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IntroductIon

In recent years, machine learning (ML) and especially 
deep learning with convolutional neural networks have 
achieved near-human–level performance for certain medical 
imaging diagnostic tasks in experimental settings.[1,2] For a 
majority of these tasks, the training of ML models requires 
human expert annotators to perform extensive labeling and 
data curation.[3] This annotation effort is one of the major 
bottlenecks in realizing the potential of new ML techniques[3] 
for real-world applications. Typically, manual annotation 
efforts can take months of full-time work to complete.[4]

While automatic segmentation of arbitrary images remains 
an unsolved problem, a middle ground offered by the use of 
interactive assistive tools is an active research topic.

In digital histopathology, annotation to facilitate ML typically 
involves reviewing gigapixel-sized images of tissues and 
assigning multiclass labels to delimited regions of the image. 
Annotation in this setting presents novel challenges for the 
design of interactive semi-automatic tools. Whole-slide 

images (WSIs) might be up to 1000 megapixel (MP), but a 
typical computer monitor can only show 2–4 MP. Features to 
be annotated can be large (mm) – such as a tumor or region of 
tissue – or tiny (10 um) – such as a single cell. Borders between 
classes are not solely defined by a clear change in contrast but 
also defined by changes to the overall texture. Sometimes, no 
clear borders exist.

We have developed a tool for efficient interactive annotation 
in digital histopathology, named TissueWand. Apart from 
presenting the tool itself, this paper also describes the 
explorative design approach to discover requirements and 
iteratively construct the tool, since we believe that the insights 
gleaned in this process can be informative for future similar 
efforts. Moreover, we present the results from a small user 
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study evaluating efficiency and quality by comparing our final 
version to manual annotation.

This paper first reviews previous work where user interactions 
have been used to facilitate annotation, labeling, or 
segmentation. Next, we describe and motivate our iterative 
design-based research approach – to jointly explore algorithmic 
and interaction design through high-fidelity prototypes in-
use. We then give an iterative account of our insights during 
the prototyping phases. Next, we present another part of our 
results, i.e., the findings from our quantitative user study. 
Finally, we discuss the relevance of our work to ongoing and 
future research.

Related work
In this section, we summarize prior work with a focus on 
user interactions that can be used to produce annotations or 
provide other methods to aid in gathering training data for 
ML. We describe work in interactive segmentation, ML, 
and studies that these techniques were specifically applied 
to histopathology.

Interactive segmentation
Interactive segmentation stems from work in automatic 
segmentation. In automatic segmentation, the goal is to assign 
each pixel in a given image to its constitutive category without 
supervision. Fully automatic segmentation is difficult partly 
because the problem is underspecified, i.e., there exists many 
possible categorization systems to use when assigning pixels to 
categories. In interactive segmentation, computational methods 
are combined with human operators.

User interactions for interactive segmentations have typically been 
based on common interaction motifs, which can be described 
broadly as boundary or region-based methods.[5] In boundary 
methods, users’ input corresponds to delineating the boundaries 
between categories, such as click-dragging along edges.[6,7] In 
region-based methods, users typically click-drag to paint categories 
to signify pixels that lie within the segments.[8,9] Typically, as a 
result of initial inputs, the resulting full-image segmentation is 
visualized as a shaded overlay or as polygons delimiting categories.

If the user interface supports iterative refinement, the user can 
update the resulting segmentation, receive a new proposal, 
and continue this process until a desirable result is reached. 
Iterative refinement requires strong usability considerations 
to avoid user frustration: using a system that requires more 
iterations but allows easier iterative improvements has been 
shown to be preferred over a system with a better initial guess, 
but where improvements are difficult to achieve.[5]

Notable variations to boundary, region-based, and iterative 
refinement exist. For instance, in the refinement stage the 
input method might change, e.g., first drawing a box and then 
allow updates through painting categories.[10] The resulting 
segmentation from region-based input can be limited by 
distance from the initial seeds, allowing the user more 
control at the expense of number of operations performed.[11] 
To speed up processing at interaction time, a precomputed 

oversegmentation can be used with algorithms applied to these 
larger segments rather than on raw pixels.[9]

Interactive machine learning
Interactive ML (IML)[12] was originally formulated as a class 
of systems where users iteratively train a machine learner 
while receiving feedback on model performance after each 
interactive step. The Crayons System[12] is visually similar 
to region-based interactive segmentation methods. The main 
difference from interactive segmentation is that the user’s goal 
is reached by training a pixel classifier using ML methods. 
More recent formulations of IML have broadened the scope of 
such systems to encompass interactions for the user to control 
other aspects of the system, such as feature selection and model 
comparison.[13] Amershi et al.[14] suggested that IML systems 
should be rapid, focused, and incremental. The CHISSL 
System[15] was designed from these principles and found that 
rapid, real-time feedback and letting users control what to 
label next allowed users to select more beneficial instances 
for the model learning process compared to a sequential active 
learning condition.

Active learning and weak supervision
Some approaches adapt or modify supervised learning 
algorithms to allow the use of fewer, noisy, or less specific labels. 
In active learning, the requirement on the amount of training 
data is reduced by allowing the learning algorithm to choose 
which data, among unlabeled samples, should be annotated 
next.[16] Weakly supervised learning is a loosely defined family of 
methods where “weak” or “noisy” labels are used to only partly 
label instances, such as using image-level labels in multiple 
instance learning,[17] using large bounding boxes to highlight 
discriminatory regions,[18] or learning directly from scribbles.[19]

Several works present tools specifically aimed at speeding 
up object instance segmentation in parts or on a full image. 
One example is using ML to refine a user-provided bounding 
box to a polygonal annotation.[20,21] In the FluidAnnotation 
interface,[22] users can relabel or activate segments from a set 
of proposal segments from a pretrained model.

Semi-automatic annotation for histopathology
Tizhoosh and Pantanowitz,[23] reflecting upon the potential of 
digital pathology, have identified the need for labeled data as 
one of the biggest opportunities for digital pathology. Some 
tools facilitate making digital pathology more available by 
providing workbenches and collaborative spaces within 
which annotations can be made in a structured fashion, such 
as Cytomine,[24] QuPath,[25] SlideRunner,[26] and OpenHI.[27] 
There are also a few examples of annotation or delineation tools 
that move beyond manual drawing. The Ilastik tool provides 
ML-based segmentation that has been used for histological 
annotation.[28] Iterative correction approaches have been 
proposed using a tile-based interaction where users correct 
the output of a classifier by toggling coarse-grained tiles[29] 
and using additional sampling of uncertain regions.[30] Weak 
supervision has been used to let users draw rough boxes around 
the glands on hematoxylin and eosin (H&E)-stained images.[18] 
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Iterative refinement has been used together with ML to go 
from rough polygon annotations to more detailed ones.[31] As 
an alternative, some avoid manual annotation completely by 
restaining the slide such that the sought regions stand out and 
mapping the areas back to the original WSI.[32,33]

Methods

The aim of our work was to produce knowledge on how to 
design a novel interactive system that could contribute to more 
efficient histopathological annotation. To this end, we adopted 
a design-led approach where ideas on technical properties and 
interactive behaviors were sketched, refined, and assessed 
in an iterative process. In this section, we first present the 
context of the study including collaborators, design goals, and 
materials. We then give a characterization of the design process 
and intermediate iterations leading up to a final prototype and 
finally describe our evaluation method.

Study context
The current study ran in parallel with the efforts to annotate a 
large number of histopathological slides,[4] with the end goal 
of developing augmented intelligence methods for clinical 
practice. Professional relevance and flexibility to handle a 
wide range of tasks have been a priority. The related annotation 
project acted in early stages as the source for relevant use cases 
to our qualitative user experiments and in later iterations as a 
practical environment for evaluating prototype refinements. 
Evaluation sessions and co-design sessions took place on-site 
at the university hospital where the pathologists and physicians 
performing annotations resided.

Design goals
We set out to design a tool that could aid us in the costly 
ground-truth annotation process for subsequent ML studies. We 
had two primary design goals. First, the resulting annotations 
should be a suitable substitute for manual polygon-based 
annotations being done in the context of producing training 
data for a machine classifier, i.e., the human using the tool 
must be able to produce annotations at an accuracy comparable 
to fully manual annotations and the tool must be usable for 
a novel problem without assumptions of preexisting training 
data. Second, the total effort of using the tool must be lower 
than doing manual polygon-based annotations and the tool 
must be easily accessible to pathologist annotators.

Many previously proposed annotation methods tend to accept 
slightly lower quality as long as efficiency is boosted; the 
aim of our work is to maintain manual-level quality. Another 
aspect is that whereas some methods are designed for a specific 
domain problem, our goal is to develop a tool with generic 
applicability in histopathology.

Dataset and sources
Our goal was for the tool to be general to histological specimens. 
Its design was informed by annotator experiences from about 
1000 clinically collected WSIs across several tissue types. The 
previously mentioned project for skin and colon annotation 

was a primary source of experience, and the tool design was 
also informed by annotation of breast tumors, lymph node 
metastases, and classification of ovarian carcinomas. The 
tool has primarily been tested on H&E-stained slides, which 
make up 95% or more of slides in clinical practice. Qualitative 
feedback during the iterative design process came primarily 
from three pathologists and one physician trained in histology.

Design method and rationale
In this study, we followed a constructive design research 
methodology with four major phases, each consisting of 
explorations, prototyping, and validations. The general 
trajectory of the process moved toward increasing professional 
and practical relevance. Design activities primarily consisted 
of user observations, high-fidelity prototyping, and semi-
structured interviews.

In a typical design process, the designers seek to elicit 
understanding about possible software’s fit by qualitatively 
evaluating prototypes of increasing fidelity. The general idea 
is to avoid overspending on technical development before the 
underlying solution space is well understood. In this study, the 
behavior of image analysis and semi-automatic segmentation 
support plays a key part in the overall interaction. Hence, since the 
human reaction to the specifics of the underlying algorithms plays 
a key role, we chose to do high-fidelity prototyping to a greater 
extent than what is usually found in design research studies.

While the design process will be described in-depth in the 
results section, a brief overview is provided here.

Phase 1: Finding balance between manual control and 
automatic support
We qualitatively evaluated existing approaches from 
interactive segmentation with pathologists and found region-
based inputs with distance-constrained segmentations as the 
most promising approach.

Phase 2: Faster feedback and annotation support at 
different scales
Based on experiences that users had with our initial prototype, 
we improved our computational methods to support increased 
speed of feedback, varied granularity of annotations, and 
increased generalizability to multiple tasks and tissue types.

Phase 3: Rapid real-time refinement through local 
limitation
After Phase 2, we still struggled with users not experiencing 
enough control and getting stuck in correction cycles. To 
decrease the level of automatic support in favor of manual 
control, we settled on near-real–time (40 ms) segmentation 
predictions from the scribbles.

Phase 4: Tightly-coupled natural interaction through pen 
interaction
While the idea of working fast in rapid fine-grained steps 
seemed promising, we identified the control by computer 
mouse as potentially limiting and revised our design for a 
pressure-sensitive pen as the primary input method.
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Evaluation method
We concluded our experiments with a quantitative comparison 
between manual polygon annotations and the prototype 
available at the end of Phase 3. Specifically, we chose to focus 
our assessment on the act of drawing the polygon annotations. 
Since we aim to provide a general tool applicable to new 
datasets, the goal is to accurately capture the user’s intent. We 
assume that the practical challenges of eye–hand coordination 
involved in drawing are the most significant component by far 
of total task time when annotating tissue specimens.

Our approach was to compare the manual annotation of five 
images by a nonpathologist physician with much experience 
of manual annotation (Condition 1) with a test condition where 
two experienced pathologists independently annotated the 
same slides assisted by TissueWand (Condition 2), aiming to 
reach the same level of precision as the manual annotations.

The five images used in our assessment were selected randomly 
among low-complexity cases in a larger collection of manually 
annotated images. The pathologists in Condition 2 were trained 
for one hour before starting to work on the annotation task. For 
each of the five cases, the pathologist reviewed the labels and 
delineations of the manual annotations and then moved on to 
annotating a fresh copy of the image using TissueWand. The 
reason for this preparatory step was to focus our evaluation on 
the act of drawing rather than differences in annotation intent. 
After the assisted annotation session, the pathologists were 
interviewed on their experience of using TissueWand and how 
it compares to manual annotation practice.

Speed and quality were measured to compare assisted 
and manual annotations. Speed was defined as the time 
from the first drawing-related input event to the final input 
event. A type of annotation error that often is in focus is the 
misjudgment of the extent of a region compared to a medical 
ground truth. In our case, however, the relevant error is how 
well the user managed to follow the intended boundary. 
When scrutinized in large magnification, the intended 
boundary at any point is straightforward to find given the 
annotation made. We therefore defined an annotation quality 
measure as follows: 30 points was randomly selected from 
the delineation borders drawn on each image, and for each 
such point, the closest distance to the intended boundary 
was manually measured, and the average over the points 
was derived.

results

Findings from design process
Our final prototype is a superpixel-based interactive tool that 
produces segmentations spreading from the user’s cursor with 
a distance relative to applied stylus pressure with very low 
response times (~40 ms), creating a feeling of a tightly coupled 
human–machine system. This section describes the phases 
of the design process in terms of evaluations, insights, and 
decisions that led up to the final design. Detailed descriptions 
of the final features are described as part of the design process. 

A summary of the functionality in the final prototype is 
provided in Figure 1.

Preparation: Observing the manual annotation process
We wanted to learn what fixed requirements exist for a semi-
automatic tool with generic applicability in histopathology. By 
observing the annotation process in the related project,[4] we 
characterized the manual, polygon-based process as follows:
1. Extract and anonymize relevant WSIs
2. Review a small number of test slides and construct an 

annotation guide, a method for reproducible annotations 
for the current domain problem. The annotation guide 
includes applicable medical terms, inclusions/exclusion 
criteria, and target “resolution” of annotations

3. For each WSI
a. Draw outlines over areas, disregard difficult boundary 

decisions for the time being
b. Assign categories to areas
c. Refine annotations in challenging areas.

There was a large variation in the size of the structures that were 
annotated. In the annotation of skin resections exemplified in 
Figure 2, both large and small structures were annotated (i.e., 
10–1000 μm). The annotated colon mostly included large-level 
structures (1–10 mm) as shown in Figure 3. Other annotation 
tasks require the user to capture phenomena only occurring 
in small, dispersed regions apparent in high magnification, as 
exemplified in Figure 4 showing annotated tumor metastases 
in the colorectal lymph nodes.

Phase 1 – Finding balance between manual control and 
automatic support
To probe the space of possible solutions, we wanted first-hand 
knowledge of the viability of current interactive segmentation 
approaches when applied to histopathology. Specifically, we 
wanted to find a suitable position in the tradeoff between 
manual control and automated support.

To assess the available options, we applied a few publicly 
available tools to images from our dataset and inspected them 
in terms of user input mechanisms, levels of automatic support, 
and resulting visualization methods,[24,25,34] with their major 
mode of interaction and visualization depicted in Figure 5.

In the early exploratory work, we then chose to investigate 
three input interactions: single click, click and drag, and area 
selection. Output visualization modes included global and local 
results, e.g., whether an action results in the segmentation of 
the entire image as in Figure 5c or to a region bounded by some 
spatial relation to the original input[35] as in Figure 5a and b.

In a semi-automatic approach where the human repeatedly 
acts in a feedback loop with the machine-produced 
predictions, a low-fidelity prototype such as paper sketch 
would not provide the understanding we were after. 
Our initial prototype was thus a high-fidelity interactive 
prototype albeit limited to being usable under very controlled 
circumstances, namely a few preselected histopathology 
images with predefined categories.



Figure 1: Overview of TissueWand functionality. Top: A preprocessing step 
prepares the image for efficient annotation by oversegmenting the image 
and precalculating features. The data are stored in a region–adjacency 
graph for fast access. Bottom: During user interaction, the user can 
annotate with a stylus. A local area around the point where stylus pressure 
is applied will also be annotated through an intelligent flood-fill controlled 
through the amount of pressure. In the illustrated use case, the central 
darker area of tissue (mucosa) must be segmented from the lighter pink 
tissue around it

Figure 2: Example of annotation use case – Skin. Skin resection annotated 
with a manual polygon-based tool with nomenclature as described in the 
previous study.[4] It includes various parts of skin and features such as 
pathological changes and artifacts. The annotation alternates between 
overall tissue type and smaller structures

Figure 3: Example of annotation use case – Colon. Colon specimens 
annotated with a manual polygon-based tool as described in the previous 
study.[4] In this use case, only larger tissue structures readily visible at 
low magnification were annotated

Figure 4: Example of annotation use case – Lymph node. Lymph nodes 
from colorectal cases. The annotated structures were small structures 
(a few tumor cells) in a much larger sample of unannotated (normal) 
lymph node tissue
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From observing user behavior with the different input methods, 
we found a preference for click and drag. Single clicking had 
notable drawbacks; covering the large regions of a histopathology 

images with only clicks means a very large amount of clicking if 
the level of automated support is low. While users did not express 
a dislike of area selection, we observed that by providing many 
options, users sometimes spent unnecessarily long times on the 
choice. Since we could not find a clear use case where the area 
tool was considerably more efficient than click and drag, we 
removed it from our list of candidate input methods.

Using global segmentation results with any of the input 
methods was rejected after observing user interaction with 
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early prototypes. While potentially powerful, returning a full 
segmentation after every input forces the user to revalidate 
the segmentation every time. For histopathological images, 
which are typically very large, this means that the time to 
search the entire image for errors to correct will overwhelm 
the user if there are many errors and the goal is to produce 
a segmentation of high quality. In other words, we observed 
that the cost of corrections was higher than the gains from 
increased automation. Since our annotation tool is meant to be 
used in a situation where the goal is to collect data to build a 
classifier that does not exist, a poor prediction and thus many 
errors are expected.

For our click-and-drag interaction, we aimed for fast response 
times. In general, choosing a suitable response time is 
challenging since it involves a tradeoff between speed and 
quality. An algorithm requiring more computation time usually 
gives a more accurate result. However, longer response times, 
and particularly variable response times, have an adverse effect 
on the quality of the interaction for the human operator. Put 
differently, better performance of an algorithm in a technical 
sense does not always imply better task performance of the 
joint human–machine ensemble.

One way to overcome this limitation is to divide the algorithm 
into two parts: (1) a slow part that preprocesses the image 
and (2) a fast part that is able to respond quickly. In our 
preprocessing stage, we presegment the image and then 
calculate features for these larger areas. For presegmentation, 
we used the simple linear iterative clustering (SLIC) algorithm 
to generate superpixels.[36] We chose the SLIC method since 
it is fast and generates superpixels of uniform size. For each 
superpixel, we then calculated a feature vector by applying 
binning to Hue, Saturation Value (HSV) colors and a texture 
feature based on local binary patterns (LBPs).[37]

For the online part, upon user input in the form of a line, we 
determined the hit superpixels and then returned a new set of 
superpixels as the result of the segmentation. In one rejected 
alternative, we simply returned the list of hit superpixels. 
While this gave the user a large amount of control, they also 
felt that they were not receiving enough automated support. In 
the version at the end of the phase, we compared the feature 
vectors of all hit superpixels, plus their immediate neighbors, 
to the superpixel at the start of the line using simple Euclidean 
distance. If above a preset threshold, the superpixel was 
included in the result.

The resulting interaction was not better than manual efforts in 
terms of time when evaluated with a few preselected testing 
images. When applied to novel images, the method transferred 
poorly due to being very sensitive to the size of phenomena 
to be annotated.

The main identified improvements at the end of the phase were:
• The tool would need to support annotation at different 

granularities. The prototype, for reasons of both 
performance and user efficiency, relied heavily on rather 

large superpixels and thus failed unrecoverable when 
those few superpixels did not correctly capture the user’s 
annotation intent

• We would need to address the user getting stuck in 
“correction loops,” where the user repeatedly tries to 
undo or erase a failed result only to get the same error 
again or some other part of the image wrong

• Users were annoyed over the system not including regions 
that were specifically drawn over. This was a result of 
considering only the feature of the superpixel at the 
beginning the user’s line.

Phase 2 – Faster feedback and annotation support at 
different scales
The efforts in this phase mainly focused on making annotation 
using the click-and-drag interaction from Phase 1 possible at 
dynamic levels of detail while also having a relatively fast 
system response time (~100–500 ms) when used in a web-
based client-server architecture. We also sought to address 
issues with the feature comparison not correctly capturing 
the user’s intent when they had drawn over areas they wanted 
to include.

To support annotating at both high and low resolution, while 
having fast response times during interactive annotation, we 
added the precomputation of a pyramidal superpixel structure 
using the SLIC algorithm, using relatively small region size (10 
pixels) for each layer. The small size ensures that phenomena 
are over-segmented. This superpixel pyramid represents 
regions at increasing levels of detail, as depicted in Figure 6.

The level in the superpixel pyramid that is chosen on user 
input is only indirectly controllable by the user through the 
zoom level at which the image is currently viewed. We found 
this simpler to grasp than having a separate “size” setting that 
could ambiguously be interpreted as the size of the brush. 
After some tuning, we settled on trying to select the level to 
have a roughly constant size superpixel relative to the size of 
phenomena viewed. The selected level is the closest one which 
will result in superpixels of 40 pixels wide given the current 
magnification, but never larger.

To address the issue with not capturing intent due to how 
features were compared, we investigated the changes to 
which superpixels to consider, how to compare them, and the 
effectiveness of underlying features. We evaluated features 
described in two related works[29,38] and found that combining 
HSV and LBP features with ray features[39] gave a good balance 
of predictability and accuracy when applied to our prototype. 
For added efficiency, we also precomputed a region adjacency 
graph that makes it efficient to consider a variable amount of 
neighbors to hit superpixels in linear time.

In the final prototype of the phase, all superpixels intersecting 
with the user’s line are included in the result. Additional 
superpixels are included by an affinity search procedure, 
combining similarity of features and spatial distance. The 
spatial distance used was the shortest number of superpixels 



Figure 6: Pyramidal simple linear iterative clustering. A pyramidal structure 
of over-segmented areas at increasing resolution is computed in a 
preprocessing step using the simple linear iterative clustering algorithm 
iteratively. This ensures that system response times are kept low upon 
user input
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from any input superpixel, and the similarity was computed 
as the cosine similarity between a candidate superpixel 
feature vector and the median feature vector of the input. The 
search is essentially a flood fill, growing from the directly hit 
superpixels. For details, see the pseudocode in Appendixes A.

After determining included superpixels, the resulting polygon 
is compared to the previous polygon for the given category, 
resulting in a number of changed edges and vertices. The list 
of polygon mutations is communicated back to the user’s 
client in a compact binary format. The resulting interaction is 
depicted in Figure 7.

When the resulting prototype was evaluated, users could now 
capture both large and small structures, but the interaction was 
still experienced as a trading of control between human and 
machine, where the human waits for the machine response 
after drawing an area. After a short delay, the results are 
received and the user can make a correction, wait again, 
and then repeat the process. Typically, the user would be 
both intrigued and annoyed by the automatic assignment of 
the areas that were not specifically drawn over, sometimes 
resulting in long back-and-forth correction cycles without 
noticeable progress.

We hypothesized that increasing the predictability of results 
could help avoid these correction cycles.

Phase 3 – Rapid real-time refinement
To offset the correction-cycle behavior apparent in the previous 
phase, we imagined a few options. We could increase the 
threshold with which superpixels are deemed similar and 
thus reducing the area that is automatically added to the 
user’s stroke. This would increase manual control at the 
cost of automation, i.e., the total number of strokes required, 
which might be acceptable. Another option would be to make 
the threshold a parameter for the user to set, but that would 
introduce the user to the problem of finding a good setting 
before performing a potentially long scribble. We liked the 
idea of a controllable threshold since the threshold reflects the 
capability of the underlying features, whose effectiveness can 
vary between phenomena.

Among others, we imagined an interaction where the user 
selects an area in a two-step process, first by scribbling like 
before, but then receiving a slider that could be dragged to 
preview (in near-real time) segmentation results, as depicted 
in Figure 8.

Another option possible under the assumption that we could 
produce near-real–time predictions would be to give the 
user a preview instantly when the button is pressed, and 
updating this preview as the mouse button is dragged, using 
the mouse scroll wheel to change the threshold parameter at 
each point. When implemented as a prototype, we realized 
that the preview needs not be a preview but could instead be 
the actual results.

We adopted this approach together with a slider for the 
threshold parameter. In this rapid fine-grained interaction, 
spreading is constructed as an incremental and collaborative 
effort between user and system, rather than being computed 
after every coarse-grained step, as shown in Figure 9.

Figure 5: Operation of three other semi-automatic tools. (a) The wand 
tool in CytoMine[24] is a single-click flood-fill from the point of the mouse 
cursor. The result is local, limited to an area near the mouse. (b) The 
wand tool in QuPath[25] is a click-and-drag flood-fill using a smoothing 
preprocessing. Updates are received in real time as the user drags. Results 
are local. (c) In Ilastik,[34] the user provides examples of each label by 
click-dragging. After a button click, the user sees the result of labeling 
the entire image, a global result

c

b

a



Figure 8: Rejected design: draw and use slider. A user draws a scribble 
(yellow) and then receives a slider controlling the aggressiveness of 
automatic segmentation, with live preview results (dashed line)

Figure 9: Accepted design: real-time drag and paint. In the final 
TissueWand version, segmentation updates are received in real time upon 
click and drag. Points along the path where the user received results are 
shown as yellow circles along the mouse path (yellow). The resulting 
segmentation is shown in cyan for three sample points (blue diamonds) 
along the mouse path (left, middle, right)

Figure 10: Annotation time per case. Manual, polygon-based annotation 
time is shown in blue and TissueWand annotation time for two users 
(tw1, tw2) is shown in orange. The total time required for the five cases 
spanned between 10 and 145 minutes. TissueWand was faster in all 
cases, except for case three for user tw2

Figure 7: Rejected design: draw and release. A user draws a scribble 
(left) and upon releasing the mouse button, waits a few moments, and 
receives the segmentation result (middle and right). The results depend 
on a sensitivity setting, here shown for a conservative (middle) and 
aggressive setting (right)
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Combined these changes allows the user to work both faster 
and more accurately, albeit while employing more mouse 
strokes. The more fine-grained interaction lets the user 
gradually develop a feel for the appropriate threshold, the 
underlying algorithm, and its limitations by observing many 
predictions over time.

When evaluated, users perceived that they received 
results instantaneously (the average response time of the 
system was 40 ms) and the changes were overall experienced 
as positive. However, we observed that users tended not to 
change the threshold parameter at all and leave it at the default 
– a conservative setting favoring manual control.

Phase 4 – Achieving tight coupling
We had previously observed that some of the annotating 
pathologists preferred working with a stylus directly on a 
touch-sensitive screen, instead of a computer mouse with 
an associated monitor. This preference might be due to the 
additional eye–hand coordination needed when operating a 
mouse. Directly placing the pen upon the visual detail to be 
annotated might be more similar to the prior experience of 
most users.

For our final prototype, we implemented support for a 
pressure-sensitive stylus and mapped the user’s pressure to the 
parameter for spreading, which we hoped would let the user 
learn to control this setting intuitively by the rapid feedback 
cycle developed in the prior phase. While we were not able to 

assess this quantitatively, feedback from qualitative evaluations 
was positive.

user study results

The quantitative user study was carried out on the version 
of the prototype at the end of Phase 3, i.e., using a mouse as 
an input device rather than a stylus. The full per case results 
comparing annotation using manual polygon drawing and 
using the prototype are available in Appendix B.

The time spent for annotating each case spanned between 10 
and 145 min [Figure 10]. On average, the participant performing 
manual work spent 68 min per case, whereas the two participants 
using TissueWand spent 38 and 52 min, respectively.



Figure 11: Annotation time relative to manual annotation. Proportion of 
the manual time for two users (tw1, tw2) over five cases. The vertical 
bar span minimum and maximum time across cases. The horizontal 
tick shows the average time. Quantile boxes are omitted due to the low 
number of observations

Figure 12: Annotation quality. Error in micrometer between the intended 
boundary and the drawn annotation. The span between minimum and 
maximum values is shown with a black vertical line, the first and third 
quantile are shown as a colored box, and the median is shown as a white 
line. Values are shown for manual annotation (blue) and two TissueWand 
users (tw1, tw2 in orange)
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For most cases, use of the tool meant a substantial speed-up 
compared to a manual approach. On average across all five 
cases, we observed a speedup factor of 1.75 corresponding 
to using 57% of the time required for manual annotation 
[Figure 11]. This held with one exception. In one single case, 
TissueWand was both slower and resulted in poorer quality 
compared to manual annotation.

Quality of annotations between the tools was similar, with a 
tendency for TissueWand-annotations to be of slightly better 
quality [Figure 12].

The average error, measured as the distance to the true 
boundary, was 5.5 μm for manual work, compared to 4.7 and 
5.0 μm for the two tool users. A typical error for TissueWand 
is shown in Figure 13.

The interviews with the participating pathologists after 
the annotation sessions provide further insights. They 
concluded on the one hand that the TissueWand tool 
provided a better experience than manual drawing and 
that they would choose the tool over manual work for 
future efforts. On the other hand, a major point was that 
the annotation effort is still a very demanding process, 
especially if detailed boundaries are requested. The 
pathologists felt that the best annotation approach with 
TissueWand was to start in the interior of a histologic region 
and work outward toward its boundary.

dIscussIon

One objective of our work was to design a tool that can 
effectively assist annotation work. The results indicate that 
our prototyping effort has been successful. The speed of 
annotation was higher, the quality was similar or better, and the 
user preference was for using the tool. Notably, the results are 
expected to further improve when the stylus support is utilized.

Another aim with the design-based research approach 
we adopted was to elicit generic knowledge that could 
be informative for other development efforts with similar 
characteristics. A key finding during the iterative design 
process was that rapid response in a local region is a useful 
principle for annotation support in histopathology. Importantly, 
the tool does not rely on neither task-specific preprocessing 
nor specific zoom levels and should therefore be suited for 
generalization across many histology applications. Another 
lesson learned from the design phases is that the preferred 
solution constitutes a tight, dynamic interplay between 
the underlying real-time processing and the interaction 
components, such as the display and the input devices.

There are improvement tracks to consider for future 
evolution of the tool. Some insights are given by Case 3, 
where the tool benefits were less pronounced. The annotation 
task here was very fragmented, consisting of outlining many 
quite small regions. The spreading feature of the tool was 
not successful in accurately finding the desired boundary 
for these fragments, and the work essentially reverted to 
manual drawing.

The proposed approach is constrained by the superpixels 
generated in the preprocessing step. It is therefore reassuring 
that the user study showed maintained accuracy compared to 
manual work. An interesting comparison can be made with 
FluidAnnotation,[22] where the user interacts by selecting 
alternative segments from a pretrained model. This is a more 
limiting constraint than the TissueWand superpixels, which 
may explain why FluidAnnotation did not reach the accuracy 
level of manual work.

The interactive mode of TissueWand when used with a mouse 
is similar to the wand tool of QuPath,[25] although TissueWand 
allows for more automatic aid and thus further spreading. 



Figure 13: Measuring annotation error. Sample of an error made with 
TissueWand. Image showing a typical 4.7 μm error made by a participant 
using the TissueWand tool in ×160. The user’s annotation is in cyan, 
and the error in terms of distance to the intended boundary is shown by 
a green line
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While the predefined generic superpixel boundaries have 
worked well in our examples so far, there may be annotation 
tasks where they are suboptimal.

A particularly interesting opportunity for future work is to 
incorporate a supervised learning component. A classifier 
such as the one incorporated in TissueWand can be further 
trained as it is used. Classifier improvements can be used in 
the interaction by gradually increasing the spread radius and 
becoming more selective. While more work is needed, our 
intuition is that the current interaction technique of TissueWand 
would scale to more capable assistive artificial intelligence.

A limitation of the work presented is of course the small scale 
of the user study, and future work includes further investigation 
of the tool’s effectiveness across larger data collections, more 
users, and more applications.

conclusIons

We have presented TissueWand – a rapid interactive tool for 
assisting annotation efforts. The tool was designed to replace 
fully manual methods, intended for early stages of dataset 
curation where no task-specific ML model yet exists to aid the 
effort. A central characteristic for an assisted annotation tool 
is how the work is divided between machine and human user 
over time. One approach would be to let the machine produce a 
full segmentation and direct the user work to make corrections. 
Our experiences indicate that this is a problematic strategy for 
digital pathology, as the cost of finding and correcting errors 
in the large gigapixel images trumps the gains of the initial 
automation. Instead, we argue that an interactive tool giving 
rapid feedback and having high precision in every small 
interactive step is an effective approach in this context.
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AppendIxes

AppendIx A: superpIxel flood fIll pseudocode

Pseudocode: flood fill affinity search

Input: threshold, hit_superpixels

MAX_DISTANCE=9 # number of superpixel steps

feature_hit = median(features[hit_superpixels])

seen_before = set([])

matched = set([hit_superpixels])

candidates = neighbours(hit_superpixels) - seen_before

while len(candidates) >0:

new_candidates = set()

for spx in candidates:

distance = minimum_path(hit_superpixels)

similarity = cosine_similarity(feature_hit, features[spx])

if similarity > threshold + distance*((1.0-threshold)/MAX_
DISTANCE):

new_candidates |= spx

matched |= new_candidates

candidates = new_candidates - seen_before

AppendIx B: QuAntItAtIve user study results

Table 1: The speed and quality measures are given for the annotations across the five cases

Case Annotation time (min) Speed-up factor Annotation quality (µm error)

Manual TW1 TW2 TW1 TW2 Manual TW1 TW2
1 112 42 62 2.7 1.8 6.5 5.9 4.0
2 35 18 20 1.9 1.8 5.7 4.5 5.2
3 130 98 145 1.3 0.9 5.2 5.3 6.0
4 19 10 10 1.9 1.9 4.1 3.0 4.1
5 42 18 23 2.4 1.8 6.2 4.7 5.6
Average 68 37 52 2.0 1.6 5.5 4.7 4.9
TW1 and TW2 refer to the users 1 and 2 employing the TissueWand tool. For clarity, the speed-up factor compared to the manual condition is also reported 
separately. Overall, the tool causes substantial reductions in annotation time, without loss of annotation quality


