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Abstract
Background: Recent findings have shown that up to 60% of pheochromocytomas (PCCs)

and paragangliomas (PGLs) are caused by germline or somatic mutations in one of the 11

hitherto known susceptibility genes: SDHA, SDHB, SDHC, SDHD, SDHAF2,VHL,HIF2A (EPAS1),

RET, NF1, TMEM127 and MAX. This list of genes is constantly growing and the 11 genes

together consist of 144 exons. A genetic screening test is extensively time consuming and

expensive. Hence, we introduce next-generation sequencing (NGS) as a time-efficient and

cost-effective alternative.

Methods: Tumour lesions from three patients with apparently sporadic PCC were subjected

to whole exome sequencing utilizing Agilent Sureselect target enrichment system and

Illumina Hi seq platform. Bioinformatics analysis was performed in-house using commercially

available software. Variants in PCC and PGL susceptibility genes were identified.

Results: We have identified 16 unique genetic variants in PCC susceptibility loci in three

different PCC, spending less than a 30-min hands-on, in-house time. Two patients had one

unique variant each that was classified as probably and possibly pathogenic: NF1 Arg304Ter

and RET Tyr791Phe. The RET variant was verified by Sanger sequencing.

Conclusions: NGS can serve as a fast and cost-effective method in the clinical genetic

screening of PCC. The bioinformatics analysis may be performed without expert skills. We

identified process optimization, characterization of unknown variants and determination of

additive effects of multiple variants as key issues to be addressed by future studies.
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Introduction
Pheochromocytomas (PCCs) and paragangliomas (PGLs)

are rare tumours arising from chromaffin cells in adrenal

medulla and autonomous ganglia. A majority of these

tumours have a low proliferation and seldom metastasize.

The understanding of underlying molecular mechanisms

in the tumorigenesis of these diseases has increased
dramatically during the last decade (1). Up to 80% of all

PCC and PGL could have either germline or somatic

mutations (2, 3, 4) in one of the 11 hitherto known

susceptibility genes: SDHA, SDHB, SDHC, SDHD, SDHAF2,

VHL,HIF2A (EPAS1),RET,NF1,TMEM127 andMAX (5, 6, 7,

8, 9, 10, 11). While there has been a constant flow of
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reportednew susceptibility loci, the capacity of instruments

approved for diagnostic use has failed to keep up with the

increasing demand. These 11 genes constitute 144 exons

(w25 000 bases); consequently, a comprehensive PCC and

PGLgenetic screening test canbe timeconsumingand isnot

regarded as cost effective (12). This hasmotivated the design

ofnumerous screening algorithms toguide the investigators

in the selection of appropriate patients and tests (12, 13).

Spare use of clinical genetic screening in patients with PCC

and PGL, despite the introduction of such guidelines, has

been mainly excused by cost–benefit explanations.

Introduction of novel sequencing techniques

(denoted next-generation sequencing or NGS) has

dramatically reduced the cost for DNA sequencing (14).

The term NGS includes principally different sequencing

platforms that share a high output of sequenced bases

relative to traditional methods. Recently, the focus of

experiments using NGS has been shifted from the research

settings to investigate the use of NGS as a platform in

clinical scenarios (15, 16, 17, 18).

The NGS process is highly complex with multiple

steps that may be divided into genomic enrichment

(selected, all exons as in exome or none as in whole

genome sequencing), sequencing (including library prep-

aration), bioinformatics analysis and, in the clinical

setting, genetic consultation (19).

Due to its well-characterized genotype–phenotype

correlation and the limitations imposed by existing

technologies, there is a strong argument for investigating

the potential use of NGS as a diagnostic test in the clinical

genetic screening of PCC and PGL.
Materials and methods

Patients

Tumour tissues from three patients with PCCwere selected

for whole exome sequencing. Patient characteristics are

summarized in Table 1. All the three patients had a
Table 1 Clinical characteristics of sequenced patients

Patient

no. Sex

Age at

diagnosis

Pre-operative characteristic

Symptoms of

PCC/PGL

syndrome

Family

history

Size

(mm)

Bil

mu

les

1 F 61 No No 25 Un

2 F 27 No No 100 Un

3 F 66 No No 60 Un

Survival in months. F, female; M, male; family history, one first-degree relative
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secretory unilateral PCC andno apparent signs/symptoms/

history suggesting pathogenic germline variants in known

susceptibility genes. The local ethics committee approved

the study and written informed consent was obtained

from all patients.
Exome capture and high-throughput sequencing

All samples were macro-dissected to achieve neoplastic

cellularity of O80%. DNA was prepared from cryosections

using Genomic-tip 20/G (cat. no. 10223, Qiagen). Sequen-

cing libraries were prepared from 3 mg gDNA using

SureSelect target enrichment system for Illumina paired-

end sequencing libraries v2.2, October 2010 (Agilent

Technologies, Santa Clara, CA, USA), according to the

manufacturer’s instructions. Briefly, the DNA was frag-

mented using the Covaris S2 system (Covaris, Woburn,

MA, USA). The DNA fragments were end-repaired using T4

DNA polymerase, Klenow DNA polymerase and T4

polynucleotide kinase (PNK), followed by purification

using AMPure XP beads (Beckman Coulter, Brea, CA,

USA). An A-base was ligated to the blunt ends of the DNA

fragments using the Klenow DNA polymerase and the

sample was purified using AMPure XP beads. Adapters for

sequencing were ligated to the DNA fragments, followed

by purification using AMPure XP beads. The adapter-

ligated libraries were amplified for five PCR cycles,

followed by a second purification using AMPure XP

beads. The quality of the enriched libraries was evaluated

using the 2100 Bioanalyzer and a DNA 1000 kit (Agilent).

Exon capture was performed from 500 ng of each

sequencing library using the SureSelect Human All Exon

50 Mb kit (Agilent). Briefly, the fragments in the library

were hybridized to capture probes, unhybridized material

was washed away and the captured fragments were

amplified for ten PCR cycles, followed by purification

using AMPure XP beads. The quality of the enriched

libraries was evaluated using the 2100 Bioanalyzer and a
s Post-operative characteristics

ateral/

ltiple

ions Diagnosis Ki67 (%)

Survival

(follow

up)

Metastatic

disease

Recurrent

disease

ilateral PCC !1 (75) No No

ilateral PCC !1 (56) No No

ilateral PCC !1 (66) No No

or two second-degree relatives; PCC, pheochromocytomas.
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High-Sensitivity DNA-kit (Agilent). The adapter-ligated

fragments were quantified by qPCR using the KAPA SYBR

FAST library quantification kit for Illumina Genome

Analyzer (KAPA Biosystems, Woburn, MA, USA). A 6 pM

solution of the sequencing libraries was subjected to

cluster generation on the cBot instrument (Illumina,

Inc., San Diego, CA, USA). Paired-end sequencing was

performed for 100 cycles in one lane using a HiSeq2000

instrument (Illumina, Inc.), according to the manufac-

turer’s protocols. Base calling was done on the same

instrument by RTA 1.10.36 and the resulting bcl files were

converted to Illumina qseq format with tools provided by

OLB-1.9.0 (Illumina, Inc.). Fastq sequence files were

generated using CASAVA 1.7.0 (Illumina, Inc.). Additional

statistics on sequence quality was compiled from the base

call files with an in-house script (http://molmed.medsci.

uu.se/SNPCSEQCTechnologyCPlatform/).

genes 

Selective validation with
Sanger sequencing

Annotation: allele
databases

Figure 1

Bioinformatics pipeline for analysis of exome sequencing in the clinical

genetic screening of pheochromocytoma.
Bioinformatics

Sequencing generated a minimum of 125!106 reads in all

three tumours with an average read length of 100 reads

(Table 2). Generated sequences were processed using

commercially available software: CLC Genomics Work-

bench 4.9 (CLC Bio, Aarhus, Denmark). Reads from pair-

end fragments were trimmed for low-quality and duplicate

reads (Fig. 1). Remaining sequences were mapped to the

human reference sequence GRCh37.p5. A single-nucleo-

tide variant (SNV) and insertion/deletion detection

algorithm was used with low- and high-stringency

settings: low stringency, coverage of O8 reads and a

variant allele frequency of O25%; and high stringency,

coverage of O30 reads and a variant allele frequency of

O35%.Generated resultswerefiltered for non-synonymous

variants and/or variants with a probable splice site effect.

The list was annotated for all gene annotations and then

filtered for variants in one of the 11 currently known PCC

susceptibility genes. The remainingvariantswere annotated

for overlapping information in selected genetic databases:

the Single Nucleotide Polymorphism Database (dbSNP),

Catalogue of Somatic Mutations in Cancer (COSMIC), the

HumanGeneMutationDatabase (HGMD)andLeidenOpen

source Variation Databases (LOVD). Impact of non-synon-

ymous amino acid substitution was assessed in silico, using

Polyphen2 (20) and SIFT (21). Cross-references were

manually gathered when available. Analysis of structural

variants in data generated by exome sequencing was not

adequately supported by the software and was excluded

from this experiment.
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Sanger sequencing

DNA was prepared from peripheral blood and tumour

cryosections usingDNeasy Blood andTissue Kit (Qiagen). In

order to be utilized as control and for verification of variants

discovered by NGS, fragments corresponding to all exons

and intron–exon junctions of major susceptibility genes;

SDHB, SDHC, VHL, MAX, RET (exons 10, 11 and 13–16) as

well as selected fragments in NF1 (exon 9), were amplified

by PCR and sequenced using automated Sanger sequencing

(Beckman Coulter, Takeley, UK). Primer sequences and PCR

conditions can be obtained by request.
Results

Exome sequencing of three PCC tumour lesions generated

a read coverage of 1! (98–99%), 10! (94–96%) and 100!

(35–77%) for bases annotated by PCC susceptibility genes

(Table 2 and Fig. 2). A total of 30 and 19 variants were

identified with low and high variant-calling stringency

respectively (Supplementary Table 1, see section on
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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supplementary data given at the end of this article). In low

stringency, this corresponded to 16 unique variants. One

was assessed as probably pathogenic, one as possibly

pathogenic, four as benign and 11 as unknown. RET

Tyr791Phe and NF1 Arg304Ter were each found in one

patient and were assessed as either possibly or probably

pathogenic. Patient 1 had all variants classified as benign

or unknown, including one previously uncharacterized

variant in SDHC: Pro110Ser (Supplementary Figure 1, 2

and 3, see section on supplementary data given at the end

of this article). RET Tyr791Phe and SDHC Pro110Ser were

verified by Sanger sequencing in both blood and tumour

tissues. Comparing with results from Sanger sequencing of

SDHB, SDHC,VHL, RET (exons 10–11 and 13–16) andMAX

as control, there were no false negatives generated by NGS

(Supplementary Table 1).
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Patient 1: SDHC variant of uncertain clinical significance

A 61-year-old woman was investigated due to therapy-

resistant hypertension of unknown aetiology. Urine nor-

adrenaline levelwas elevated. Thepatientwas operatedwith

a laparoscopic left-sided adrenalectomy and the pathology

report described a benign PCC, 25!20 mm in size and a

weight of 4.5 g. Immunohistochemistry demonstrated

expression for chromogranin A and a Ki67 index of 1%.

Exome sequencing revealed seven SNVs, one was classified

as benign and six as unknown. There was one missense

variant in SDHC located at position 477C!T, resulting in

amino acid substitution Pro110Ser. This variant was not

found in the HDMD, dbSNP, COSMIC or LOVD databases

nor could it be found in a PubMed search. In silico analysis

using Polyphen2 and SIFT estimated SDHC Pro110Ser as

benign (score 0.231) and tolerated (score 0.93).
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Patient 2: RET variant of uncertain clinical significance

A 27-year-old woman was investigated post partum due to

therapy-resistant hypertension during the second and third

trimesters. Thepatient had elevatedurinenoradrenaline and

adrenaline levels. Shewasoperatedwith a laparoscopic right-

sided adrenalectomy and the pathology report described a

PCC, 50!50 mm in size with a weight of 54 g. Immunohis-

tochemistry showed strong staining of chromogranin A and

aKi67 indexof!0.5%.Exome sequencing revealed13 SNVs,

three were classified as benign and nine as unknown. One

missense variantwas assessed aspossibly pathogenic, located

at position 2372A!T (rs77724903), resulting in the amino

acid substitution Tyr791Phe, in the proto-oncogene
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Detailed coverage at bases annotated for PCC susceptibility genes.
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tyrosine-protein kinase receptor (RET) gene (Fig. 3). The

pathogenicity of RET Tyr791Phe is disputed (22, 23, 24).
Patient 3: NF1 variant

A 65-year-old woman with a two-decade history of

hypertension and newly diagnosed adenocarcinoma of

the breast was investigated due to abdominal discomfort.

Computed tomography of the abdomen showed a lesion in

the left adrenal gland and subsequent urine collection

revealed high levels of noradrenaline. The patient was

operated with a left-sided adrenalectomy and the path-

ology report described a cystic PCC, 60!50 mm in size and

aweight of 59 g. The immunoreactivity of chromogranin A

was strong and Ki67 index was !1%. Exome sequencing

revealed ten SNVs, nine were classified as unknown. One

missense variant was assessed as probably pathogenic, a

nonsense variant located at position 910COT

(rs76015786), resulting in the amino acid substitution

Arg304Ter, in the neurofibromin (NF1) gene. The pheno-

type of Arg304Ter is described in related tumours and we

assessed the variants as probably pathogenic (25, 26, 27).

However, this variation could not be confirmed by Sanger

sequencing.
Discussion

Genetic screening of PCC and PGL has been found to be

beneficial in practicing centres (28). Utilizing novel

sequencing techniques have a potential to decrease costs

and time consumption, thereby lowering the threshold

for inclusion.
http://www.endocrineconnections.org
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Finding of the clinically relevant allele RET Tyr791Phe

clearly exemplified the potential of NGS as a diagnostic

tool, while SDHC Pro110Ser illustrated the complexity of

possibly pathogenic, but previously unknown, variants.

NF1 Arg304Ter displayed potential methodology conflicts;

however, conflicts in results generated by certified clinical

genetic laboratory testing using Sanger sequencing have

been reported (29).
Price

A direct cost comparison between whole exome sequencing

and traditional methods is complicated due to the invaria-

bility inwhichgenetic screening is currently performed. The

total cost for analysing the most frequently mutated genes

(SDHB, SDHD, VHL and RET) is estimated to be 3500 USD

(12, 30) and if screening all ten susceptibility genes, we

estimate the cost to be 10 000 USD. The use of genetic

screening algorithms may clearly reduce costs but can be

time consuming and are designed for scenarios in which

patient characteristics clearly indicate specific loci (31). The

costs of exome enrichment and sequencing in this study

were considerably lower than those of traditional screening,

and as the techniques develop fast, further cost reductions

are expected (Hayden EC, The $1000 genome: are we there

yet?, 2012, NATURE NEWS BLOG).
Performance

Raw sequences generated by NGS require computational

processing, mapping reads to a reference sequence and

calling variants between the two. Results generated by NGS
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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Patient 1

SDHC Pro110Ser

G G G G G G G GGC

Gly Pro/Ser Ala Leu Tyr/Phe Gly Leu Arg Lys

C C CA A A A A A AT T TT TC/T A/T

Patient 2

RET Tyr791Phe

Patient 3

NF1 Arg304*

Figure 3

Screenshot of sequences as displayed in CLC genomics 4.9. From above:

reference sequence, consensus sequence and mapped tumour reads (blue

colour, intact read pairs; green colour, broken forward read; red colour,

broken reverse read). Below: chromatograms of the corresponding

sequences generated by Sanger sequencing.
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should be confirmedwith a principally different sequencing

chemistry. The bioinformatics process should deliver a

defined list of variants. Stochastic false positives occur at

relativelyhigh frequencies butmay befiltered given that the

position is covered by an adequate sequence depth (about

30-fold). False negatives are more insidious and may be

caused by incomplete enrichment, uneven sequencing

coverage or faulty bioinformatics processing (17). Addition-

ally, a high sequence depth allows NGS to detect alleles at

thresholds below that of Sanger sequencing. These specifi-

cations predict built-in conflicts inwhichNGSmay generate

probably pathological variants that cannot be validated by

Sanger sequencing (i.e. patient 3).Other validationmethods

(e.g. pyrosequencing)maydetect alleles at a lower frequency

but at a higher cost (32). A situationwithmultiple unknown

variants has been expected andwas confirmed by this study
http://www.endocrineconnections.org
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(1). Evaluating the significance of such ‘genetic incidenta-

lomas’ may be extensively recourse demanding and clearly

demonstrates the need to further expand and curate allele

databases such as dbSNP and LOVD.

Time constraint in a clinical setting is also a challenge.

A diagnostic test must have a throughput measurable in

weeks. In theory, the NGS process can be tuned to deliver

results within 1 week (33). With a pre-defined bioinfor-

matics assay, the necessary computational analysis for our

experiments had a throughput of!24 h, including a total

in-house hands-on time of !30 min.
Exome vs targeted enrichment

Sequencing of tumour tissue with complete exome coverage

differs fromthecurrentdiagnosticprocedure inwhich limited
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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loci in germline DNA is analysed. The theoretical potential is

to provide improved prognostic and/or predictive infor-

mation to individualize the care of the patient (34, 35).

Managing the surplus of genetic information that does not

involve genes associated with the specific disease nor with its

treatment is problematic (36). Ethical and financial frame-

works regarding rights and responsibilities of patients and

providers need to be implemented (16).While the concept of

personalized medicine based on whole genome or exome

coverage needs to mature, there are immediate benefits of

NGS in clinical situations such as in the PCC and PGL

patients. Examining the available sequencing apparatus and

the upcoming pipeline, applications classified as medium

capacity are closest to fulfilling the optimal specification of

requirements for this situation: low costs, fast throughput,

high accuracy and a capacity matching the size of loci

conferring susceptibility to PCC and PGL (35, 37).
Limitations of this study

Exome enrichment resulted in a coverage of above ten

reads for more than 90% of targeted regions. However,

detailed coverage analysis (Fig. 2) revealed PCC loci

lacking 10! coverage (VHL gene had 10! coverage at

only w50% of bases). Use of exome enrichment prevents

analysis of structural variants (38), thus limiting the

comparison of NGS results with current standards (Multi-

plex Ligation-dependent Probe Amplification).

As tumour tissue was sequenced without matched

constitutional DNA, the bioinformatics process could not

classify variants as somatic or constitutional. Therefore,

future studies should include multiple cases with matched

tumoral and normal tissues from patients having charac-

terized pathogenic disease-causing variants. The method

for target enrichment should be selected with regard to

expected coverage at PCC and PGL disease causing loci.

Sanger sequencingas avalidationmethod forNGS results

have been replaced by othermore sensitivemethods (39); the

finding of NF1 Arg304Ter by NGS, but not by Sanger, is an

example of inconclusiveness between these two methods.
Conclusion

We conclude that utilizing NGSmay serve as a fast and cost-

effective method in the clinical genetic screening of patients

with PCC and PGLs. In order to facilitate the introduction of

NGS as a diagnostic application, we identified process

optimization, characterization of unknown variants and

determination of additive effects of multiple variants as key

issues to be addressed by future studies.
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