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Two-copy Quantum Teleportation
Quan Quan1,2, Ming-Jing Zhao3, Shao-Ming Fei4,5, Heng Fan6,7,2, Wen-Li Yang2,8 & Gui-Lu Long  1

We investigate two-copy scenario of quantum teleportation based on Bell measurements. The detailed 
protocol is presented and the general expression of the corresponding optimal teleportation fidelity 
is derived, which is given by the two-copy fully entangled fraction that is invariant under local unitary 
transformations. We prove that under a specific case of the protocol, which is significant for improving the 
optimal fidelity, the set of states with their two-copy fully entangled fractions bounded by a threshold 
value that required for useful two-copy teleportation is convex and compact. Hence the witness operators 
exist to separate states that are useful for two-copy teleportation from the rest ones. Moreover, we show 
that the optimal fidelity of two-copy teleportation surpasses that of the original one copy teleportation.

Quantum teleportation plays an important role in quantum information processing1,2. It gives ways to transmit an 
unknown quantum state from a sender traditionally named “Alice” to a receiver “Bob” who are spatially separated, 
using classical communication and quantum resources3–6. In7,8, the authors consider the original one copy tele-
portation: Alice and Bob previously share a pair of particles in an arbitrary mixed entangled state χ. In order to 
teleport an unknown state to Bob, Alice first performs joint Bell measurement on her particles and tells the results 
to Bob by classical communication. Bob tries his best to choose particular unitary transformations to get the opti-
mal transmission fidelity. The optimal transmission fidelity of such teleportation is given by the fully entangled 
fraction (FEF)9 of the quantum resource. It shows that when the resource χ is a maximally entangled pure state, 
the corresponding optimal fidelity is equal to 1. However, Alice and Bob usually share a mixed entangled state due 
to decoherence, and the optimal fidelity is less than 1.

One way to improve the fidelity of teleportation is to distill entanglement10, which refers to the procedure of con-
verting mixed entangled states into singlets by using many copies of the entangled resources. The distillation of pure 
states is often referred to as entanglement concentration11. For mixed states, since the distillation protocol presented 
in10, fruitful results have been obtained12–15. However, the problem of distillation is that the complicated protocol may 
have to be repeated for infinitely many times to bring out a singlet. Moreover, in each round the desired results are 
usually obtained probabilistically, usually with an extremely low possibility to get an expected measurement outcome.

Inspired by this, to improve the teleportation fidelity, we propose two-copy quantum teleportation sce-
nario directly, instead of bringing out a singlet as the resource of traditional one copy teleportation scenario. 
Specifically, we introduce a quantum teleportation protocol based on Bell measurements. The corresponding 
optimal teleportation fidelity is derived analytically. The fact that the optimal fidelity of the two-copy teleporta-
tion can surpass that in one copy scenario (the traditional quantum teleportation) is shown by analytical means 
together with numerical methods. In particular, we discuss a specific case which is significant for improving the 
optimal fidelity. It shows that the set of quantum states with their two-copy fully entangled fraction bounded by 
a threshold value required for useful two-copy teleportation is convex and compact, which demonstrates the 
existence of teleportation witness16–18 in two-copy quantum teleportation.

Results
The two-copy teleportation protocol based on Bell measurements is as follows. Initially Alice and Bob share two 
pairs of entangled resources, see Fig. 1. Particles 1 and 2 (resp. 3 and 4) are in an entangled state χ. Particles 1 
and 3 are in Alice’s side, while particles 2 and 4 are in Bob’s side. Alice wants to transmit an unknown state ρin 
of particle 0 to Bob. Firstly, Alice (resp. Bob) performs a joint local unitary operation W (resp. V) on particles 1 
(resp. 2) and particle 3 (resp. 4). Then she makes joint Bell measurement on particles 0 and 1. She informs Bob 
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the measurement results by classical means. According to these measurement results, Bob chooses corresponding 
unitary transformations {T} on particle 2 to achieve the optimal teleportation fidelity.

Let H denote an n-dimensional Hilbert space, with {|j〉, j = 0, ..., n − 1, n < ∞} as orthogonal normalized basis. A set 
of unitary matrices {Ust} in H can be written as: Ust = htgs, where h and g are n × n matrices such that h|k〉 = |(k + 1)/mod 
n〉 and g|k〉 = wk|k〉, with w = exp{−2iπ/n}. {Ust} has the following relations19: δ δ=′ ′ ′ ′

†U U ntr( )st s t tt ss , = ×
†U U Ist st n n, 

where I is the identity matrix. The generalized Bell states7 are given by Φ = ⊗ Φ×I U( )st n n st , where 
Φ = Φ = ∑ =

− jj
n j

n
00

1
0
1  is the maximally entangled pure state. The n2 generalized Bell states 

Φ = ∑ ⁎U jk{ } ( )st n j k st jk
1

,  form a complete orthogonal normalized basis of the H ⊗ H space. Throughout this paper 
we adopt the standard notations: for any matrix A∈End(H), Aa is an embedded operator in the tensor space H ⊗ H ⊗ 
… ⊗ H, which acts as A on the α-th space and as identity on the other spaces; and for any matrix U ∈ End(H ⊗ H), Uαβ 
is an embedded operator in H ⊗ H ⊗ … ⊗ H, which acts as identity on the spaces except for the α-th and β-th ones. 
After some tedious calculation, we get the output state under the scenario of two-copy teleportation:

Lemma 1 For any unknown input state ρin, the two-copy teleportation protocol under Bell measurements maps 
the state ρin to state ρΛ

χ⊗ ( )T W V
in

{ , , }st
2 ,

∑∑ ∑ ∑ ∑ρ χ χ

ρ

Λ = Φ Φ Φ Φ

×

×

χ
′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

⊗

†

† † † † †

n

T V U U W U

U W U U V T

( ) 1

tr [( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ], (1)

T W V
in

s t s t s t s t s t
s t s t s t s t

st s t s t st in

st s t s t st

{ , , }
3

, , ,

4 2 24 2 4 24 2 2

2 24 2 4 24 2

st
2

1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2

1 1 2 2

1 1 2 2

where W and V are the unitary transformations Alice and Bob apply to their two particles, respectively. Tst ∈ {T} is 
the unitary operator that Bob performs on particle 2 to achieve the optimal teleportation fidelity.

Proof. First consider that the unknown initial input state ρin that Alice wants to teleport is a pure state, 
φ α ν= ∑ν ν .

 1). The two entangled resource states shared by Alice and Bob are pure: χ⊗2 = |Ψ〉1234〈Ψ|, where 
|Ψ〉 = ∑ ∑ ⊗ | 〉 ∑ | | = .=

−
=

−
=

−a jk a lm a, 1j k
n

l m
n

jk lm j k
n

jk1234 , 0
1

, 0
1

, 0
1 2  Alice and Bob apply the unitary transforma-

tions W and V to their two resource particles respectively. Before the measurement, the initial state 
becomes φ α ν| 〉 |Ψ〉 = ∑ ∑ ∑ ∑ ∑ | ′ ′ ′ ′〉ν ν=

−
=

−
′ ′
−

′ ′
− −

′ ′ ′ ′W V a a W V j k l mj k
n

l m
n

j k
n

l m
n n

jk lm j l
jl

k m
km

0 13 24 1234 , 0
1

, 0
1

,
1

,
1 1

01234.
After Alice’s joint Bell measurement based on |Φst〉 on particles 0 and 1, we get: 

φ φ〈Φ | | 〉 |Ψ〉 = | 〉 |Φ〉†W V V A A W U( ) ( )st st01 0 13 24 1234 24 2 4 24 2 2 34, where A is the n × n matrix with elements 
(A)jk = ajk. Receiving Alice’s measurement outcomes, correspondingly Bob applies unitary operators {T} on 
particle 2. The resulting state becomes φ| 〉 Φ .†T V A A W U( ) ( )st st2 24 2 4 24 2 2 34  Taking partial trace over the spaces 
with respect to particles 3 and 4, we have

∑ρ φ φΛ = | 〉 〈 |
χ⊗

† † † † † †

n
T V A A W U U W A A V T( ) 1 tr [( ) ( ) ( ) ( ) ],

(2)
T W V

in
s t

st st st st
{ , , }

,
4 2 24 2 4 24 2 2 2 2 24 2 4 24 2

st
2

Figure 1. Scheme of two-copy teleportation protocol based on Bell measurements. Alice and Bob share two 
copies of entangled resource χ, with particles 1 and 3 in Alice’s side, and particles 2 and 4 in Bob’s side. Alice 
wants to transmit the unknown state ρin of particle 0 to Bob with optimal fidelity. The two-copy teleportation 
protocol based on Bell measurements is as follows: firstly, Alice (resp. Bob) performs a joint local unitary 
operation W (resp. V) on particles 1 (resp. 2) and particle 3 (resp. 4) to correlate these two particles. Then 
Alice makes joint Bell measurement on particles 0 and 1 and informs Bob the measurement results by classical 
communication. According to the measurement results, Bob chooses corresponding unitary transformations 
{T} on his particles 2 and 4 to restore the input state ρin on particle 2.
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which is equivalent to Eq. (1).
 2). Now consider the case of arbitrary entangled mixed resources, χ = ∑ Ψ Ψα β α β αβ αβ

⊗ P P ,2
,  where 

|Ψ 〉 = ∑ ∑ | 〉 ⊗ | 〉αβ
α β

=
−

=
− a jk a lm ,j k

n
l m
n

jk lm, 0
1

, 0
1 ( ) ( )  0 ≤ Pα(β) ≤ 1 and ∑ =α β α βP 1( ) ( ) . Similar to the derivation of (2), 

we have

∑∑ρ φ φΛ = | 〉 〈 |
χ

α β
α β

α β α β
⊗

† † † † † †

n
P P T V A A W U U W A A V T( ) 1 tr [( ) ( ) ( ) ( ) ],T W V

in
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( )

4
( )
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where =α β α βA a( )jk jk
( / ) ( / ). Since each matrix A(α) can be decomposed in the basis of Ust: = ∑α αA a Us t st st

( )
,

( ) , by using 
the relation7, χ∑ = 〈Φ | |Φ 〉α α

α α
′ ′ ′ ′

⁎n p a ast s t st s t
( ) ( ) , we can straightforwardly show that Eq. (1) is also valid for any mixed 

input state ρin. 

Remark The two-copy teleportation scenario is trace preserving, ρΛ =
χ⊗tr[ ( )] 1T W V

in
{ , , }st

2 , see proof in Method.
Utilizing the output state, we get the optimal teleportation fidelity (see Method for detailed proof):

Theorem 1 The optimal teleportation fidelity f2(χ)max of the two-copy teleportation protocol is given by

χ
χ

=
+

+
+

f nF
n n

( ) ( )
( 1)

1
1

,
(3)2 max

2

where Ω = W U T( ) ( )T
st st13 13 1 3, F2(χ) is two-copy fully entangled fraction,

χ χ χ= Φ Ω Ω Φ .
Ω ∈

† †F V V( ) max { tr [ ] }
V U n

2
, ( )

12 34 13 24 12 34 13 24 122

From Theorem 1 we see that the two-copy optimal teleportation fidelity f2(χ) solely depends on the two-copy 
fully entangled fraction F2(χ). It can be shown that F2(χ) given by (3) is an invariant under local unitary transforma-
tions: χ χ χ χ→ † †U V U V( ) ( ) ( ) ( )12 34 13 24 12 34 13 24, where U and V are unitary operators on H ⊗ H. Theorem 1 also tells 
us that a resource state χ is useful, namely, it gives better teleportation fidelity than classical channels, if χ >F ( )

n2
1 .

The original one copy optimal teleportation fidelity is given by7,8

χ
χ

=
+

+
+

f nF
n n

( ) ( )
1

1
1

,
(4)1 max

1

where χ χ= 〈Φ| |Φ〉∈
†F U U( ) max { }U U n1 ( ) 12 2 12 2 12  is the original fully entangled fraction. To show that the two-copy 

teleportation protocol is always better, or at least as good as the original one copy case, let us simply choose the 
unitary matrix = = ×W V In n13 24 2 2 in Theorem 1, which does not necessarily reach the value of f2(χ)max.

Lemma 2 When choose the unitary matrix = = ×W V In n13 24 2 2 in Theorem 1, the output state ρΛ
χ⊗ ( )T W V

in
{ , , }st

2  of the 
two-copy teleportation protocol reduces to the output state Λ(χ)({T})(ρ) of one-copy teleportation protocol7,8 (see 
Method).

Theorem 2 The two-copy optimal teleportation fidelity is always greater than or equal to that of the original one 
copy protocol, that is, for any arbitrary state χ,

χ χ≥ .f f( ) ( ) (5)max max2 1

Proof. From Eqs (3) and (4), one can see that both optimal teleportation fidelities for two-copy and onecopy telepor-
tation protocols are linear functions of the corresponding fully entangled fractions. These fully entangled fractions 
characterize the usefulness of the entangled resource states in quantum teleportation. To compare f2(χ)max with 
f1(χ)max, one only needs to compare F2(χ) with F1(χ). Unfortunately, both F2(χ) and F1(χ) are formidably difficult to 
calculate analytically. Analytical formulae for F1(χ) are only available for some special states20,21. Generally one has 
only estimations of the upper and lower bounds of F1(χ)21,22. The computation of F2(χ) is much more difficult than 
that of F1(χ). However, if one takes W = V to be identity, or takes Ω and V in (3) to be the tensor of two unitary 
operators Υ ⊗ Γ with Υ, Γ ∈ U(n), then one gets F2(χ) = F1(χ). Thus the extreme value range of F2 is larger than that 
of F1. Therefore, for any arbitrary state χ, f2(χ)max ≥ f1(χ)max, i.e., the two-copy optimal teleportation fidelity is always 
greater than or equal to that of the original one copy protocol. 

In the following, we give numerical calculations of F2 and F1 by using the Conjugate Gradient Algorithm23,24. 
Following the modified Polak-Ribiere-Polyak method introduced in24, we can get the numerical result of F1.

Lemma 3 To simplify the computation, we take V = In×n to get a lower bound F′2(χ) of F2(χ):

∑χ χ ρ′ =







〈Φ| 〈 | Ω Ω | 〉 |Φ〉





Ω∈

† ⁎F j j( ) max ,
U n j

2
( )

12 3 23 12 23 3 3 122
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where ρ3 = tr4(χ34); ρ ⁎
3  is the conjugate of ρ3, see Method.

Denote χ χ ρ= ∑ 〈Φ| 〈 | Ω Ω | 〉 |Φ〉† ⁎F j j( ) j2 12 3 23 12 23 3 3 12. We get χ′ = Ω ∈ FF ( ) max U n2 ( ) 223
2 . Set ΔF = F′2(χ) − F1(χ). 

Figure 2 shows that for these randomly generated states, one has F′2(χ) > F1(χ), i.e., the lower bound of the opti-
mal fidelity of two-copy teleportation is better than the optimal fidelity of the one-copy teleportation.

Let us investigate further the lower bound F′2(χ) of the two-copy fully entangled fraction F2(χ), obtained by 
setting V = In×n in the two-copy teleportation protocol. For the original one copy teleportation, it is shown that 
the resource states χ satisfying F1(χ) > 1/n are useful for teleportation17. Since the set of states satisfying χ ≤F ( )

n1
1  

is convex and compact, there exist witness operators that detect entangled states which are useful for teleporta-
tion17,18. Similarly, for the two-copy teleportation protocol with V = In×n, if resource states satisfying χ >′F ( )

n2
1 , 

they are useful for teleportation. Denote  χ χ= ′ ≤{ }F: ( )
n2
1 . We have:

Theorem 3 The set  is convex and compact.

Proof.

 1). The set  is convex: let χa and χb ∈ , namely, χ′ ≤F ( )a n2
1 , χ′ ≤F ( )b n2

1 . Consider χc = ξχa + (1 − ξ)χb, 
where ξ ∈ [0, 1]. By the definition of χ χ ρ′ = ∑ 〈Φ | 〈 | Ω Ω | 〉 |Φ 〉Ω ∈

† ⁎{ }F j j( ) max U n j2 ( ) 00 12 3 23 12 23 3 3 00 1223
2 , we get 

that χ ξ χ ξ χ′ ≤ ′ + − ′ ≤ .F F F( ) ( ) (1 ) ( )c a b n2 2 2
1  Thus χc ∈ , i.e.  is convex.

 2). The set  is compact: for finite dimensional Hilbert spaces, to show that a set is compact, it is enough to 
show the set is closed and bounded.  is bounded since the eigenvalues of χ lies in [0, 1]17. To see that it is 
closed, assume that for any two density matrices χa and χb, the value of F′2(χa + χb) and F′2(χa) are 
obtained at Ωa+b and Ωa respectively, where Ω ∈ U(n2). Therefore

χ χ χ χ χ χ′ + − ′ ≤ ||Ω || || || + || || || ||+F F n( ) ( ) (2 ) , (6)a b a a b a b b2 2
2 2

where ||χa|| is the maximal eigenvalue of χa satisfying ||χa|| ≤ 1. Since the set of all unitary operators is bounded, 
||Ωa + b||2 ≤ v, where v is a positive real number. Thus F′2(χa + χb) − F′2(χa) ≤ n2v(2 + ||χb||)||χb||. 

Remark For the two-copy teleportation protocol with V = In×n, there exist witnesses to identify the usefulness of 
an unknown resource state experimentally.

In fact, according to the Hahn-Banach theorem25, any χ ∉  can be separated from  by a hyperplane. This 
feature enables for the existence of hermitian witness operators and thus experimental ways to detect the useful-
ness of an unknown resource state. 

Discussion
To conclude, we have proposed a general two-copy quantum teleportation protocol based on Bell measurement 
systematically. The corresponding optimal teleportation fidelity have been analytically derived. Interestingly, the 
formulae of optimal teleportation fidelity in two-copy scenario and one-copy scenario are similar. Both of them 
are the one-variable linear function of the corresponding fully entangled fractions, which are invariants under 
local unitary transformations on the resource states. Analytical analysis together with numerical results illustrate 
that the optimal teleportation fidelity can be improved in two-copy teleportation protocol when compared with 
the onecopy scenario. Therefore, in order to improve the teleportation fidelity, two-copy teleportation protocol 
is significant both theoretically and experimentally. Furthermore, we have shown that in the context of two-copy 
teleportation protocol, if one considers a specific case that Bob conducts identity transformation on his resource 
states, the optimal fidelity can still be improved. The set of quantum states with their two-copy fully entangled 
fraction bounded by a threshold value required for useful two-copy teleportation is convex and compact. It 

Figure 2. Hollow (solid) triangles stand for 3 (4)-dimensional randomly generated states. Horizontal axis is the 
one-copy fully entangled fraction F1. Vertical axis denotes the difference ΔF = F′2 − F1. It is seen that ΔF > 0, 
and hence the lower bound of the optimal fidelity of the two-copy teleportation is better than the optimal 
fidelity of original one-copy teleportation for all these randomly generated states.
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demonstrates the existence of two-copy teleportation witness, completing the theory of two-copy quantum tele-
portation. Besides, this two-copy quantum teleportation protocol can be generalized to many-copy cases and 
may result in further improvement on the teleportation fidelity. Different protocols and methods are worthwhile 
to conceive and investigate in the future.

Methods
Proof of Remark. The output state Λ

χ⊗
T W V{ , , }st

2  of the two-copy teleportation is trace preserving:

∑∑ ∑ ∑

∑∑ ∑ ∑

ρ χ

χ

χ
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where in the first equality we have used the relation ∑ = ×
†U AU n A Itr( )s t st st n n,  for any n × n matrix A. 

Proof of Theorem 1. Let U(n) be an irreducible n-dimensional representation of unitary group G. By using 
the Schur’s lemma
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where σ is any operator acting on the tensor space, P is the flip operator, dg is the Haar measure on G normalized 
by ∫ =dg 1

G
, we get the fidelity of the two-copy teleportation protocol,
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where φ φ...in in  represents the average over all input states φin .
Then the optimal teleportation fidelity is given by the maximal fidelity of f2(χ),
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=
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, ( )
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2

2

where Ω24 = W24(Ust)2(Tst)2. Rewriting ΩT as Ω, we get (3). 

Proof of Lemma 2. When we choose = = ×W V In n13 24 2 2, the output state ρΛ
χ⊗ ( )T W V

in
{ , , }st

2  of the two-copy 
teleportation protocol reduces to that of one-copy teleportation protocol Λ(χ)({T})(ρ) in7:
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Proof of Lemma 3
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where ρ3 = tr4(χ34).

Numerical calculation for Fig. 2. Denote χ χ= Φ Φ†F U U( )1 12 2 12 2 12. Since unitary U can be expressed as 
U = exp{i*H}, where H is the corresponding Hermitian matrix, we can get the increment of F1
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Choosing FG ( )2 1  as the gradient of F1, then following the MRPR Method introduced from Eq. (2.1) to Eq. (2.4) 
in24, we can get the numerical result of F1.

Using the same method, we can obtain the increment of χ′F ( )2 :





χ ρ χ ρ

ρ χ ρ χ
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Thus we can get a numerical lower bound of F′2. We generate random 3d and 4d states by Mathematica and let 
ΔF = F′2 − F1, then can get into the result of Fig. 2.

Detailed proof of Theorem 3
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