

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Isopropyl-5-methyl-2-sulfanylideneimidazolidin-4-one

Masaki Ichitani, Soh-ichi Kitoh, Shuhei Fujinami, Mitsuhiro Suda, Mitsunori Honda and Ko-Ki Kunimoto*

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan Correspondence e-mail: kunimoto@se.kanazawa-u.ac.jp

Received 13 May 2013; accepted 17 May 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.126; data-to-parameter ratio = 18.5.

In the title compound, $C_7H_{12}N_2OS$, the 2-sulfanylideneimidazolidin-4-one moiety is nearly planar, with a maximum deviation of 0.054 (2) Å. In the crystal, a pair of $N-H \cdots O$ hydrogen bonds and a pair of $N-H \cdot \cdot \cdot S$ hydrogen bonds each form a centrosymmetric ring with an $R_2^2(8)$ graph-set motif. The enantiomeric R and S molecules are alternately linked into a tape along $[1\overline{10}]$ via these pairs of hydrogen bonds.

Related literature

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993). For the crystal structures of related compounds, see: Devillanova et al. (1987); Ogawa et al. (2009); Walker et al. (1969). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter (1990). For the synthetic procedure, see: Wang et al. (2006).

Experimental

Crystal data C7H12N2OS

 $M_r = 172.26$

Monoclinic, $P2_1/c$	
a = 5.8317 (5) Å	
b = 9.2114 (8) Å	

Data collection

 $\beta = 95.855 \ (3)^{\circ}$

c = 16.8967 (16) Å

V = 902.92 (14) Å³

Rigaku/MSC Mercury CCD	9484 measured reflections
diffractometer	2051 independent reflections
Absorption correction: multi-scan	1660 reflections with $F^2 > 2\sigma(F^2)$
(<i>REQAB</i> ; Rigaku, 1998)	$R_{\rm int} = 0.038$
$T_{\min} = 0.795, T_{\max} = 0.988$	

Z = 4Mo $K\alpha$ radiation

 $\mu = 0.31 \text{ mm}^{-1}$

 $0.20 \times 0.10 \times 0.04~\text{mm}$

T = 123 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.126$	independent and constrained
S = 1.14	refinement
2051 reflections	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
111 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots S1^{i} \\ N2 - H2 \cdots O1^{ii} \end{array}$	0.78 (3)	2.63 (3)	3.383 (2)	162 (3)
	0.91 (4)	1.93 (4)	2.820 (3)	166 (3)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: Crystal-Structure (Rigaku, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5273).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Devillanova, F. A., Isaia, F., Verani, G., Battaglia, L. P. & Corradi, A. B. (1987). J. Chem. Res. 6, 192-193.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148 - 152
- Ogawa, T., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25. 91-92.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Walker, L. A., Folting, K. & Merritt, L. L. Jnr (1969). Acta Cryst. B25, 88-93.
- Wang, Z. D., Sheikh, S. O. & Zhang, Y. (2006). Molecules, 11, 739-750.

supplementary materials

Acta Cryst. (2013). E69, o953 [doi:10.1107/S1600536813013639]

5-Isopropyl-5-methyl-2-sulfanylideneimidazolidin-4-one

Masaki Ichitani, Soh-ichi Kitoh, Shuhei Fujinami, Mitsuhiro Suda, Mitsunori Honda and Ko-Ki Kunimoto

Comment

2-Sulfanylideneimidazolidin-4-one (2-thiohydantoin) derivatives are useful synthetic intermediates with a wide range of applications, such as therapeutics, fungicides and herbicides (Marton *et al.*, 1993). Furthermore, 2-

sulfanylideneimidazolidin-4-ones have an interesting structural feature. These compounds commonly carry a thioamide and an amide group in a molecule, which provide equal numbers of the proton donor (D) and the acceptor (A) in a D–A– D–A sequence. Because of this unique structural feature, 2-sulfanylideneimidazolidin-4-ones are expected to form intricate hydrogen bonding networks in crystals. We have been studying the polymorphism and molecular conformations of 2-sulfanylideneimidazolidin-4-one (Ogawa *et al.*, 2009) and their derivatives. In this paper, we report on the crystal structure of the title compound, $C_7H_{12}N_2OS$.

In the title molecule (Fig. 1), the 2-sulfanylideneimidazolidin-4-one moiety (S1/O1/N1/N2/C1–C3) is nearly planar, with a maximum deviation of 0.054 (2) Å for atom N2. The N1—C1 distance [1.328 (3) Å] is shorter than the N2—C1 distance [1.389 (3) Å], and the S1—C1—N1 angle [128.62 (17)°] is greater than the S1—C1—N2 angle [124.27 (16)°]. These structural features are similar to those observed in 2-thiohydantoin (Devillanova *et al.*, 1987; Ogawa *et al.*, 2009; Walker *et al.*, 1969) and other 2-thiohydantoin derivatives reported in the Cambridge Structural Database (Version 5.34; Allen, 2002) with both unsubstituted NH groups and *sp*³-hybridization at C3.

In the crystal structure (Fig. 2), the enantiomeric *R*- and *S*-molecules are connected *via* intermoleculer N1—H1…S1 hydrogen bonds of the neighboring thioamide moieties to form centrosymmetric $R^2_2(8)$ rings (Etter *et al.*, 1990) (Table 1). Furthermore, the other centrosymmetric $R^2_2(8)$ rings are formed *via* intermolecular N2—H2…O1 hydrogen bonds of the neighboring amide moieties (Table 1). These two different rings are linked alternately into infinite one-dimensional tapes.

Experimental

The title compound was synthesized by slight modification of a reported method (Wang *et al.*, 2006). A mixture of α methyl-*DL*-valine (0.20 g, 1.53 mmol) and thiourea (0.35 g, 4.57 mmol) were allowed to react directly in the absence of any solvent at 180 °C for 5 h. The crude products were further purified by flash column chromatography using hexane and ethyl acetate as eluents (yield: 60%). Colorless crystals suitable for X-ray diffraction analysis were grown by slow evaporation from an aqueous solution.

Refinement

H atoms bonded to N atoms were located in a difference map and refined freely [N1—H1 = 0.78 (3); N2—H2 = 0.91 (4)]. The remaining H atoms were positioned geometrically (C—H = 0.98 or 1.00 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Computing details

Data collection: *CrystalClear* (Rigaku, 2006); cell refinement: *CrystalClear* (Rigaku, 2006); data reduction: *CrystalClear* (Rigaku, 2006); program(s) used to solve structure: *SIR2008* in *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial packing diagram of the title compound, viewed down the *a* axis. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).

5-Isopropyl-5-methyl-2-sulfanylideneimidazolidin-4-one

Crystal data	
C ₇ H ₁₂ N ₂ OS $M_r = 172.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8317 (5) Å b = 9.2114 (8) Å c = 16.8967 (16) Å $\beta = 95.855$ (3)° V = 902.92 (14) Å ³	F(000) = 368 $D_x = 1.267 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71070 \mathbf{A} Cell parameters from 2692 reflections \theta = 3.5-27.5^\circ \mu = 0.31 mm^{-1} T = 123 K Plate, colorless 0.20 \times 0.10 \times 0.04 mm
V = 902.92 (14) A ² Z = 4	0.20 × 0.10 × 0.04 mm
Data collection Rigaku/MSC Mercury CCD diffractometer Detector resolution: 7.314 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.795, T_{max} = 0.988$ 9484 measured reflections	2051 independent reflections 1660 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.038$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.3^\circ$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 10$ $l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.050$	map
$wR(F^2) = 0.126$	Hydrogen site location: inferred from
S = 1.14	neighbouring sites
2051 reflections	H atoms treated by a mixture of independent
111 parameters	and constrained refinement
0 restraints	$w = 1/[\sigma^2(F_o^2) + (0.0462P)^2 + 1.0263P]$
Primary atom site location: structure-invariant	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
direct methods	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.63 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.31$ e Å ⁻³

Special details

Experimental. m.p. 145 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.11 (br s, 1H), 8.09 (br s, 1H), 2.07 (sep, 1H, J = 6.9 Hz), 1.46 (s, 3H), 1.03 (d, 3H, J = 6.9 Hz), 0.95 (d, 3H, J = 6.9 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 181.13, 177.71, 70.15, 34.82, 20.97, 16.86, 16.42; IR (KBr, cm⁻¹): 3182 (ν (N—H)), 1743 (ν (C=O)), 1532 (ν (C—N)+ δ (N—H)). **Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement.** Refinement was performed using all reflections. The weighted *R*-factor (wR) and goodness of fit (*S*) are

based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	-0.05936 (9)	0.28891 (6)	0.42364 (3)	0.02414 (18)	
01	0.6264 (3)	0.09152 (17)	0.58845 (10)	0.0278 (4)	
N1	0.2019 (4)	0.3572 (2)	0.55956 (10)	0.0204 (4)	
N2	0.3053 (4)	0.1562 (2)	0.50439 (11)	0.0244 (5)	
C1	0.1488 (4)	0.2702 (3)	0.49775 (12)	0.0192 (5)	
C2	0.4673 (4)	0.1723 (3)	0.56850 (13)	0.0219 (5)	
C3	0.4068 (4)	0.3105 (3)	0.61121 (12)	0.0190 (5)	
C4	0.6026 (4)	0.4209 (3)	0.61059 (14)	0.0259 (5)	
C5	0.3484 (4)	0.2730 (3)	0.69649 (12)	0.0225 (5)	
C6	0.1683 (5)	0.1524 (3)	0.69600 (14)	0.0300 (6)	
C7	0.2715 (5)	0.4046 (3)	0.74022 (15)	0.0331 (6)	
H1	0.140 (5)	0.431 (4)	0.5650 (16)	0.026 (7)*	
H2	0.320 (6)	0.086 (4)	0.468 (2)	0.049 (9)*	
H4A	0.7335	0.3896	0.6476	0.0310*	
H4B	0.5490	0.5161	0.6269	0.0310*	
H4C	0.6506	0.4277	0.5568	0.0310*	
Н5	0.4929	0.2361	0.7268	0.0270*	
H6A	0.2276	0.0643	0.6726	0.0360*	
H6B	0.0265	0.1833	0.6644	0.0360*	
H6C	0.1355	0.1321	0.7507	0.0360*	
H7A	0.1359	0.4476	0.7100	0.0397*	
H7B	0.3966	0.4761	0.7460	0.0397*	
H7C	0.2323	0.3755	0.7930	0.0397*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0281 (3)	0.0216 (3)	0.0209 (3)	0.0062 (3)	-0.0060 (2)	-0.0030 (2)
01	0.0281 (9)	0.0245 (9)	0.0290 (9)	0.0104 (7)	-0.0057 (7)	-0.0047 (7)
N1	0.0255 (10)	0.0156 (9)	0.0193 (9)	0.0067 (8)	-0.0011 (7)	-0.0018 (7)
N2	0.0315 (11)	0.0185 (9)	0.0219 (10)	0.0086 (8)	-0.0039 (8)	-0.0053 (8)
C1	0.0223 (10)	0.0177 (10)	0.0171 (10)	0.0037 (8)	0.0005 (8)	0.0013 (8)
C2	0.0245 (11)	0.0192 (11)	0.0212 (11)	0.0008 (9)	-0.0016 (8)	-0.0017 (8)
C3	0.0205 (10)	0.0178 (10)	0.0179 (10)	0.0024 (8)	-0.0017 (8)	-0.0007 (8)
C4	0.0254 (11)	0.0231 (11)	0.0286 (12)	-0.0014 (9)	0.0001 (9)	-0.0003 (9)
C5	0.0223 (11)	0.0258 (11)	0.0188 (10)	-0.0012 (9)	-0.0004 (8)	0.0001 (9)
C6	0.0306 (12)	0.0296 (13)	0.0295 (12)	-0.0072 (10)	0.0010 (10)	0.0047 (10)
C7	0.0376 (14)	0.0332 (14)	0.0286 (13)	0.0006 (11)	0.0035 (10)	-0.0060 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C1	1.662 (2)	N2—H2	0.91 (4)
O1—C2	1.210 (3)	C4—H4A	0.980
N1—C1	1.328 (3)	C4—H4B	0.980
N1—C3	1.470 (3)	C4—H4C	0.980
N2—C1	1.389 (3)	С5—Н5	1.000
N2—C2	1.371 (3)	C6—H6A	0.980
C2—C3	1.523 (3)	C6—H6B	0.980
C3—C4	1.529 (3)	С6—Н6С	0.980
C3—C5	1.553 (3)	C7—H7A	0.980
C5—C6	1.528 (4)	С7—Н7В	0.980
C5—C7	1.512 (4)	C7—H7C	0.980
N1—H1	0.78 (3)		
C1—N1—C3	113.63 (18)	C3—C4—H4A	109.471
C1—N2—C2	112.12 (18)	C3—C4—H4B	109.469
S1—C1—N1	128.62 (17)	C3—C4—H4C	109.469
S1—C1—N2	124.27 (16)	H4A—C4—H4B	109.470
N1—C1—N2	107.11 (18)	H4A—C4—H4C	109.476
O1—C2—N2	126.9 (2)	H4B—C4—H4C	109.473
O1—C2—C3	126.2 (2)	C3—C5—H5	107.349
N2—C2—C3	106.89 (18)	C6—C5—H5	107.356
N1—C3—C2	100.18 (16)	C7—C5—H5	107.359
N1—C3—C4	111.34 (17)	С5—С6—Н6А	109.476
N1—C3—C5	111.94 (17)	С5—С6—Н6В	109.471
C2—C3—C4	110.09 (18)	С5—С6—Н6С	109.465
C2—C3—C5	109.67 (18)	H6A—C6—H6B	109.480
C4—C3—C5	112.89 (17)	H6A—C6—H6C	109.472
C3—C5—C6	111.88 (17)	H6B—C6—H6C	109.463
C3—C5—C7	112.26 (19)	С5—С7—Н7А	109.475
C6—C5—C7	110.4 (2)	С5—С7—Н7В	109.480
C1—N1—H1	123.2 (19)	С5—С7—Н7С	109.472
C3—N1—H1	122.7 (19)	H7A—C7—H7B	109.474
C1—N2—H2	126 (2)	H7A—C7—H7C	109.465

supplementary materials

C2—N2—H2	121 (2)	Н7В—С7—Н7С	109.461
C1-N1-C3-C2	-1.1(3)	01 - C2 - C3 - C5	-61.8 (3)
C1—N1—C3—C4	115.27 (19)	N2-C2-C3-N1	-0.6 (2)
C1—N1—C3—C5	-117.31 (18)	N2-C2-C3-C4	-117.96 (18)
C3—N1—C1—S1	-176.53 (17)	N2-C2-C3-C5	117.24 (18)
C3—N1—C1—N2	2.4 (3)	N1—C3—C5—C6	58.7 (3)
C1—N2—C2—O1	-178.9 (2)	N1—C3—C5—C7	-66.0 (2)
C1—N2—C2—C3	2.1 (3)	C2—C3—C5—C6	-51.5 (2)
C2—N2—C1—S1	176.16 (17)	C2—C3—C5—C7	-176.24 (15)
C2—N2—C1—N1	-2.9 (3)	C4—C3—C5—C6	-174.68 (16)
O1-C2-C3-N1	-179.6 (2)	C4—C3—C5—C7	60.6 (3)
O1—C2—C3—C4	63.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
N1—H1…S1 ⁱ	0.78 (3)	2.63 (3)	3.383 (2)	162 (3)
N2—H2…O1 ⁱⁱ	0.91 (4)	1.93 (4)	2.820 (3)	166 (3)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1.