
such as the relationship between predicted intrinsically
disordered regions and interactions with other proteins.

Materials and methods
Data
Pairwise structures of interacting proteins were extracted
from the PDB (accessed on 14 April 2021). Interactions
with missing atoms at the interface, interfaces that
overlapped with other interfaces (overlapping interfaces,
where more than two protomers were bound together
using the same residues, interfered with interpretation
of concavity), interfaces where the product of the number
of residues contributed by each protein partner was less
than 25 and interfaces where less than 100 Å [2] was
buried between the two proteins, were removed from
the dataset. The latter two filters were used to remove
interfaces where the chains did not make substantial
contact [18]. To simplify large scale analysis, only the
first model of NMR derived structures was considered.

A non-redundant set of PPI interfaces was generated
by clustering interfaces first on whether the interact-
ing pair of proteins was identical using CD-HIT at 95%
identity cutoff [19] and subsequently by clustering inter-
actions involving identical protein chains based on the
interface sequence. Here, we used the SequenceMatcher
module, available in the diff lib Python package, to com-
pare short peptide sequences, with a similarity cutoff of
75%. Representative interface pairs for each cluster were
chosen based on a structure quality score [18].

The final dataset of interfaces was partitioned by
categorizing interactions between globular proteins
and protein–peptide interactions. The dataset con-
sisted of 55 189 interfaces, of which 15 920 were
identical pairs with symmetric interface, 8580 were
identical pairs with non-symmetric interface, 28 165
were non-identical pairs, 1702 were protein–peptide
interfaces and 822 were enzyme–peptide interfaces
(Figure S23, see Supplementary Data available online
at https://academic.oup.com/bib). Interactions between
peptides and enzymes were separated from interactions
with non-enzymatic proteins by identifying enzyme
chains using the SIFTS cross-database mappings of
the PDB to EC enzyme classification database [20], to
differentiate enzyme–substrate and enzyme–inhibitor
interactions that may involve active site cavities from
non-catalytic site protein–peptide interfaces.

Interface properties
Pairwise PPI interfaces consist of two interacting protein
surfaces. Some properties of these interfaces, such as
buried surface area, are property of the whole inter-
face. However, other properties including binding depth
belong to one side of the interactions. For the latter,
we conducted the analysis from the perspective of the
smaller side of the interface (the side contributing the

fewest residues; for example, the peptide in a protein–
peptide interface), unless otherwise stated. Properties
analyzed included shape complementary, interface pack-
ing and planarity for whole interfaces. The shape corre-
lation (Sc) measure uses interface region surface normal
vectors to determine how well fit is the interface between
two proteins [21]. However, in this work, we used a more
recent implementation which uses Delauney triangula-
tion to calculate a Normalized Sc (NSc) and Interface
Packing (NIP) [22]. Planarity of the interface was mea-
sured by using RMSD of interface residues Cα atoms from
a least-squares fitted plane through the interface. The
resulting planarity value, measured in angstroms (Å), is
lower for more planar interfaces, and higher otherwise.

In this work, segmentation refers to the continuity
of an interface with respect to primary structure.
Segments can optionally have a gap threshold of how
far apart two interface residue can be (in the primary
sequence) so they are still considered in a single segment
(Figure 6). Segment determination was based on the
sequence numbering present in the PDB file to determine
continuous sections of the primary structure. We used a
segmentation definition wherein a segment consists of a
section of primary structure at the interaction interface,
with gaps of no more than four non-interacting residues
allowed within each segment.

As for properties of protein residues, here we calcu-
lated the proportion of secondary structure types using
DSSP via Biopython [23]. Secondary structure types were
categorized into α-helix, β-sheets and loops (disordered
regions) as described in Table S56. In addition, solvent
accessibility was generated via NACCESS [24], non-
covalent interactions were calculated using Arpeggio
[25] and concavity was measured using the inaccessible
probe radius (Rinaccess) value, in angstroms, calculated
using Ghecom [12]. Concavity per residue was measured
by using the deepest-bound atom’s concavity value,
while whole interface concavity was calculated via
arithmetic mean of these deepest per-residue values
across all interface residues.

Residues within 5 Å of any of the binding partner’s
protein atoms were considered to be part of the interface,
and were further categorized as being core or periph-
ery based on their solvent accessibility [18, 26]. Rela-
tive Solvent Accessibility (RSA) gives a measurement of
burial from solvent that is comparable between residues
of different volumes and is used to determine which
residues are buried in protein or interface cores. The
categories used for residue solvent exposure are outlined
in Table S57 (see Supplementary Data available online at
https://academic.oup.com/bib).

Energetically important interface residues
The Ghecom measurement of concavity together with
solvent accessibility was used to elucidate potential
anchor residues from interface structure. Any residue
that was solvent inaccessible with a residue minimum
concavity threshold of 4 Å or less was classified as
enclosed residues. The DBSCAN density-based clustering
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Figure 6. Schematic and structural examples of interface segmentation. Panel (A) shows the schematic diagram of a hypothetical pairwise PPI interface.
Each circle represents a residue in the primary structure. The interface region of the red chain is split into two segments (purple and green) as it is
composed of two discontinuous segments. The interface region of the blue chain is also not continuous if no gap of non-interacting residues is allowed;
however, if we allow non-interacting gaps of up to four residues, the interface residues form one continuous segment (yellow). Example of segmentation
in a pairwise PPI interface is given in panel (B): Chains A and B of a haemoglobin mutant (PDB: 1A01) are shown in cartoon representation coloured in
grey and black with segment regions coloured in yellow and magenta. Chains C and D are shown in the background in surface representation. A gap
threshold of four was used, and thus, the non-interacting parts of interface helices are not part of each helix’s segment, but interacting residues on the
helix are counted as a single interacting segment.

algorithm [27] was used to geometrically cluster enclosed
residues at interfaces to search for possible orthosteric
pockets, defined by clusters of anchors.

Finally, ��GBinding values from mCSM-PPI [28] were
used to perform computational alanine scanning of
each interface, in order to determine the energetic
importance of each binding residue. The threshold of
|��GBinding| > 1 kcal/mol was then used to determine
whether a residue was a hotspot or non-hotspot [29].

Statistical analysis
The one-way analysis of variance (ANOVA), as imple-
mented in the stats module of SciPy [30], was used to
compare distributions between different groups. Where
ANOVA indicated significant differences between groups,
we used Tukey’s Honestly Significant Difference (Tukey’s
HSD) to categorize observations into their similar or dif-
ferent statistical significance using the Python module
statsmodels [31].

Key Points

• This review presents a detailed analysis of the landscape
of therapeutically relevant PPI interfaces.

• We show that while interfaces forming continuous seg-
ments make greater use of concavity, discontinuous
interfaces are also amenable to modulation through
allosteric or competitive inhibitors.

• We discuss how a better understanding of features used
at therapeutically relevant PPI interfaces can then be
used on a more rational approach to drug design.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Data availability
Data and scripts used to generate the analysis presented
in this study are freely available at https://bitbucket.org/
ascherslab/ppi-landscape/.
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