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Mre11–Rad50–Nbs1-dependent processing of DNA
breaks generates oligonucleotides that stimulate
ATM activity

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
distribution,andreproduction inanymedium,provided theoriginalauthorandsourceare credited.This licensedoesnot
permit commercial exploitation or the creation of derivative works without specific permission.

Ali Jazayeri1, Alessia Balestrini1,
Elizabeth Garner1, James E Haber2

and Vincenzo Costanzo1,*
1Genome Stability Unit, Clare Hall Laboratories, London Research
Institute, South Mimms, Herts, UK and 2Rosenstiel Center and
Department of Biology, Brandeis University, Waltham, MA, USA

DNA double-strand breaks (DSBs) can be processed by the

Mre11–Rad50–Nbs1 (MRN) complex, which is essential to

promote ataxia telangiectasia-mutated (ATM) activation.

However, the molecular mechanisms linking MRN activity

to ATM are not fully understood. Here, using Xenopus

laevis egg extract we show that MRN-dependent proces-

sing of DSBs leads to the accumulation of short single-

stranded DNA oligonucleotides (ssDNA oligos). The MRN

complex isolated from the extract containing DSBs is

bound to ssDNA oligos and stimulates ATM activity.

Elimination of ssDNA oligos results in rapid extinction of

ATM activity. Significantly, ssDNA oligos can be isolated

from human cells damaged with ionizing radiation and

injection of small synthetic ssDNA oligos into undamaged

cells also induces ATM activation. These results suggest

that MRN-dependent generation of ssDNA oligos, which

constitute a unique signal of ongoing DSB repair not

encountered in normal DNA metabolism, stimulates ATM

activity.
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Introduction

Chromosomal breakage induces a robust cellular response

that leads to cell cycle arrest, DNA repair, or under some

circumstances, apoptosis. The ataxia telangiectasia-mutated

(ATM) kinase, a member of the phosphatidyl inositol

3-kinase-like kinase (PIKK) family, is central to this response

(Shiloh, 2006). Essential to full ATM activation, both in vivo

and in vitro, is the heterotrimeric Mre11–Rad50–Nbs1 (MRN)

complex (Uziel et al, 2003; Costanzo et al, 2004a; Falck et al,

2005; Lee and Paull, 2005). The effect of MRN on ATM and its

activity is likely to happen on multiple levels, as well as

recruitment of ATM by Nbs1 to the sites of DNA double-

strand breaks (DSBs) (Falck et al, 2005), the MRN-dependent

DSB unwinding and tethering activities are essential for

efficient ATM activation (Costanzo et al, 2004a; Lee and

Paull, 2005). MRN complex also possesses nucleolytic activ-

ity (Paull and Gellert, 1998), and interestingly, Mre11-defi-

cient cells complemented with an Mre11 allele carrying a

mutation in the nuclease catalytic site exhibit defective ATM

activation (Uziel et al, 2003). These observations support the

hypothesis that MRN nuclease activity is required for ATM

activation and are consistent with the recent report showing

that Mirin, an inhibitor of MRN nuclease activity, suppresses

ATM activation (Dupre et al, 2008). The MRN complex has

both exo- and endonuclease activities (Paull and Gellert,

1998). MRN endonucleolytic activity is important for DSB

resection and is enhanced by CtIP (Sartori et al, 2007), which

also has nuclease activity (Takeda et al, 2007). However,

although MRN has a major function in DSB resection it is

unclear whether this is linked to ATM activity. In budding

yeast, continuous DNA resection, recruitment of DNA repair

proteins and chromatin remodelling at the site of a DSB is

required to maintain an active checkpoint response (Ira et al,

2004). This suggests that DSB processing is linked to the

activation of the DNA damage response. One aspect of DSB

processing that has not been investigated is that endonucleo-

lytic processing of DSBs should lead to the generation of

single-stranded DNA oligonucleotides (ssDNA oligos) as by-

product. The role and the fate of these ssDNA oligos inside

the nucleus are currently unknown. Recently, the presence of

ssDNA oligos derived from a yet unidentified DNA-processing

event has been linked to the chronic activation of the ATM-

dependent DNA damage response in cells deficient for Trex1

(Yang et al, 2007), which is an exonuclease that degrades

ssDNA to mononucleotides (Mazur and Perrino, 2001). In

addition, ATM activation has been shown to require hSSB1,

a novel ssDNA-binding protein (Richard et al, 2008). Overall,

these findings suggest that ssDNA molecules have an impor-

tant function in promoting and sustaining ATM activity. Here,

using Xenopus laevis egg extract we have investigated how

DNA ends are processed and how this processing influences

the MRN- and ATM-dependent DNA damage response. The

Xenopus system is ideal to study the rapid activation process

of ATM following addition of DNA templates to the cell-free

extract (Costanzo et al, 2004b). Using this approach, we

found that double- and single-stranded DNA templates indu-

cing ATM activation are extensively processed. Surprisingly,

we discovered that DNA resection leads to the production of

ssDNA oligos that associate with the MRN complex and

influence ATM activity.
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Results

DNA end processing leads to formation of ssDNA oligos

in Xenopus laevis egg extract

Synthetic DNA molecules such as annealed oligonucleotides

consisting of 70 bases of random complementary sequences

(rDSBs) or poly-dA70/poly-dT70 (pA70/pT70) induce ATM-

dependent DNA damage response in Xenopus egg extract

(Costanzo et al, 2000; Guo and Dunphy, 2000). We monitored

the fate of different DNA molecules in the extract. Equal

amounts of double-stranded rDSBs and pA70/pT70 or single-

stranded pA70 and pT70 DNA molecules were labelled with
32P at the 50 or 30 ends and incubated in egg extracts. DNA

was then isolated and ran on sequencing gels. All DNA

molecules were resected very rapidly in the extract resulting

in the accumulation of mononucleotides and of ssDNA oligos

ranging from 4 to 12 nucleotides in size (Figure 1A). Native

gel electrophoresis of DNA derived from the extract treated

with DSB molecules confirmed that these ssDNA oligos were

present as single-stranded DNA as there was no difference in

their molecular weight compared with denaturing gels

(Supplementary Figure 1). ssDNA oligos could also be de-

tected from internally labelled DNA, indicating that they arise

from unwinding of DSBs followed by the resection of single-

stranded DNA throughout its entire length (Figure 1B).

Although all DNA molecules underwent resection, there

were significant differences in their stability. Double-stranded

DNA molecules exhibited the highest stability, whereas sin-

gle-stranded DNA molecules were completely degraded after

60 min (Figure 1C). It is notable that although resection of

rDSBs and pA70/pT70 also led to the generation of ssDNA

oligos, we did not observe a reduction in the molecular

weight of these DNA molecules. This is probably due the

fact that nucleolytic processing is balanced by ongoing DNA

repair, as in contrast to single-stranded molecules, resected

double-stranded DNA molecules could undergo fill-in DNA

synthesis and end joining. Indeed, the appearance of DNA

molecules with higher molecular weight than rDSBs and

pA70/pT70 confirmed this prediction (Figure 1A).

Activation of ATM by different DNA structures

Activation of ATM can be monitored by detection of serine

1981 phosphorylation (Bakkenist and Kastan, 2003), and

ATM kinase activity can be measured by phosphorylation of

a histone H2AX carboxy-terminal peptide containing the

serine 139 (Costanzo et al, 2004a). We measured ATM

activity triggered by different DNA molecules at increasing

concentrations. rDSBs and pA70/pT70 induced phosphoryla-

tion of histone H2AX and ATM serine 1981 (Figure 2A and B).

Surprisingly, single-stranded poly-dT70 (pT70) and to a much

lesser extent poly-dA70 (pA70) induced significant ATM activ-

ity. However, circular single-stranded M13 phage DNA could

not induce ATM activation even at high doses, suggesting that

DNA ends are necessary for the activation of ATM

(Figure 2A). In these conditions, H2AX phosphorylation is

mostly dependent upon ATM as shown by the suppression of

H2AX phosphorylation induced by the ATM inhibitor

KU55933 (Hickson et al, 2004) and, to a similar extent, by

ATM depletion (Supplementary Figure 2A and B). The phos-

phorylation status of ATM serine 1981 was consistent with

H2AX phosphorylation levels and was inhibited by the ATM

inhibitor (Figure 2B). ATM activation can be induced by ATR

(Stiff et al, 2006). However, depletion of ATR from the egg

extract did not affect the induction of ATM activation by

single- and double-stranded DNA molecules, indicating that

ATM was directly activated by these DNA structures

(Supplementary Figure 3A and B). pT70-induced ATM activa-

tion might be due to the conversion of single-stranded pT70

into double-stranded DNA in the extract. To rule out this

possibility, we monitored pT70 replication at different con-

centrations. We observed efficient pT70 replication at concen-

trations higher than the ones already capable of inducing

ATM activation (Supplementary Figure 4). This indicated that

pT70 molecules were able to induce ATM activation in the

single-stranded form. pT70 replication at high doses might be

due to the saturation of the enzymes responsible for pT70

degradation resulting in subsequent stabilization of a fraction

of pT70 molecules, which then become available to the single-
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Figure 1 DNA end processing leads to generation of ssDNA oligos.
(A) Different DNA structures such as rDSB and pA70/pT70 were
stoichiometrically labelled at the 50 (50 32P). After incubation for the
indicated times in the egg extract, the DNA was recovered and ran
on a 22% denaturing acrylamide gel. In (B) rDSBs were internally
labelled (internal 32P) at the thirty-fifth nucleotide from the 50 end
and in (C) pT70 and pA70 were labelled at the 30 end (30 32P) before
incubation.
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stranded DNA replication machinery. Replicated pT70 mole-

cules contribute to the induction of DNA damage response to

DSBs in the egg extract as previously shown (Guo and

Dunphy, 2000). We also measured ATM activity in response

to low concentration of pT70 in the presence of high amounts

of aphidicolin, which inhibits DNA polymerases and single-

stranded DNA synthesis in the egg extract (Jenkins et al,

1992). As shown in Figure 2A, ATM activation by pT70 is

refractory to aphidicolin treatment. Activation of ATM by

pT70 was also observed after gel purification of pT70 oligos

and was suppressed by pretreating pT70 oligos with DNAse,

confirming that it was not due to contaminants of pT70

synthesis (data not shown). These data suggest that double

as well as some single-stranded linear DNA molecules can

stimulate ATM activity.

ssDNA oligos and ATM activity

We then correlated the stability of DNA templates to the

persistence of ATM activity. To this end, rDSBs, pA70, pT70

and single-stranded DNA molecules with random DNA se-

quence (R70) were incubated in the egg extract. ATM activity

was monitored at various time points from DNA addition.

Incubation of rDSBs, pT70, R70 and to a lesser extent of pA70

molecules in the extract resulted in stimulation of ATM

activity (Figure 2C). Significantly, ATM activity reached its

peak and was maintained at time points when most of the

single-stranded DNA templates such as pT70 and pA70 were

degraded into smaller ssDNA oligos (Figures 1C and 2C).

Further degradation of ssDNA oligos to mononucleotides

correlated instead with the complete loss of ATM activity.

In contrast, no significant loss of ATM activity was observed

with rDSB molecules, whose stability was not affected over

time (Figures 1C and 2C). ssDNA oligos derived from pA70,

which, compared with pT70-derived ssDNA oligos were more

rapidly degraded to mononucleotides, were less effective at

promoting sustained ATM activity (Figure 2C). To further

probe the role of ssDNA oligos, we measured H2AX phos-

phorylation after the removal of pA70/pT70 from the extract.

To this end, biotinylated pA70/pT70 oligos were incubated in

the extract and removed after 30 min with streptavidin beads

(Figure 3A). To verify that ssDNA oligos had been generated

from pA70/pT70 before its removal, we labelled pA70/pT70 on

the 30 end of the DNA complementary to the biotinylated

strand. After 30 min of incubation in the extract, ssDNA

oligos were generated from pA70/pT70 processing and could

not be eliminated by the removal of biotinylated pA70/pT70

(Figure 3B). ATM activity was then measured in the pA70/

pT70-depleted extracts. Consistent with previous observations

(Dupre et al, 2006), removal of pA70/pT70 did not affect ATM

activity, indicating that once the signal has been initiated the

kinase is able to maintain its activity even in the absence of

pA70/pT70. To demonstrate a role for ssDNA oligos in main-

taining ATM activity, we tested different nucleases for their

ability to eliminate ssDNA oligos. We found that phospho-

diesterase I (PDEI), which is known to preferentially degrade

single-stranded DNA to mononucleotides as terminal pro-

ducts (Razzell and Khorana, 1959a, b), was able to efficiently

degrade small ssDNA oligos in the egg extract (Figure 3B) and

to suppress ATM activity after removal of pA70/pT70

(Figure 3C). Although PDEI could also degrade RNA or

poly-ADP ribose polymers (PARP), we found no effect of

RNA degradation or PARP synthesis inhibition on ATM

activity (Supplementary Figure 5). Importantly, we could

demonstrate that PDEI in the conditions used for these

experiments specifically degraded small ssDNA oligos and

not larger double-stranded DNA molecules (Supplementary

Figure 6). Taken together, these results indicate that the

ssDNA oligos generated from linear DNA processing sustain

ATM activity.

The MRN complex mediates the effects of ssDNA oligos

on ATM activity

As ATM activation requires the MRN complex in Xenopus egg

extract at low doses of DSBs (Costanzo et al, 2004a; Dupre

et al, 2006), we were intrigued to know whether the MRN

complex was promoting ATM activity induced by ssDNA

oligos. Biotinylated pA70/pT70 molecules were incubated in

the extract for 30 min and then removed. The MRN complex
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Figure 2 ATM activation by different DNA structures. (A) Histone
H2AX carboxy-terminal peptide phosphorylation in the presence of
increasing amounts of rDSB, pA70/pT70, pT70, pA70, M13 circular
ssDNA or pT70 plus 100mM aphidicolin (Aph). Activity was mea-
sured 15 min after incubation of DNA in the extract at 221C and is
expressed as fold induction over the activity measured in the
untreated extract. (B) ATM serine 1981 phosphorylation in the
untreated (�DNA) egg extract or extract supplemented with rDSB
in the absence or presence of 10mM Ku55933 (ATMi), 2.5 ng/ml
pA70/pT70, pT70 or pA70 or after 30 min of incubation. Western blot
was performed with Advance ECL for enhanced sensitivity.
(C) Histone H2AX peptide phosphorylation in the presence of egg
extract containing no DNA, 2.5 ng/ml rDSB, pT70 or 25 ng/ml pA70

and R70 measured at the indicated time points after DNA addition.
Activity is expressed as fold induction. In all graphs, the values are
average of three independent experiments and the error bars
represent standard deviation.
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was subsequently immunoprecipitated from the extract with

polyclonal antibodies raised against Mre11 (Costanzo et al,

2004a; Dupre et al, 2006). Depletion of the MRN complex led

to the loss of ATM activity, suggesting that it was required to

sustain ATM activity (Figure 4A). As the MRN complex

tethers DNA fragments resulting in an increase in the local

concentration of ATM and DNA ends (Costanzo et al, 2004a;

Dupre et al, 2006), we postulated that the MRN complex

might bind to ssDNA oligos. To test this possibility, biotiny-

lated pA70/pT70 labelled with 32P at the 30 end was incubated

in the egg extract for 30 min and then removed. Following

immunoprecipitation of Mre11, we could detect the presence

of 32P-labelled ssDNA oligos in the immunoprecipitated sam-

ples (Figure 4B). Treatment of the immunoprecipitated Mre11

with PDEI led to degradation of labelled ssDNA oligos

(Figure 4B). To verify whether the MRN–ssDNA oligos com-

plexes were able to stimulate ATM activity, we incubated

immunoprecipitated Mre11 derived from pA70/pT70-treated

extracts in fresh extracts containing pA70/pT70 or rDSB at

concentrations not sufficient to induce ATM activation. The

presence of high molecular weight DNA facilitated the for-

mation of DNA–protein complexes with increased local con-

centration of MRN and ATM molecules as previously shown

(Costanzo et al, 2004a; Dupre et al, 2006). In this case, the

MRN–ssDNA oligos complexes led to partial activation of

ATM activity (Figure 4C). Significantly, MRN–ssDNA oligos

complexes pretreated with PDEI, which was then washed

away, were unable to induce ATM activation, suggesting that

ssDNA oligos associated with MRN were active intermediates

capable of promoting ATM activity (Figure 4C). To further

confirm the role of ssDNA oligos in ATM activation, we

incubated synthetic poly-dT5 (pT5) and poly-dT10 (pT10)

oligonucleotides in the extract and measured ATM activity.

However, these synthetic oligonucleotides failed to activate

ATM in the extract (data not shown). This was likely due to

the rapid degradation of exogenous pT5 and pT10 oligonucleo-

tides in the egg cytoplasm (Supplementary Figure 7). ssDNA

oligos generated from processed ends were instead stable for

more than 60 min (Figure 2A), suggesting that ssDNA oligos

are stabilized by the rapid association with protein complexes

such as MRN immediately after their generation. Notably,

ssDNA oligos did not interfere with the ability of the MRN

complex to promote end-to-end bridging of linear double-

stranded DNA molecules (Supplementary Figure 8), indicat-

ing that ssDNA oligos interact with parts of the MRN complex

that are not involved in DNA tethering.

ssDNA oligos formation from chromosomal DSBs is

MRN dependent

To show that ssDNA oligos generation is a physiologically

relevant phenomenon, we sought to establish whether

ssDNA oligos could be generated following induction of

chromosomal breakage. Strikingly, EcoRI treatment of

sperm nuclei induced the accumulation of ssDNA oligos

that were efficiently degraded by PDEI (Figure 5A). ssDNA

oligo formation over time was impaired by depletion of the

MRN complex and restored by supplementing the egg extract

with recombinant human MRN complex (Figure 5B). This

indicates that ssDNA oligo generation is due to MRN-depen-

dent processing of DNA ends produced by EcoRI. The fact that

human MRN complex restored the formation of ssDNA oligos

in the egg extract confirmed that the ability to promote DSB

processing is a conserved feature of the MRN complex. EcoRI-

dependent chromosomal breakage induced ATM activation in

the egg extract as previously reported (Yoo et al, 2004).

Consistent with the data obtained with synthetic DNA tem-

plates, the degradation of ssDNA oligos by PDEI also led to

the suppression of ATM activation (Figure 5C) induced by

chromosomal breakage. Importantly, ATM activation by

EcoRI-induced breaks was MRN dependent as it was abol-

ished in Mre11-depleted extract (Figure 5D).

ssDNA oligos induce ATM activation in human cells

To demonstrate that generation of ssDNA oligos at chromo-

somal breaks is a conserved phenomenon, we developed

a protocol to isolate DNA oligos from human cells after
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induction of DSBs. Using this protocol, we could isolate

ssDNA oligos from human U2OS cells treated with ionizing

radiation (IR) (Figure 6A). ssDNA oligos were also isolated

from G1-arrested cells, suggesting that ssDNA oligo produc-

tion as ATM activation is not restricted to S phase

(Supplementary Figure 9). We then tested the effect of

ssDNA oligos on ATM in mammalian cells. To this end, we

microinjected pT5 oligonulceotides into human U2OS cells.

This procedure allowed reaching a high nuclear concentra-

tion of ssDNA oligos overcoming ssDNA degradation that

usually occurred with alternative methods based on lipo-

some-mediated transfer (data not shown). To identify the

injected cells, we used anti-goat IgG conjugated with Alexa

Fluro 488 as injection marker. ATM activation in the injected

cells was monitored by detecting ATM phospho-serine

1981 (pSerine 1981). The DNA–injection marker mixture

was injected in proximity to the nuclear periphery.

Microinjection of cells with pT5 led to activation of ATM in

the injected cells (Figure 6B). This response was completely

inhibited when cells were pre-incubated with the ATM
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inhibitor KU55933 (Figure 6B). Furthermore, microinjection

of pA5 or a mixture of random 5-mers also led to ATM

activation (Figure 6C). Injecting cells with the injection

marker alone, dTTP or circular DNA did not lead to detectable

ATM activation (Figure 6C). ATM activation by small ssDNA

oligos was observed in the majority of the injected cells

(Supplementary Figure 10A). Quantification of the immuno-

fluorescence intensity obtained with anti-phospho-ATM also

revealed a robust activation of ATM induced by ssDNA oligos

in the injected cells (Supplementary Figure 10B). ATM activa-

tion was detected immediately after oligo injection to exclude

the interference of ssDNA oligos with DNA metabolic pro-

cesses such as DNA replication or transcription. ssDNA

oligos-induced ATM activation resulted in small and diffuse

foci (Figure 6B and C) that were different from the large DNA

damage foci typical of chromosomal breakage induced by IR

(Figure 6B). The absence of genomic DSBs in cells injected

with various ssDNA oligos was confirmed by the absence of

DNA damage foci containing phosphorylated histone H2AX

(Supplementary Figure 11).

Discussion

MRN-dependent ssDNA oligo generation at DSBs

Here, we have shown that DNA molecules with free DNA

ends triggering ATM activation are rapidly processed result-

ing in the generation of ssDNA oligos. These molecules are

not simple by-products of DNA resection as they participate

in the ATM-dependent DNA damage response. We have

demonstrated that generation of ssDNA oligos from chromo-

some breaks requires the MRN complex. In addition, we have

shown that the MRN complex bound to ssDNA oligos pro-

motes ATM activity, indicating that ssDNA oligos function as

allosteric cofactors activating the complex. It is known that

the MRN complex containing nuclease-inactive Mre11 fails to

promote ATM activation (Uziel et al, 2003). In addition,

Mirin, a chemical that inhibits Mre11 nuclease activity with-

out affecting MRN and ATM binding to DSBs, suppresses

ATM activity (Dupre et al, 2008). Our findings are consistent

with the requirement for the MRN complex nuclease activity

in the ATM activation process. Once ssDNA oligos have been

generated, they remain associated with the MRN complex

and probably promote a stable conformation capable of

inducing continuous stimulation of ATM molecules. This

process, likely, requires the generation of a limited amount

of ssDNA oligos bound to MRN complex and does not require

extensive resection to activate a large number of ATM mole-

cules. This model is compatible with the lack of extensive

resection in G1-arrested cells in which ATM can be activated

(Jazayeri et al, 2006; Sartori et al, 2007). In addition, we show

that ssDNA oligo formation can take place also in G1-arrested

cells after treatment with IR. This is consistent with the

recently reported resection of ‘ragged’ DNA ends induced

by IR in G1-arrested cells (Barlow et al, 2008). ssDNA oligos

produced at DSBs could interact with one or more subunits of

the MRN complex that have DNA-binding domains. The

binding of dinucleoside polyphosphates to the MRN complex

through the Rad50 subunit has recently been demonstrated
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Figure 6 ssDNA oligos are generated following induction of DSBs in human cells and promote ATM activation when injected in undamaged
cells. (A) Human U2OS cells were irradiated with 10 Gy of IR. Following a short recovery, cells were permeabilized and processed to isolate
soluble low molecular weight DNA. DNA was labelled with TdT in the presence of 32P-alpha-ddATP and ran on a 15% TBE–urea denaturing
gel. (B) U2OS cells were co-microinjected with 5mg/ml pT5 and anti-goat IgG conjugated with Alexa Fluor 488. After 30 min incubation, cells
were fixed and stained with anti-ATM phospho-serine 1981 antibody. Where indicated cells were treated with 10 Gy of IR and after 1 h were
fixed and immunostained. The ATM inhibitor (ATMi) was used at 10mM for 1 h prior to irradiation or microinjection. (C) U2OS cells were
injected as indicated. All DNA concentrations were at 5 mg/ml and dTTP was 100mM. After 30 min incubation, cells were fixed and stained with
anti-ATM phospho-serine 1981 antibody. All the images were acquired under identical microscope settings. Scale bar is 10 mm.
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and suggests that the activities of the MRN complex are

regulated by different nucleotide metabolites (Bhaskara

et al, 2007).

Alternatively, it is also possible that the MRN complex is

not the only mediator of ssDNA oligos’ effect on ATM. ssDNA

oligos might also influence ATM activity binding other targets

such as the recently discovered ssDNA-binding protein

hSSB1, which has high affinity for small ssDNA oligos and

is required for ATM activation (Richard et al, 2008). Overall,

these observations are consistent with reports showing the

existence of a multiple step activation mode of ATM (Dupre

et al, 2006; Berkovich et al, 2007) and suggest that ssDNA can

trigger an initial activation of ATM, which can be amplified

and maintained by ssDNA oligos generation. ssDNA oligos

may increase the activity of ATM molecules already bound to

DSBs or facilitate the activation of inactive ATM molecules

that have not yet engaged DSBs (Figure 7). However, the

absence of ATM-dependent phosphorylation of histone H2AX

triggered by ssDNA oligos alone suggests that ssDNA oligos

are not sufficient to enable ATM-dependent phosphorylation

of chromatin-bound targets. This event probably requires the

presence of double-stranded DNA ends onto which ATM can

load. This is also suggested by the fact that, differently from

linear DNA, single-stranded circular DNA is unable to trigger

any ATM activity.

As far as the mechanism of ssDNA oligo generation is

concerned, the detection of ssDNA oligos from internally

labelled DNA indicates that they are produced by the com-

bined actions of endo- and exonuclease activities described

for the MRN complex. The MRN complex might exert an

effect on single-stranded DNA generated by helicase-

mediated unwinding of DSBs. Interestingly, we found that

generation of ssDNA oligos from chromosomal DSBs is

entirely dependent upon MRN, whereas small amounts of

ssDNA oligos generated from synthetic DNA templates can

still be detected in the absence of MRN (data not shown).

This indicates that MRN complex activity is specific for DSB

processing that arise in the context of the chromatin, con-

sistent with its chromatin-remodelling activities (Tsukuda

et al, 2005).

ssDNA oligos turnover is linked to ATM activation

status

An important aspect of ssDNA oligo metabolism is their

turnover as the persistence of ssDNA oligos is correlated

with the activation status of ATM. We showed that in

Xenopus egg extract, exogenous synthetic small ssDNA oligos

are rapidly degraded, whereas ssDNA oligos derived from the

resection of larger DNA templates are more stable. This is

likely due to their association with factors involved in DNA

resection such as the MRN complex or other ssDNA-binding

proteins. Interestingly, the ssDNA-binding protein hSSB1,

which is highly conserved in Xenopus, has a higher binding

affinity for poly-pyrimidine than for poly-purine containing

ssDNA molecules (Richard et al, 2008). The association of

ssDNA oligos to proteins such as hSSB1, if proven, might

explain the higher intrinsic stability and efficiency at stimu-

lating ATM activity of poly-pyrimidine pT70 compared with

poly-purine pA70 oligos in the egg extract.

Predictably, the elimination of ssDNA oligos would be

required for efficient inactivation of ATM once DSBs have

been repaired, whereas the persistence of ssDNA oligos

would maintain ATM active. ssDNA oligos elimination

could be mediated by an exonuclease capable of degrading

ssDNA oligos. Among known nucleases, Trex1, which has an

activity similar to PDEI, can degrade ssDNA oligos (Mazur

and Perrino, 2001). Mutations in Trex1 are responsible for the

Aicardi–Goutieres syndrome, a complex human disease that

recapitulates the effects of an embryonic response to a viral

DNA infection (Crow et al, 2006). The deficiency of Trex1

activity leads to the accumulation of free ssDNA oligos and

this correlates with chronic stimulation of the ATM-depen-

dent DNA damage response (Yang et al, 2007). Therefore,

Trex1 is an ideal candidate for the regulation of ssDNA oligos

stability and, indirectly, ATM activity (Figure 7). Interestingly,

Trex1 is confined to endoplasmic vesicles and ssDNA oligos

need to be exported from nuclei for degradation (Yang et al,

2007). In our experiments, direct injection of ssDNA oligos

into cells bypasses this degradation pathway reaching a

nuclear concentration able to stimulate ATM. Taken together,

these findings indicate an important and unexpected role for

the ssDNA oligos metabolism in the DNA damage response.

ssDNA oligos as an alarm signal

The creation of ssDNA oligos during the resection of DNA

undergoing repair, either from 50 to 30 processing of DSBs or

possibly from enlarging gaps in other forms of DNA repair is

a unique signal of DNA damage. Whereas mononucleotides

are produced by normal DNA metabolism, these ssDNA

oligos are only present when DNA damage is being pro-

cessed. ssDNA oligos could function as an alarm signal that

promotes full activation of the DNA damage response. Thus,

whereas DSB ends and ssDNA are necessary to establish

a platform to assemble factors required for the localized

activation of the checkpoint and for the repair of the damage,

a widespread and efficient DNA damage response—which

should be turned off when repair is complete—takes advan-

tage of DNA species that are only produced while repair is

ongoing. The fact that single-stranded circular DNA, which

is not degraded, is unable to trigger sustained ATM activation

is consistent with the hypothesis that ssDNA in the absence

of DNA processing is not sufficient to activate ATM. In

budding yeast, where repair can be carefully monitored,

ssDNA oligos
ATM

ATM

ATM
P

ATM P

MRN

ATM P

Trex1 ?

Active ATM

ATM P

Figure 7 Proposed model for ssDNA oligo action. ssDNA oligos
generated by MRN-dependent processing of DSBs stimulates ATM
activity by forming MRN–DNA oligo complexes. Elimination of
ssDNA oligos by single-stranded DNA exonucleases such as Trex1
(see Discussion) might indirectly control ATM activity.
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resection continues at a rate of 4 kb/h from DSB ends for as

long as it takes the process of repair to be completed, and the

checkpoint is turned off soon after repair is complete (Vaze

et al, 2002; Keogh et al, 2006). In the absence of yeast Mre11,

the DNA damage checkpoint is initiated, but not maintained

as in wild-type cells (Lee et al, 1998; D’Amours and Jackson,

2001), indicating a role for Mre11 in sustaining the check-

point. Importantly, ssDNA oligos can also be observed fol-

lowing induction of DSBs in human cells, indicating that this

is a conserved physiological phenomenon. The introduction

of ssDNA oligos in cancer cells could be therapeutically

exploited to enhance DNA damage response without produ-

cing further damage to the genome.

Materials and methods

Xenopus egg extract
The egg extracts were prepared as previously described (Costanzo
et al, 2004a). Interphase extract was obtained by releasing
CSF-arrested extract with 0.4 mM CaCl2.

DNA structures
All DNA oligos were obtained from Sigma-Genosys. Random 70 mer
complementary single-stranded DNA molecules (rDSB) had the
following sequence:

50-TGGGTCTCTCTGGGCTTCTGGTCTCCTGGACAACAGATCAAGG
CAACCATGGCCCACACACTCAAGGGC-30

50-GCCCTTGAGTGTGTGGGCCATGGTTGCCTTGATCTGTTGTCCA
GGAGACCAGAAGCCCAGAGAGACCCA-30

Equimolar amounts of single-stranded DNA oligos were
annealed in a buffer containing 10 mM HEPES (pH 7.5) and 5 mM
MgCl2 at 951C for 1 min, 651C for 10 min, 371C for 10 min and 221C
for 10 min in a PCR Thermocycler to obtain double-stranded DNA
poly-dA70/dT70 and rDSB. Biotinylated poly-dA70/dT70 was ob-
tained by annealing 30-biotinylated poly-dT70 to poly-dA70. DNA
concentration was measured in the Nanodrop spectrophotometer.

H2AX kinase assay
Interphase egg extracts were incubated with DNA structures as
indicated at 221C. The extract (2ml) was mixed with 20ml of EB
kinase buffer (20 mM HEPES (pH 7.5), 50 mM NaCl, 10 mM MgCl2,
1 mM DTT and 10 mM MnCl2) supplemented with 0.5 mg/ml
histone H2AX peptide (Sigma-Genosys), 50mM ATP and 10 mCi of
g-32P-ATP 10 mCi/ml (greater than 3000 Ci/mmol). The samples were
incubated at 301C for 5 min, and reactions were spotted on p81
phosphocellulose filter paper (Upstate Biotechnology). Filters were
air-dried and washed three times in 5% phosphoric acid. Radio-
activity was quantified in a scintillation counter. PARP inhibitor was
obtained from BIOMOL and RNAseA from Qiagen. The extract used
to measure H2AX phosphorylation was pre-incubated twice for
20 min at 41C with a volume of streptavidin-coated beads (Dynal)
coupled to 50 biotinylated double-stranded 20 mer oligos (with a
sequence corresponding to the first 20 nucleotides of rDSB oligos)
that were then removed to eliminate H2AX kinase activity due to
DNA-PK (Dupre et al, 2006).

DNA labelling
Poly-dA70/dT70 poly-dA70, poly-dT70 and rDSB were labelled at the
50 end using T4 polynucleotide kinase. Briefly, 10 ng of DNA was
incubated with 30 U T4 kinase (NEB) for 4 h at 371C in 30ml reaction
in the T4 kinase buffer (NEB) in the presence of 10 mCi of g-32P-ATP
10mCi/ml (greater than 3000 Ci/mmol). Excess of enzyme and long
incubation time ensured stoichiometric labelling of the DNA. Poly-
dA70/dT70 poly-dA70, poly-dT70 and rDSB 30 end labelling was done
by incubating 10 ng of DNA with 20 U TdT (Fermentas) for 4 h at
371C in 30ml reaction in the presence of TdT reaction buffer
(Fermentas) and 10mCi of alpha-32P-ddATP 10 mCi/ml (greater than
3000 Ci/mmol). Labelled DNA was purified through G25 gel
filtration columns (Amersham). DNA concentration was measured
in the Nanodrop spectrophotometer. 32P-labelled poly-dA70/dT70

was obtained by annealing 30-32P-labelled poly-dT70 to poly-dA70.
32P-Labelled biotinylated poly-dA70/dT70 was obtained by annealing
30-biotinylated poly-dA70 to 30-32P-labelled poly-dT70. For internally

labelled oligos, a 35-mer oligo (50-TGTCTGACCTTGTTTTTGGGA
CGTCTACTCATCTC-30) was 32P labelled at the 50 end with T4
polynucleotide kinase. The labelled oligo was annealed to a 70-mer
oligo (50-GAGATGAGTAGACGTCCCAAAAACAAGGTCAGACATCGTG
ACACATTCTGTCCGGTCTAGGGCATGGATG-30) to generate a dou-
ble-stranded oligo with a 35-mer overhang. This structure was then
annealed to another 35-mer oligo (50-CATCCATGCCCTAGACCGGA
CAGAATGTGTCACGA-30), complementary to the overhang region,
followed by a ligase reaction to join the two adjacent 35-mer oligos.
The excess ssDNA in the reaction was removed with ExoI treatment.
Labelled DNA was purified through G25 gel filtration columns
(Amersham).

DNA-processing reaction
Poly-dA70/dT70, poly-dA70, poly-dT70 or rDSB labelled at the 50 or 30

end was mixed with 10ml of the egg extract and incubated at 221C
for 0, 1, 30, 60 and 90 min. Reactions were stopped with 40ml stop
buffer (0.5% SDS, 80 mM Tris pH 8.0 and EDTA 8 mM). Here, 10 ml
of the reaction was mixed with Tris–urea denaturing loading buffer
(Invitrogen), heated at 701C for 3 min and run on 22% Tris–urea
acrylamide sequencing gel using a Bio-Rad apparatus. Alternatively,
15% TBE–urea acrylamide or TBE–acrylamide pre-cast gels from
Invitrogen were used. Oligonucleotide DNA marker (Amersham)
used was labelled with TdT as described above. Gels were washed
in a fixative (35% MetOH, 18% acetic acid) for 30 s, wrapped in
saran-wrap and immediately exposed. Purified 50-nucleotidase-free
PDEI derived from Crotalus adamanteus venom (Sigma-Genosys)
was a gift from T Lindhal. The enzyme was typically used at 0.001–
0.002 U/ml.

ATM, ATR and Mre11 depletions and western blots
For Mre11, ATM and ATR depletions, 100 ml of interphase extracts
was incubated with 50 ml protein A Sepharose beads coupled to
100 ml of anti-X-Mre11, anti-X-ATM or anti-X-ATR serum for 45 min
at 41C twice. For mock depletion, protein A Sepharose beads
washed in PBS were used. Mre11 antibodies and production of
recombinant histidine-tagged MRN complex have been previously
described (Costanzo et al, 2004a). Anti-human Mre11 antibodies
were from Bethyl. Anti-X-ATM and anti-X-ATR polyclonal anti-
bodies were previously described (Trenz et al, 2006). Detection of
ATM pSerine 1981 by western blot was obtained with mouse anti-
ATM pSerine 1981 (Rockland Immunochemicals) overnight in
blocking solution using Advanced ECL (Amersham).

Isolation of DNA oligonucleotides
DNA oligonucleotides associated with Mre11 immunoprecipitates
were detected as following: 100 ng poly-dA70/dT70 was 32P-labelled
at 30 end of the poly-dT70 using TdT as described above. The
reaction was scaled up by a factor of 10. 32P-labelled poly-dA70/dT70

(100 ng) was incubated in 100ml egg extracts for 30 min. Protein A
Sepharose beads (50 ml) coupled to 100ml of anti-X-Mre11 serum
were then added to the extracts. For mock depletions, protein A
Sepharose beads washed in PBS were used. Reactions were
incubated for 45 min at 221C. Sepharose beads were then isolated
by 1 min centrifugation at 1000 r.p.m. at 41C and washed three
times with PBS supplement with 0.4% NP40. The samples were
resuspended in TBE–urea loading buffer (Invitrogen), heated at
701C for 3 min and run on a 15% TBE–urea acrylamide pre-cast gels
(Invitrogen).

DNA oligonucleotides accumulated in response to EcoRI treat-
ment were isolated as follows. Sperm nuclei were incubated in
untreated, mock-depleted or Mre11-depleted extracts at 4000
nuclei/ml for 30 min at 221C and the extract was supplemented
with 0.2 U/ml of EcoRI and incubated for a further 60 min. The
extract was then resuspended in 40 mM HEPES-KOH pH 7.5, 15 mM
MgCl2, 100 mM KCl, 20 mM EDTA and 1% Triton X-100 and
incubated on ice for 10 min. The samples were centrifuged at
6000 g for 5 min and the supernatant was collected and labelled
with TdT. Briefly, 50ml of TdT reaction mixture (30 U TdT, TdT
reaction buffer and 50mCi of alpha-32P-ddATP 10mCi/ml greater than
3000 Ci/mmol). Reactions were incubated at 371C overnight.
Labelled DNA was purified through G25 gel filtration columns
(Amersham). The samples were loaded on 15% Tris–urea
acrylamide gels and run for 1 h at 200V. Labelled DNA was
transferred to Hybond-Nþ membrane (Amersham) for 2 h at 300 V
in 1� TBE buffer. The membrane was then heated at 801C for 2 h
and exposed (Figure 5A and B).
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Isolation of DNA oligonucleotide from human cells was obtained
as follows: 3�107 human U2OS cells arrested by confluence density
or synchronized in G1 with 500mM mimosine (Sigma-Genosys)
were irradiated with 10 Gy using a caesium 137 source or mock
treated. G1 arrest was monitored with standard protocols using a
FACS sorter. The cells were washed with ice-cold PBS once,
harvested with a cell scraper in PBS and collected by centrifugation.
The cell pellets were then treated for 5 min with lysis buffer (2%
sodium dodecyl sulphate, 20 mM EDTA, 20 mM EGTA, 50 mM Tris–
HCl, pH 7.5). Tubes were incubated at room temperature for 10 min.
Then 25ml 5 M NaCl was added and tubes were gently inverted
three times and stored for 24 h at 41C. The genomic DNA was then
pelleted following centrifugation for 30 min at 9000 g at 41C. The
supernatant was harvested and the small DNA species were
extracted with one volume of phenol–chloroform followed by
ethanol precipitation overnight at �201C. DNA was recovered
following centrifugation at 9000 g at 41C for 30 min. DNA was
washed once with 70% ethanol and after repeated centrifugation at
9000 g at 41C for 30 min, the pelleted DNA was resuspended in 50 ml
TdT labelling mix (30 U TdT, TdT reaction buffer and 50mCi of
alpha-32P-ddATP 10 mCi/ml greater than 3000 Ci/mmol) as per the
Fermentas manufacturer’s protocol and incubated at 371C for
30 min. RNAse A was then added to the final concentration of 1 mg/
ml. The labelling reaction was stopped using 5 ml 0.5 M EDTA.
Formamide loading buffer (5ml) was added to 5 ml of the labelling
reaction. The samples were loaded on 15% Tris–urea acrylamide
gels and run for 1 h at 200 V. Gels were washed in 35% methanol,
15% acetic acid, wrapped in saran-wrap and immediately exposed.

DNA oligonucleotide injection and immunofluorescence
Human U2OS cell derivatives were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum. The

cells were grown on poly-L lysine-treated cover slips for at least 48 h
in DMED supplemented with 10% FCS prior to manipulations. For
microinjections, injection mixtures (10ml of Alexa Fluor 488
chicken anti-goat IgG (Molecular Probes) plus 5ml of DNA at
5 mg/ml) were loaded onto Femtotip I (Eppendorf) and attached to
InjectMan NI2 System (Eppendorf) connected to Zeiss Axiovert 200
microscope. The cells were injected into the cytoplasm at B100–
150 hPa injection pressure. For each experiment, about 200 cells
were injected and after 30 min cells were fixed in ice-cold 50%
methanol–50% acetone mixtures for 10 min on ice. Following
fixation, the cells were washed extensively with PBS and incubated
for 30 min with blocking solution containing 5% (w/v) non-fat milk
in TBST (TBS plus 0.1% Tween-20). The cells were then incubated
with mouse anti-ATM pSerine 1981 (Rockland Immunochemicals)
overnight in blocking solution. For secondary detection, we used
Alexa Fluor 594 chicken anti-mouse IgG (Molecular Probes). The
cells were visualized using a ZeissLSM 510 Confocal microscope.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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